
WearFit: Security Design
Analysis of a Wearable
Fitness Tracker

http://www.ieee.org
http://www.computer.org
http://cybersecurity.ieee.org
http://cybersecurity.ieee.org/center-for-secure-design/
http://www.computer.org
http://www.ieee.org
http://cybersecurity.ieee.org/

2

Public Access Encouraged

Because the authors, contributors, and publisher are eager to engage the broader
community in open discussion, analysis, and debate regarding a vital issue of
common interest, this document is distributed under a Creative Commons BY-
SA license. The full legal language of the BY-SA license is available here: http://
creativecommons.org/licenses/by-sa/3.0/legalcode.

Under this license, you are free to both share (copy and redistribute the material in
any medium or format) and adapt (remix, transform, and build upon the material for
any purpose) the content of this document, as long as you comply with the following
terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may use any reasonable citation format, but the
attribution may not suggest that the authors or publisher has a relationship with you
or endorses you or your use.

“ShareAlike” — If you remix, transform, or build upon the material, you must
distribute your contributions under the same BY-SA license as the original. That
means you may not add any restrictions beyond those stated in the license, or apply
legal terms or technological measures that legally restrict others from doing anything
the license permits.

Please note that no warranties are given regarding the content of this document.
Derogatory use of the content of this license to portray the authors, contributors, or
publisher in a negative light may cancel the license under Section 4(a). This license
may not give you all of the permissions necessary for a specific intended use.

Staff

Brian Kirk, Manager, New Initiative Development
Carmen Flores-Garvey, Designer

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.ieee.org
http://www.computer.org
http://cybersecurity.ieee.org/center-for-secure-design/
http://www.ieee.org
http://www.computer.org
http://cybersecurity.ieee.org/

3

WearFit: Security Design Analysis
of a Wearable Fitness Tracker
Jacob West
Chief Architect, Security Products, NetSuite

Tadayoshi Kohno
Short-Dooley Professor, Computer Science & Engineering, University of Washington

David Lindsay
Security Researcher, Synopsis

Joe Sechman
Director, Applied Security Research, Hewlett Packard Enterprise

I n 2014, the IEEE Computer Society—the lead-
ing association for computing professionals—

launched a cybersecurity initiative by forming the
Center for Secure Design. The mission of the
Center is to expand the focus in security from
merely finding bugs to identifying and avoiding
common design flaws, with the hope that soft-
ware architects can learn from others’ mistakes.

Soon after it was founded, the Center brought
together experts from industry, government, and
academia at a workshop where participants
discussed the types of flaws they either identi-
fied in their own internal design reviews, or that
were available from external data. The group ar-
rived at a list of what they felt were the top se-
curity design flaws, consolidated guidance on

4

how to avoid them, and published the result as
Avoiding the Top 10 Security Flaws (see http://
goo.gl/2Gujs6).

In this document, we build on the Center’s
previous work by describing a fictitious wearable
fitness tracking system known as WearFit and
discussing how the system’s design addresses
each of the top 10 software security design flaws:

1.	 Earn or give, but never assume, trust.
2.	 Use an authentication mechanism that can’t

be bypassed or tampered with.
3.	 Authorize after you authenticate.
4.	 Strictly separate data and control instruc-

tions, and never process control instructions
received from untrusted sources.

5.	 Define an approach that ensures all data are
explicitly validated.

6.	 Use cryptography correctly.
7.	 Identify sensitive data and how they should

be handled.
8.	 Always consider the users.
9.	 Understand how integrating external compo-

nents changes your attack surface.
10.	Be flexible when considering future changes

to objects and actors.

This document strives to bring life to the top
10 software security design flaws by demon-
strating how they apply to a specific, if fictitious,
system. We selected a wearable fitness tracker

because wearable devices are driving significant
changes in how society uses technology, with al-
most half the population predicted to adopt fit-
ness-tracking devices by 2019 (see http://goo.
gl/eS0IeM). We base our analysis as much on
real-world systems as possible, and aim to pro-
vide a broad analysis of threats facing users of
wearable fitness-tracking devices.

The “System Overview” section describes
the technical design of the WearFit product and
outlines the fundamental categories of threats
that the system takes into consideration. The
“Analysis” section comprises the remainder of
the document and discusses the security impli-
cations of the system’s design in the context of
each of the top 10 software security flaws.

System Overview

The WearFit system is an imaginary wearable
personal health monitoring device similar, but
not identical, to products from companies
already on the market. Figure 1 shows the basic
system architecture.

Wearable Device

The WearFit product comprises a device that’s
worn on the wrist and measures step count
(from an accelerometer) and heart rate (from
an optical sensor), which it encrypts and signs

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

http://goo.gl/2Gujs6
http://goo.gl/2Gujs6
http://goo.gl/eS0IeM
http://goo.gl/eS0IeM

5

before storage. The wearable responds to poll-
ing requests from native mobile applications
that download the data in a JavaScript Object
Notation (JSON) format and upload them to the
website. Attempts to poll for and upload data are
made every 15 minutes.

The device also accepts configuration instruc-
tions from authorized mobile devices, including
the ability to control what’s displayed by default
on the wearable, setting the time and alarms,
and defining specific fitness goals (such as the
number of daily steps).

The wearable includes upgradeable firm-
ware, a unique hardware identifier, and
Bluetooth Low Energy (LE) communication
using libraries provided by the chipset vendor.
Firmware and configuration updates are signed
using a private key. Signatures are validated by

the wearable using a certificate provisioned on
the device during manufacturing.

Mobile Application

WearFit provides native applications that run on
mobile devices and allow them to interact with
the wearable. The application primarily down-
loads activity data from paired wearables, per-
mits users to view their activity data on the
mobile device, and uploads activity data to the
website.

