
Design Flaws and Security
Considerations for Telematics
and Infotainment Systems

http://www.ieee.org
http://www.computer.org
http://cybersecurity.ieee.org
http://cybersecurity.ieee.org/center-for-secure-design/
http://www.computer.org
http://www.ieee.org
http://cybersecurity.ieee.org/

2

Public Access Encouraged

Because the authors, contributors, and publisher are eager to engage the broader
community in open discussion, analysis, and debate regarding a vital issue of
common interest, this document is distributed under a Creative Commons BY-
SA license. The full legal language of the BY-SA license is available here: http://
creativecommons.org/licenses/by-sa/3.0/legalcode.

Under this license, you are free to both share (copy and redistribute the material in
any medium or format) and adapt (remix, transform, and build upon the material for
any purpose) the content of this document, as long as you comply with the following
terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may use any reasonable citation format, but the
attribution may not suggest that the authors or publisher has a relationship with you
or endorses you or your use.

“ShareAlike” — If you remix, transform, or build upon the material, you must
distribute your contributions under the same BY-SA license as the original. That
means you may not add any restrictions beyond those stated in the license, or apply
legal terms or technological measures that legally restrict others from doing anything
the license permits.

Please note that no warranties are given regarding the content of this document.
Derogatory use of the content of this license to portray the authors, contributors, or
publisher in a negative light may cancel the license under Section 4(a). This license
may not give you all of the permissions necessary for a specific intended use.

Staff

Brian Kirk, Manager, New Initiative Development
Carmen Flores-Garvey, Designer

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.ieee.org
http://www.computer.org
http://cybersecurity.ieee.org/center-for-secure-design/
http://cybersecurity.ieee.org
http://www.ieee.org
http://www.computer.org

3

TA B L E O F C O N T E N T S

Design Flaws and Security Considerations for Telematics and Infotainment Systems

Understand Your Risk��6

Design Considerations and Common Mistakes
to Avoid��6

Don’t Allow Additional Privileges�����������������������7
Don’t Permit CAN Bus Access—or at Least
Limit CAN Bus Access�������������������������������������8
Don’t Have Extraneous Functionalities��������������9
Don’t Trust External Input�������������������������������10
Don’t Mishandle Credentials��������������������������11
Don’t Use Cryptography Incorrectly�����������������11
Don’t Overlook Authentication for Messages
Used in Critical Functions������������������������������12

Don’t Assume Underlying Communication
Channels Are Secure�������������������������������������13

Best Practices to Employ�����������������������������������14
Do Heed Vulnerabilities in Integrated Software
Components���14
Do Harness Existing Protections���������������������15
Do Update Components Securely�������������������17
Do Understand What Your System Logs and
Monitors���18

Conclusion��19

4

Design Flaws and Security
Considerations for Telematics and
Infotainment Systems
Matthew Alt
MIT LL

Glenn Atkinson
Geotab

Jack Clark
DOT-Volpe Center

Daniel Chin
DOT-Volpe Center

Jim DelGrosso
Synopsys (formerly Cigital)

Tom Forest
GM

Bob Gruszczynski
Volkswagen

Kevin Harnett
DOT-Volpe Center

Christopher King
Rockwell Automation

Dan Klinedinst
SEI/CERT

Dan Lyon
Synopsys (formerly Cigital)

Anthonios Partheniou
Geotab

Rich Pietravalle
MITRE

Craig Smith
Rapid7

Corey Thuen
IOActive

Graham Watson
DOT-Volpe Center

André Weimerskirch
Lear Corporation

Tim Wiesenberger
SAE International

Michael Westra
Ford Motor Company

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

5

T elematics incorporates wireless
communications, computer system

components, and internal automotive bus
communication to send and receive data.
Telematics/infotainment systems are rapidly
becoming standard components within the
automotive industry, as these systems perform
necessary functions in support of autonomous
systems, entertainment systems, fuel tracking,
emissions, maintenance, and location data.
As with any system that provides external
connectivity, a significant consideration in
deploying a telematics/infotainment system is
the potential security risk the system could have
on the vehicle platform.

Telematics/infotainment systems share a few
common characteristics:

•	They have external connectivity that crosses
trust boundaries with internal automotive
communication.

•	They use short and/or long range
wireless technologies (such as
WiFi, Bluetooth, or cellular).

They also possess other characteristics,
which might not be present on every system. For
instance, they

•	 render media content;
•	have a user interface;

•	 leverage a non-real-time operating system;
and

•	 typically leverage traditional IT technologies.