The wearable pairs with a mobile application
using Bluetooth LE and a library from the
chipset vendor. A unique token is created by
the wearable and is displayed on both devices.
The user must verify that the tokens match and
accept the pairing. Pairings can be deleted in the

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

Partner
Applications

HTTPS
HTTPSBluetooth LE

Advertising
Providers

WebsiteMobile
Application

Wearable
Device

Figure 1. High-level overview of WearFit’s system architecture.

6

native mobile application or the website. Pairings
persist until they’re deleted.

In addition to data from paired wearables,
the application also polls for nearby unpaired
devices and acts as a passthrough to upload
activity data from those devices to the website.
The application annotates activity data with
geolocation information before uploading
them to the website. Data uploaded via the
passthrough feature can’t, by design, be read or
modified by the unpaired mobile device.

Website

The website lets users register and view their ac-
count, access and visualize their activity data,
plus set workout targets and annotate past activ-
ity data. The website is built using open source
libraries, commercial third-party libraries, and in-
house developed code. It includes front-end web-
servers, back-end database servers, and other
servers to manage third-party services on which
the website relies.

Users provision accounts by registering an
email address and password or by third-party
credentials (such as Facebook or Google+)
using the OAuth 2.0 protocol, which also lets
them access the WearFit Social System. The
user provides information such as gender, age,
location, height, and weight. User accounts are
automatically populated with information avail-
able in the third-party authentication services.

After a user authenticates, a unique session
token is set and shared between the client and
server. If a user’s web session is inactive for
more than 15 minutes, the server invalidates the
session token, and the user must re-authenticate
to generate a new valid session identifier.

Authenticated users can update their profiles,
share their fitness data with other users (al-
though the default is set to keep these data pri-
vate), publish their fitness data on social media
through the WearFit Social System (the default is
off), toggle the ability to auto-approve follow re-
quests (the default is off), toggle the ability to
share data with partner applications (the default
is off), and enroll in employer or insurer-spon-
sored WearFit Corporate Benefits programs to
share data with the respective group (the default
is no enrollment). Users can change their pass-
word by first providing their current password and
retrieve their password securely through either
means of account provisioning. Users can merge
and unmerge accounts.

The databases and other systems behind the
webserver are only accessible from a limited set
of internal networks and systems. User account
information is stored in a dedicated database.

Attack Categories

The following is an overview of attacks that the
WearFit system design took into consideration.
Under each top-level threat category is a list of

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

7

examples of representative attacks that illus-
trate, but do not completely enumerate, ways
that attackers might target the system.

Denial of service
•	Render wearable unusable with fake firmware

update.
•	Drain battery, CPU, or other resources.
•	Lockout user from website account.

Compromising device integrity
•	Malicious firmware update.
•	Buffer overflow on wearable to

compromise paired mobile device.

Falsifying the user’s own health data
•	Physically manipulate the device.
•	Tamper with data on mobile device before up-

loading to the webserver.
•	Tamper with data in transit from wear-

able to mobile or mobile to website.

Falsifying another user’s health data
•	Rewrite health data on device.
•	Tamper with data on a mobile device when

used as a passthrough.
•	Spoof data uploads using a known device or

user identifier.
•	Tamper with data in transit from wearable to

mobile or mobile to website.
•	Direct attacks against the website (for

example, SQL injection).
•	Phishing, cross-site request forgery (CSRF),

and other indirect attacks against end users.

Abusing health data that are
intentionally shared
•	Employer or insurer penalizes behavior seen

through WearFit Corporate Benefits.
•	 Users of the WearFit Social System

unintentionally view sensitive activities.
•	Advertising partners target over-personalized

ads.
•	Share configuration that becomes out-of-sync

with changes in real-world relationships.

Stealing a user’s health data
•	Guess or steal a user’s authentication

credentials.
•	Direct attacks against the website (for

example, SQL injection).
•	Eavesdrop on communication on mobile de-

vice when used as a passthrough.
•	Eavesdrop on communication from wearable

to mobile or mobile to website.
•	Malicious insider uses internal, or otherwise

“privileged,” access.
•	Phishing, CSRF, and other indirect

attacks against end users.

Now let’s consider how the system’s technical
design can affect its security.

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

8

Analysis

This section evaluates the design of the WearFit
system in the context of the top 10 software
security design flaws.

Earn or Give, but Never Assume, Trust

Recall the following from Avoiding the Top 10
Security Flaws:

Software systems comprising more than just a

single monolithic component rely on the compo-

sition and cooperation of two or more software

tiers or components to successfully accomplish

their purpose. These designs often depend on the

correct functioning of the existing parts. They will

be inherently insecure if any of those parts are

run in a potentially hostile environment, such as a

user’s desktop computer, an unmanaged device,

or a runtime or sandbox that can be tampered

with by an attacker.

The WearFit system as a whole includes
a number of components, each with their
own trust requirements and capabilities to
prove their identity to the rest of the system.
Adversaries might masquerade as a trusted
component in an effort to steal another user’s
health data, but the system protects against
this possibility. This way, trust becomes a
property of the system that’s only present once
the components have actively established

their identities to each other over protected
communication channels.

The WearFit wearable uses a pairing process
to establish trust with the application running
on a mobile device. Both sides present a visual
representation of the same token so that the
user can verify a match. Once the user confirms
a match, each device stores the other’s identity.
From that point, the devices have a trust
relationship and proceed with communication.
Without that trust, wearables still communicate
with mobile devices acting as passthroughs, but
the mobile application on passthrough devices
won’t have access to or trust the information.

The problem of trust also extends to
partners that interface with the WearFit system,
including partner applications and advertising
providers. The trust relationship is explicitly
built and verified with partners by making
correct use of certificates, pre-shared keys
transmitted over secure channels, and binding
legal contracts.

A trust relationship also must be present to
update the firmware on the wearables. Applying
an unauthenticated firmware update might result
in rendering the device completely inoperable
or causing the device to operate in a manner
not originally intended by WearFit. In the latter
case, the device’s normal operation could be
forever compromised without the owner even
realizing an attack has occurred. The specifics of

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

9

this mechanism are discussed later in the “Use
Cryptography Correctly” section.

Trust is inherently time-sensitive and can
be revoked. It’s unsafe, generally, to assume
that just because trust existed at some point
in time it continues to exist over time. Trust
relationships between partners are re-evaluated
and re-established on a regular cadence, and
expired relationships are purged. Trust between
the WearFit device and the controlling mobile
app, as well as between a mobile app and the
web app, are only reset when a user changes
their authentication credentials. When users
change their password, they must also reconfirm
the pairing with the device.

Use an Authentication Mechanism That
Can’t Be Bypassed or Tampered with

Avoiding the Top 10 Security Flaws suggests:
Authentication is the act of validating an entity’s

identity. One goal of a secure design is to prevent

an entity (user, attacker, or in general a “principal”)

from gaining access to a system or service without

first authenticating. Once a user has been authen-

ticated, a securely designed system should also

prevent that user from changing identity without

re-authentication.

As part of the onboarding process, WearFit
users are required to either register a new
account directly or through services that

support the OAuth 2.0 authentication protocol
(such as Facebook or Google). By design, the
authentication mechanism implemented by
the WearFit website is used as a service by
the mobile application, which centralizes the
authentication logic and simplifies the design.

For users who wish to create an account
directly with WearFit, registration requires a
strong password that meets the complexity
requirements noted in the “Always Consider the
Users” section of this document and stores it
as a salted hash. As a result, lost passwords
must be reset and can’t be retrieved in plaintext.
Storing the passwords in this manner minimizes
the possibility of a widespread compromise
of user account credentials in the event that
an attacker successfully gains access to the
database containing the credentials.

To combat attempts to enumerate valid user
accounts by an anonymous attacker, the website
displays generic messages in response to failed
authentication attempts. If a user initiates a
password reset request, the email address
provided by the user must match their account
or they won’t receive further instructions to reset
their credentials and, if applicable, their account
will remain locked. Upon receipt of the email, the
user is guided back to the WearFit website via a
unique URL that includes a securely generated
(non-guessable) randomized token that expires
after 30 minutes. To defend against a similar

10

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

attack, five failed authentication attempts result
in the user’s account being locked for a fixed
period of time, which requires a password reset
to actively unlock.

For users who elect to register with WearFit
using a third-party OAuth authentication service,
most credential-related security operations are
deferred to the third-party provider. Users are
notified and must acknowledge upon registration
that the selected authentication provider now
has permission to access their WearFit activity
data. WearFit closely monitors vulnerability
disclosure reports that impact supported
authentication providers that may affect users
with accounts provisioned in this manner. More
information regarding this practice is discussed
in Avoiding the Top 10 Security Flaws in the
section “Understand how integrating external
components changes your attack surface.”

To establish trust relationships with OAuth
providers, the WearFit system maintains several
important credentials, including a client ID and
client secret to be able to authenticate itself,
along with access and refresh tokens for all
the users who choose to use the integration for
sharing with social networks.

Once authenticated, the system generates
a secure random session identifier with ade-
quate size and entropy to prevent attackers from
guessing it easily. The website monitors this to-
ken for any modifications that would suggest

tampering and, if tampering is discovered, ter-
minates the corresponding user’s session, forc-
ing the user to re-establish a valid session by
re-authenticating. Additionally, user sessions time
out and force re-authentication after 15 minutes
of observed inactivity. The “Use Cryptography Cor-
rectly” section of this document discusses how
transport-layer security is used throughout the
system to prevent the inadvertent disclosure of
session identifiers and other secrets.

Finally, the WearFit wearable and mobile
application authenticate themselves to one
another during the pairing process. Once paired,
apart from occasional polling requests to upload
data, the wearable only accepts commands
from paired mobile applications. This minimizes
the threat posed by attackers bent on draining
resources by sending repeated, resource-
intensive requests to the device. Unpaired
devices present little value to potential attackers
and are therefore unlikely targets.

Authorize after You Authenticate

Avoiding the Top 10 Security Flaws states:
While it is extremely important to assess a us-

er’s identity prior to allowing them to use some

systems or conduct certain actions, knowing the

user’s identity may not be sufficient before de-

ciding to allow or disallow the user to perform

certain actions.

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

11

For the WearFit wearable, authorization be-
gins when it’s first paired with a user’s account.
This process grants permission for the device
to transfer fitness activity data to the WearFit
mobile application and, ultimately, to the Wear-
Fit website. The pairing process typically only
happens once. However, certain activities re-
quire subsequent authorization and, in some
cases, re-authentication before they can be per-
formed safely. The difference between authori-
zation and re-authentication is distinct: Autho-
rization is an explicitly granted or defined capa-
bility that can be revoked, whereas re-
authentication is the act of repeating the au-
thentication challenge process to validate an
identity (device or user).

The process for changing a user’s password
for the WearFit website is the primary driver
requiring re-authentication. The user is prompted
to provide the current password in addition
to the new password to complete the update
process. This ensures that the user is indeed
who they purport to be and not a malicious
actor that has somehow accessed the system
without the user’s password (using, for example,
account enumeration or session replay). If re-
authentication weren’t required, a malicious
actor might update the user’s password to an
arbitrary value of their choice; thereby taking
full and potentially ongoing control of the
account. Forgotten passwords are reset using an

email-based process, which is described in the
“Use an Authentication Mechanism That Can’t
Be Bypassed or Tampered With” section of this
document.

Authorization is transparent to the user,
but is a key security control invoked prior to
modifying or accessing data. When a user
requests to do any sensitive action in the
WearFit website, the application verifies that
the user’s session is active and that the user
has permission to perform the given action. If a
discrepancy is detected, the request is denied
and the user’s session is terminated with a
corresponding log entry for auditing purposes.

The WearFit website also lets users share
activity data with their friends. Users can elect to
automatically approve friend requests or require
explicit approval before another user may view
activity details. In either case, authorization
checks are explicitly made for each request
before sharing activity details with other users.
Should a user decide to no longer share their
activity data with one or more friends, the user
can elect to revoke authorization and deny
access to both past and future activity updates.

As a further safeguard against attacks, re-
quests that prompt changes on the website check
the value of the Origin header. This header is vali-
dated to ensure that they originate from the same
domain as the WearFit website, which thus pre-
vents basic CSRF attacks. An authenticated user

12

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

may also elect to delete their WearFit account en-
tirely, which revokes future access to the WearFit
system and deletes all account-related data.

Strictly Separate Data and Control
Instructions, and Never Process
Control Instructions Received
from Untrusted Sources

From Avoiding the Top 10 Security Flaws, recall
the following:

Commingling data and control instructions in a sin-

gle entity, especially a string, can lead to injection

vulnerabilities. Lack of strict separation between

data and code often leads to untrusted data con-

trolling the execution flow of a software system.

This is a general problem that manifests itself at

several abstraction layers, from low-level machine

instructions and hardware support to high-level vir-

tual machine interpreters and application program-

ming interfaces (APIs) that consume domain-spe-

cific language expressions.

At lower layers, lack of strict segregation between

data and control instructions can result in the intro-

duction of memory-corruption vulnerabilities, which

in turn may permit attacker-controlled modifications

of control flow or direct execution of attacker-con-

trolled data as machine or byte-code instructions.

At higher levels, commingling of control and data

often occurs in the context of runtime interpreta-

tion of both domain-specific and general-purpose

programming languages. In many languages, con-

trol instructions and data are often segregated us-

ing in-band syntactic constructs, such as quoting

and escaping. Experience has shown that use of

injection-prone APIs incurs significant risk that in-

jection vulnerabilities will indeed be introduced. Ex-

amples of such vulnerabilities include SQL query

injection, cross-site JavaScript injection, and shell

command injection.

Attackers target vulnerable software systems
for the majority of breaches (see http://goo.gl/
Bnk6bE) and WearFit is unlikely to be an excep-
tion. Adversaries might want to steal or modi-
fy data for a single, targeted user, or aggregate
data across many users. They might target a vul-
nerability in the wearable to compromise the mo-
bile application or website, or they might use in-
jection-style attacks to target the mobile appli-
cation or website directly. Each software compo-
nent in the system, as well as the data formats
they exchange, is therefore responsible for main-
taining a strict segregation between control and
data values.

The WearFit system primarily deals with two
kinds of data: health data recorded by a de-
vice and configuration data input by the user.
Health data comprises the device identity com-
bined with a timeline, record of steps taken, and
heart rate. This information is communicated to
the mobile application and website, where it’s
stored and processed. WearFit users also use

http://goo.gl/Bnk6bE
http://goo.gl/Bnk6bE

13

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

the mobile application and website to input var-
ious other data, including fitness profiles, work-
out targets, and annotations to enrich recorded
activities.

No data from a device directly influences
control in the mobile application or website.
A device’s identity is compared with a lookup
table of known devices populated during
pairing, and only when a match is found are the
values allowed to influence program behavior.
The system strictly whitelists the syntax of
new device identifiers to ensure that they’re
formatted as expected.

WearFit enforces strict syntax whitelists
at trust boundaries between and within
components. The protocol for communicating
health data from the device to an application
on a mobile device explicitly limits messages
to data, represented as structured and strongly
typed values. Likewise, the device accepts a
known set of control statements from the mobile
application for updating the device’s settings
(for example, the default view, alarms, and
activity targets) and strictly validates inbound
commands against a list of known-good values.

At the web layer, the system assumes
mobile applications communicating with it have
been compromised and therefore makes no
assumptions about the syntax of the data it
receives. The web application strictly segregates
control statements from data values, validates

control statements against known-good values,
and validates data against a whitelist of valid
syntax.

The WearFit web application relies on down-
stream protections in the wearable and mobile
application to prevent attackers from imperson-
ating legitimate users. Regardless, it’s impossi-
ble for a user to trick the web application into ex-
ecuting an invalid command (such as overwriting
protected data values on the wearable) because
these strict syntax requirements prevent data
from being interpreted by adjacent systems—
such as the database, Lightweight Directory Ac-
cess Protocol (LDAP) directory, or web browser—
as control statements. The system design en-
sures that different message formats are used
to communicate between different components.
Any attempt to interact with a component using
the wrong format will be strictly rejected.

The web application is also the entry point
for the user to input configuration settings and
other data relevant to their profile and activities.
As with input from the mobile application
and elsewhere in the system, no user input
directly influences program control. Rather,
authenticated users select from a fixed set of
allowed operations on strongly validated data
values. When interacting with the database,
the web application uses a parameterized API
that utilizes prepared statements to formally
segregate user input from control.

14

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

Although not a part of the system’s core func-
tionality, the web application also accepts in-
put in the form of shared fitness data from part-
ner applications and advertising supplied by a
third-party system. This external content, and
particularly the JavaScript used to deliver and
load ads in the target application, are a known
vector for malware and other types of attacks. A
limited set of control statements are necessary
for ads to work in the user’s browser, but shared
fitness data should never be executable. The
application enforces a known-good list of what
commands are allowed and checks URIs and IP
addresses embedded in ads against a reputa-
tion database of known-bad sites before display-
ing them to users or acting on them in any way.

Define an Approach That Ensures
All Data Are Explicitly Validated

From Avoiding the Top 10 Security Flaws,
remember the following:

Software systems and components commonly

make assumptions about data they operate on. It

is important to explicitly ensure that such assump-

tions hold: Vulnerabilities frequently arise from im-

plicit assumptions about data, which can be ex-

ploited if an attacker can subvert and invalidate

these assumptions.

Keeping in mind that the majority of breaches
target vulnerable software, we note that many

breaches are enabled, at least in part, by a lack
of data validation that permits attacks, such as
cross-site scripting (XSS), SQL injection, path
traversal, and buffer overflow among others.
Attackers might exploit lapses in data validation
in the WearFit system to compromise or falsify
health data by targeting a vulnerability in any one
component, or a combination of vulnerabilities
across components.

The WearFit system assumes that any giv-
en component (device, client application, or web-
site) might have been compromised or replaced
by an imposter. Therefore, each component im-
plements a validation strategy that verifies as-
sumptions about data types (both syntactic and
semantic) and values before operating on them.
Each component implements a validation strate-
gy that verifies data as early as possible and re-
validates important properties before the data
are consumed.

In the web application, a centralized valida-
tion approach that enforces validation on all in-
bound requests is implemented using request
filters and an interceptor facility provided by the
underlying web framework. Additionally, a com-
mon library is used to validate known types (for
example, email addresses or URIs), which en-
sures that all validation of different instances of
the same type of data apply consistent valida-
tion semantics. Consistent use of common vali-
dation annotations (indicating, for instance, what

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

15

validation has been performed or what assump-
tions have been verified) also increases the fidel-
ity of static analysis and makes manual code re-
view easier.

Beyond syntactic restrictions, the validation
mechanism also considers the semantics and data
ranges for data values in order to refuse data that
are inappropriate. For example, when the webserv-
er first receives activity parameters from a WearFit
device, a check is done to ensure that the values
are physically possible in the real world.

In mobile applications, one area of concern
is whether the validation scheme is implement-
ed consistently across the different codebases
and programming languages. In this case, the
application was designed to use a common val-
idation API with implementations in each sup-
ported language. The WearFit team performs fre-
quent design and code reviews to ensure that
the per-language implementations stay in line
with the central design. Any platform-specific in-
consistencies are well-documented and mitigat-
ed appropriately.

On the wearable, validation capabilities pro-
vided by the platform and frameworks are more
limited. Custom validation logic is necessary to
ensure that devices aren’t compromised by ma-
licious data or commands received from the ap-
plications. Standard communication protocols
are used to narrow the types and ranges of data
that may be used. However, the device explicitly

validates the syntax, semantics, and expected
values of all data.

Use Cryptography Correctly

The WearFit system transmits and stores a
significant amount of information, including
information related to an individual’s health
and activities. Protecting this and other data
from unauthorized reads and modifications is
therefore critical. Regarding data protection,
WearFit considers both the data’s integrity
(ensuring that an unauthorized party can’t modify
the data) as well as the data’s confidentiality
(ensuring that an unauthorized party can’t read
that data) imperative.

To illustrate the nuances and potential im-
pact of improper use of cryptography for Wear-
Fit, consider the following scenario. A user has
a WearFit Social System feature activated, and
it shares the user’s exercise activities with her
Facebook friends, while also showing that she’s
in a wonderful new romantic relationship. A jeal-
ous ex-lover could cause harm to the new rela-
tionship by modifying the user’s WearFit activi-
ty annotations to change her running activity to
something more salacious. Even something as
simple as modifying the user’s data to make it
appear that she’s taking long afternoon walks
when she isn’t could be sufficient to break up
a new relationship. In addition to relationship

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

16

sabotage, the jealous ex-lover might also want to
stalk his ex. To do so, he might try to obtain pri-
vate information about her activities and where-
abouts by illicitly extracting the (private) data re-
corded on her WearFit device.

As another motivating example, consider
a situation in which a user is enrolled in his
company’s WearFit Corporate Benefits program,
which means that he receives an insurance
discount if he authorizes WearFit to share
his exercise activities with his employer and
insurance company and if he maintains a certain
level of regular exercise. That user might want
to compromise the integrity of his own data
and upload falsified data to the WearFit servers
(for example, that he has been taking 40,000
steps a day when in fact he has been taking
2,000 steps a day). To win the office pool for
the healthiest division, he might at the same
time falsify data for other company employees,
making it seem that they exercise much less
than they actually do.

There are numerous defenses that WearFit
must employ to protect data confidentiality and
integrity under such scenarios, ranging from
secure authentication mechanisms (see the
“Use an Authentication Mechanism That Can’t
Be Bypassed or Tampered With” section of this
document) to implementing best practices on
the server (so that it’s hard to compromise the
server directly).

One critical component—the component
that’s the focus here—is cryptography.
Cryptography ultimately plays many roles in
the WearFit system. For the aforementioned
scenarios, cryptography can help protect
communications between the WearFit device,
the mobile device, and the webserver from
unauthorized reads (which could compromise
data privacy) and modifications (which could
compromise data integrity). Quoting from
Avoiding the Top 10 Security Flaws:

Cryptography is one of the most important tools

for building secure systems. Through the prop-

er use of cryptography, one can ensure the confi-

dentiality of data, protect data from unauthorized

modification, and authenticate the source of data.

Cryptography can also enable many other security

goals as well. Cryptography, however, is not a pana-

cea. Getting cryptography right is extremely hard.

Non-experts should never design cryptogra-
phy protocols on their own. Moreover, even en-
suring that cryptographic primitives are properly
used requires some experience and domain ex-
pertise. Cryptography is notoriously hard to get
right, but there are some critical cryptographic
components that the WearFit system must have.

Focusing on the transmission of the data
from the WearFit device to the webserver via the
mobile application, it might be tempting to use
cryptography to protect the data’s confidentiality
and integrity as it transits between the WearFit

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

17

device and the mobile device—using, for exam-
ple, Secure Sockets Layer and Transport Layer
Security (SSL/TLS)—and again protect the data
as it transits between the mobile device and
webserver (again using SSL/TLS).

However, this is insufficient because, by de-
sign, the WearFit device might upload the data
via untrusted mobile devices. Those untrust-
ed mobile devices could modify or leak the data
that they transit. Therefore, the data from the
WearFit device are end-to-end encrypted and au-
thenticated as they flow from the WearFit device,
via the mobile device, and to the webserver. That
is, the data are encrypted and authenticated on
the WearFit device, and only decrypted and veri-
fied at the final destination server.

Because the WearFit system requires end-
to-end data integrity and confidentiality from
the wearable all the way to the website, the
WearFit device uses an immutable asymmetric
private key (for which the webserver knows the
public key). Additionally, the WearFit system is
designed with algorithmic agility. If cryptographic
weaknesses are discovered in the deployed
algorithms, there’s a path for transitioning the
WearFit system to new cryptographic algorithms.

Cryptography manifests in other places in
the WearFit system, as well. Data on the Wear-
Fit servers are cryptographically protected to
mitigate the potential for malicious or curious

company insiders to access or modify customer
data. Encrypting data at rest also mitigates the
potential harm the company would experience if
a disk with customer data were discarded and re-
covered by a third party. See the “Identify Sensi-
tive Data and How They Should Be Handled” sec-
tion of this document for further discussion of
what specific data are encrypted at rest.

Firmware updates to the WearFit device are
cryptographically signed and authenticated us-
ing a private key that only the WearFit company
knows. The use of signed software updates can
help protect against one method by which an
adversary might try to get his or her own code
running on the WearFit device. But, as with all
discussions of cryptography, WearFit designers
must consult with cryptography experts when
designing such a firmware update capability. For
example, WearFit must ensure that the software
signing mechanism is robust in the event that
the private signing key is compromised, and
must also consider rollback attacks in which an
attacker attempts to load an old and insecure
version of the firmware onto a target device.

Identify Sensitive Data and How
They Should Be Handled

The “Use Cryptography Correctly” section dis-
cusses the role cryptography plays in protecting

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

18

sensitive data, where protecting might mean
protecting against unauthorized modifications
or access. However, in any complex system, it
might not be possible to fully protect all data
from all parties, even if it were desirable. In-
deed, for the system to operate and be valu-
able, at least some data must be exposed to
the user (for example, information about his or
her activities) as well as partner organizations
(for instance, if the user enrolls in the Wear-
Fit Corporate Benefits program) and friends (if
the user enrolls in the WearFit Social System).
This forces the following questions: What data
are sensitive, how sensitive are those data, and
who should have read or write access to them?
Recall the following from the Avoiding the Top 10
Security Flaws document:

Data are critical to organizations and to users. One

of the first tasks that systems designers must do is

identify sensitive data and determine how to protect

them appropriately. Many deployed systems over

the years have failed to protect data appropriate-

ly. This can happen when designers fail to identify

data as sensitive, or when designers do not identify

all the ways in which data could be manipulated or

exposed.

To help illuminate the more challenging
issues that WearFit addressed in their system’s
design, consider the following two scenarios.
First, when most users enroll in the WearFit
system, they probably expect that only those

they authorize will be able to see any of their
tracking data. Additionally, WearFit strongly
promotes user privacy to ease concerns users
may have about them storing health and
geolocation data on their servers. Suppose now
that a user is involved in some legal proceedings
related to an employment dispute. In this case,
law enforcement personnel may require that
WearFit turn over all tracking and geolocation
information associated with the given user.

If the WearFit system maintains detailed
records of all of the user’s raw data indefinitely,
then users may view turning over this data as
a violation of the privacy assurances WearFit
made. WearFit proactively considered this issue
and decided not to store the entire history of raw
data for perpetuity, but rather to store all data
for the past week, less granular data about user
activity between three months and one week
ago, and then even less granular data about
user activity prior to that.

Consider a second scenario focused on
the challenges involved in identifying sensitive
data in the first place. The WearFit Social
System permits users to share activities with
their friends. When designing the WearFit
Social System, the WearFit team envisioned
users automatically sharing exercise activities
such as running and walking rather than more
sensitive activities. However, users might be
surprised to learn that their sexual activities,

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

19

which their wearable considers to be exercise,
were also displayed on their friend’s newsfeed.
To address this issue, WearFit designers made
the automatic sharing of data an opt-in feature.
Additionally, users who do opt-in receive periodic
visual alerts reminding them about what data
are shared with their friends.

Identifying sensitive data is both important
and challenging, as is determining how to protect
such data. The WearFit system errs on the
side of caution and treats most data, including
annotations and other fitness profile details,
as sensitive. To account for evolving data values
and changes to their sensitivity, the WearFit team
consciously considers each data element, how
that data element might be used or misused,
and uses this to determine the data’s level of
sensitivity and how it should be protected.

Always Consider the Users

Avoiding the Top 10 Security Flaws states:
The security stance of a software system is inextri-

cably linked to what its users do with it. It is there-

fore very important that all security-related mech-

anisms are designed in a manner that makes it

easy to deploy, configure, use, and update the sys-

tem securely. Remember, security is not a feature

that can simply be added to a software system, but

rather a property emerging from how the system

was built and is operated.

As a consumer device, the entire WearFit
system is built around the end user. User
experience is key to building customer loyalty
and maintaining a profitable business. Many of
the fundamental architecture decisions in the
system were made with this user experience
in mind. The security architecture must help
support a positive user experience, and not
detract from it.

The WearFit design acknowledges that
certain user behavior, although possibly
undesirable, can’t be reasonably prevented.
Specifically, users that wish to falsify basic
health data readings by physically manipulating
the wearable device (for example, bouncing
the device on their desk or attaching it to
another person to increase activity readings)
are permitted to do so. Beyond the potential for
incurring rewards from programs that incentivize
exercise, such as employer- or insurer-run
programs, this type of fraudulent data does little
harm to other users of the overall system.

WearFit users interact most heavily with the
web application, and user experience begins
with authentication. New users must register
a strong password with the site and a secure
recovery procedure in case they forget the
password. With respect to password strength,
there’s a tension between increased security
(as an extreme example, requiring 32-character
passwords) and usability (for example, allowing

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

20

4-digit PINs as passwords). The WearFit website
enforces password strength requirements that
are compatible with other popular, consumer-
facing web applications (8 characters minimum,
3 distinct character types, and no dictionary
words). Users can also authenticate using third-
party services, including Google+ and Facebook.

As with weak password-strength require-
ments, web applications that allow too many
password attempts make it easy for attackers to
brute force user credentials. On the other hand,
systems that are too aggressive about locking

out users who have mistyped their password can
worsen the user experience; this creates a new
vector for attackers who wish to legitimate us-
ers. The WearFit application strikes a balance
between these extremes by locking out users af-
ter five failed authentication attempts, but letting
users unlock their account at any time by using a
secure, email-based password reset process.

The WearFit system design also incorporates
the diversity of users. Users have different cul-
tures, geopolitical regions, ages, genders, and
physical abilities. As an example of keeping in
mind different physical abilities, the WearFit sys-
tem makes it easy for both blind and sighted us-
ers to authenticate to the system. The password

reset functionality includes a CAPTCHA, which
allows visually impaired users to prove their hu-
manity. Care is given to the audio CAPTCHA de-
sign to ensure that it’s reasonably resistant to
automated solving techniques. From a secure
design standpoint, all authentication mecha-
nisms are treated consistently, meaning that no
one authentication mechanism represents a low-
er barrier to entry than another.

User considerations affect the WearFit
system’s architecture in more fundamental ways
as well. For example, the tracking device is

designed so that an end user can always keep
the device on them. This means that the device
needs to have a reasonably long battery life,
be small, and not present a burden to carry. To
accommodate these needs, the device has little
memory, computational power, storage space, or
long-distance communication capabilities.

All of these constraints affect the security
architecture. Because storage space is small,
the device needs to take advantage of every
opportunity it can to upload activity data to the
WearFit server. Not only that, the desired user
experience is to have this data uploaded without
any user interaction. As a result, the system is
designed so that any device running the WearFit

As an example of keeping in mind different physical abilities, the WearFit system
makes it easy for both blind and sighted users to authenticate to the system.

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

21

mobile application can relay data from a tracker
to the server. This means that additional security
controls must be put in place to ensure that
users can’t easily see or tamper with other
users’ activity data.

Most WearFit users aren’t security profes-
sionals and often aren’t aware of what data are
sensitive or how to secure them. As discussed
in Avoiding the Top 10 Security Flaws, there are
significant advantages to making it easy for us-
ers to do the most secure thing. The Wear-
Fit system design incorporates this principle
throughout. The website makes the default data
settings private—so that no user can see anoth-
er user’s data unless they have explicitly shared
them. The website also presents a simple dash-
board for users to view what data they’ve shared
and with whom, as well as to revoke or modify
those sharing relationships at any time.

Finally, WearFit understands that users
might share data without fully understanding the
implications of doing so. To address this, the
website includes a brief awareness video and
FAQ to familiarize users with the sensitivity of
the health data that WearFit collects (including
unintended implications of those data—
for example, determining when the user was
performing sensitive activities such as going for
a run when they were supposed to be working
from home or having sex when they were
traveling without their spouse).

Understand How Integrating External
Components Changes Your Attack Surface

Recall the following from Avoiding the Top 10
Security Flaws:

The decision to use-rather-than-build means that

the software as a whole inherits the security weak-

nesses, security limitations, maintenance respon-

sibility, and the threat model of whatever you are

including. This inheritance can amount to a deficit

of security, which must be solved, mitigated, or ac-

counted for when the system is finished.

Like most development organizations, Wear-
Fit leverages multiple open source and commer-
cial libraries, frameworks, and other APIs. In the
wearable and mobile applications, Bluetooth LE
communication is handled by libraries provided
by the chipset vendor. The website is a tradition-
al Java web application built on an open source
model-view-controller (MVC) framework that pro-
vides various security-relevant functionalities to
the application (such as user management, data
access, and input validation). Moreover, the web-
site integrates with several other open source li-
braries in the browser via JavaScript (to provide
dynamic graphs, for example), and on the back
end (to render targeted ads).

Even when no security problems are known to
exist, the organization validates its assumptions
about the behavior of third-party code whenever
possible. Imperatives such as input validation

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

22

are even more critical when you don’t control all
of the code that’s responsible for accepting or
processing input and misunderstandings about
the contract between in-house and third-party
libraries can lead to failures.

Given the critical functionality that these com-
ponents provide, WearFit takes great care to iden-
tify, understand, and mitigate risk introduced by
third-party code. All third-party components are
strictly revision-controlled and only approved ver-
sions of known components are allowed. Develop-
ers who wish to leverage a new third-party compo-
nent must complete a security review before the

component is approved for use. As part of regular
integration builds, static analysis is used to iden-
tify specific component versions and to report any
known vulnerabilities that have been identified.

The organization maintains a detailed inven-
tory of each component not developed in-house.
For each component, a security review is con-
ducted to determine a standard, secure configu-
ration that disables features or functionality not
in use. Depending on the component’s nature,
reviewers leverage static analysis to review com-
ponents for unknown vulnerabilities and sub-
scribe to notification lists of new CVEs as they’re

discovered. The internal security team monitors
vulnerability disclosure lists and third-party li-
brary mailing lists for issues that require rapid
patching or updating. The internal security team
also performs penetration testing on the full ap-
plication before major releases to ensure that in-
dividual components behave as expected in the
overall system.

When a security problem is identified in a
third-party component, the organization employs
the same incident response process as they
would for vulnerabilities found in internally devel-
oped code. If a patch is immediately available, a

well-tuned vulnerability management process en-
sures that patches are tested and deployed rap-
idly. If no patch has been developed, the organi-
zation attempts to mitigate the risk with external
controls or, as a last resort, by developing and
deploying their own patch.

Be Flexible When Considering Future
Changes to Objects and Actors

Avoiding the Top 10 Security Flaws states:
Software security must be designed for change,

rather than being fragile, brittle, and static. During

Given the critical functionality that these components provide, WearFit takes great
care to identify, understand, and mitigate risk introduced by third-party code.

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

23

the design and development processes, the goal

is to meet a set of functional and security require-

ments. However, software, the environments run-

ning software, and threats and attacks against

software all change over time. Even when security

is considered during design, or a framework being

used was built correctly to permit runtime changes

in a controlled and secure manner, designers still

need to consider the security implications of future

changes to objects and actors.

Securing the WearFit ecosystem involves
planning for future security lapses, mishaps,
and unknowns. It’s reasonable to expect over
the system’s lifetime that quality and security
issues will arise that require substantial system
changes. Not all changes can be predicted, but
advanced planning can avoid security surprises,
simplify response procedures, and reduce the
overall risk associated with any security breach.

The WearFit system is designed with a
highly modular architecture where components
with different functionality are developed and
implemented independently. Also, third-party
libraries are used for certain functionality
such as for cryptographic routines. Refer to
the “Understand How Integrating External
Components Changes Your Attack Surface”
section of this document for a discussion of
how WearFit manages security risk in third-
party libraries. This modularity increases future
flexibility by allowing outdated components and

libraries to be independently tested, updated,
and replaced as needed.

Internally, the WearFit system uses several
certificates to secure communication between
internal services and also communication with
users’ mobile devices. Strong passwords are
used for making connections with the database
and other back-end resources. Future security
breaches may require these security tokens to
be updated quickly. As a result, the WearFit sys-
tem ensures that these security tokens are nev-
er hard-coded into the application source code.
Instead, the system follows security best practic-
es by storing the security tokens in platform-pro-
vided key stores with restricted access.

The wearable includes functionality to
update its firmware, to address any security
vulnerabilities that are discovered after initial
release. In addition, as cryptographic routines
become outdated over time, firmware updates
allow for substituting in improved algorithms.
This process can’t, however, modify the private
key provisioned during manufacturing. See the
“Use Cryptography Correctly” section in this
document for further discussion.

Various WearFit support staff have privileged
access to internal webservers and databases
used by the application. However, the necessary
access for the support staff changes over time
as their job requirements change and as sys-
tem functionality changes. An audit system is

W e a r F i t : S e c u r i t y D e s i g n A na lys i s o f a W e a r a b l e F i t n e ss T r ac k e r

24

used to track which support staff have access
to which components. The audit system is also
used for granting and revoking access, as need-
ed, over time.

Conclusion

As we mention in the introduction, this document
is part of a series of practical artifacts from the
Center for Secure Design. We anticipate deliver-
ing several more in 2016.

If you’re interested in keeping up with the
Center for Secure Design’s activities, follow

us on Twitter @ieeecsd or via the website
(cybersecurity.ieee.org). If you would like to help
with CSD activities, contact us at ieee-csd@
ieee.org.

Acknowledgments

This document came to fruition through the col-
laborative efforts of many participants at the
CSD’s 2015 workshops. In particular, we thank,
Jeremy Epstein, Tammy Green, Gary McGraw,
Brook Schoenfield, and Greg Shannon for their
significant contributions.

https://twitter.com/ieeecsd?ref_src=twsrc^google|twcamp^serp|twgr^author
cybersecurity.ieee.org
mailto:ieee-csd%40ieee.org?subject=I%20would%20like%20to%20help%20with%20CSD%20activities
mailto:ieee-csd%40ieee.org?subject=I%20would%20like%20to%20help%20with%20CSD%20activities

	Public Access
	Top of document
	Figure 1
	Earn or Give, but Never Assume, Trust
	Use an Authentication Mechanism
	Authorize after You Authenticate
	Strictly Separate Data and Control Instructions
	Define an Approach That Ensures
	Use Cryptography Correctly
	Identify Sensitive Data and How They Should Be Handled
	Always Consider the Users
	Understand How Integrating
	Be Flexible When Considering Future Changes to Objects and Actors
	Conclusion
	Analysis
	System Overview

	Button 4z:
	IEEE:
	IEEE Computer Society:
	IEEE Cybersecurity Initiative:
	Next Page:
	Page 2: Off
	Page 31: Off
	Page 42: Off
	Page 53: Off
	Page 64: Off
	Page 75: Off
	Page 86: Off
	Page 97: Off
	Page 108: Off
	Page 119: Off
	Page 1210: Off
	Page 1311: Off
	Page 1412: Off
	Page 1513: Off
	Page 1614: Off
	Page 1715: Off
	Page 1816: Off
	Page 1917: Off
	Page 2018: Off
	Page 2119: Off
	Page 2220: Off
	Page 2321: Off
	Page 2422: Off

	Previous Page:
	Page 2: Off
	Page 31: Off
	Page 42: Off
	Page 53: Off
	Page 64: Off
	Page 75: Off
	Page 86: Off
	Page 97: Off
	Page 108: Off
	Page 119: Off
	Page 1210: Off
	Page 1311: Off
	Page 1412: Off
	Page 1513: Off
	Page 1614: Off
	Page 1715: Off
	Page 1816: Off
	Page 1917: Off
	Page 2018: Off
	Page 2119: Off
	Page 2220: Off
	Page 2321: Off
	Page 2422: Off

	IEEE 2:
	IEEE Computer Society 2:
	IEEE Cybersecurity Initiative 3:
	Back to top of document:
	Page 4: Off
	Page 51: Off
	Page 62: Off
	Page 73: Off
	Page 84: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 139: Off
	Page 1410: Off
	Page 1511: Off
	Page 1612: Off
	Page 1713: Off
	Page 1814: Off
	Page 1915: Off
	Page 2016: Off
	Page 2117: Off
	Page 2218: Off
	Page 2319: Off
	Page 2420: Off