The IEEE Center for Secure Design (CSD)
developed this document as a direct result of
a discussion from experts on recurring security
flaws and vulnerabilities identified within vehicle
telematics/infotainment systems. What emerged
from these discussions is an awareness
that most if not all of these security flaws
and vulnerabilities are avoidable by adhering
to existing standards and best practices.
Examples of such practices include incorporating
security into the System Development Lifecycle
(SDLC) and properly using authentication and
cryptography, secure software development,
and secure software update practices. In
most cases, the group found that the previous
publication from IEEE CSD, “Avoiding the Top
10 Software Security Design Flaws” applies to
telematics/infotainment systems as well as
traditional software.

The intended audience for this document
is any entity involved in the design, build,
implementation, and deployment of telematics/
infotainment systems, including Original
Equipment Manufacturers (OEM), telematics/
infotainment device suppliers, telematics/
infotainment service vendors, and aftermarket
device vendors.

http://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
http://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

6

Each section discusses a practice to follow
to avoid common security design flaws found in
current telematics/infotainment systems, and
includes references for further reading. The
issues identified here aren’t a comprehensive
list of all of the security best practices required
to build secure telematics/infotainment
systems—rather, they represent areas of
improvement based on common design flaws.

Understand Your Risk

The development process is key to producing
a secure system. Several publications provide
detailed guidance on a secure development
process, including the Cyber Security Guidebook
for Cyber-Physical Vehicle Systems (SAE J3061)
and Security Considerations in the System
Development Lifecycle (NIST SP 800-64).

Some aspects of a secure development
process can prevent common design flaws. The
following activities aren’t a complete list, but are
essential in building and maintaining a secure
product:

•	Threat analysis and risk assessment is
necessary not only at the initial stages,
but also throughout the development
lifecycle. Performing this activity helps
you make informed decisions about the
system’s security and provides a rationale

for why implementing security measures is
important. The behaviors or functionality
necessary to reduce risks should be
specified through security requirements.

•	To analyze the entire system’s security,
you need a security architecture. This
architecture helps you understand the
important assumptions made when defining
characteristics, such as key interfaces and
data flows.

•	When writing software, follow best practices
for creating secure software, and apply
secure coding standards, such as those
provided by CERT. Designers must perform
security-focused code reviews and use
security-specific static analysis to help
identify known vulnerabilities (for example,
buffer overflows in a time-of-check to time-of-
use race conditions).

•	As part of the development process, in-
clude activities that identify and address
known vulnerabilities in third-party libraries.

Design Considerations and
Common Mistakes to Avoid

Attackers routinely find new ways to exploit
vulnerabilities. But being aware of common
design mistakes and understanding what not to
do helps minimize your risk.

http://standards.sae.org/j3061_201601
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-64r2.pdf
http://www.securecoding.cert.org

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

7

Don’t Allow Additional Privileges

The Principle of Least Privilege states that you
only give an entity the privileges needed to
complete its task (see NIST SP 800-53, Revision
4, control AC-6). This principle is a fundamental
building block to system security. Because of the
unique architectural constructs of a telematics/
infotainment device, there are two primary
categories of least privilege for evaluation.

1.	 The first consideration is the communication
between the telematics/infotainment unit
and the vehicle. The telematics/infotainment
unit should limit its transmit capability to
a predefined list of transmit and receive
vehicle network messages required for
expected operation. Some mechanism
should exist to prevent a compromised
telematics unit from sending arbitrary
messages over vehicle networks (see the
next section). Further, consider the Principle
of Least Privilege from a privacy perspective
(as a specific example, a corollary property
of “least information”—omitting detailed
GPS information when all it needs is speed
information).

2.	 The second consideration lies within the
telematics/infotainment device itself.
Although a telematics/infotainment device’s
design and complexity could vary wildly,

consider the following examples of applying
the principle.

•	Many embedded operating systems utilize
the concept of a user mode versus a kernel
mode, wherein the system kernel controls
particular permissions to execute code, read
memory, and so on (for example, “running
as root” in the nomenclature). Ensure that
an application, or user-mode code, can
access only that which it has permissions
to access. A common pitfall is to execute
all code for a telematics unit in kernel mode
(or even as a root user). The end result is
that any vulnerability in the code running
on a device results in complete control of
the device. If the device has a separation
of privilege and runs code in user mode, an
attacker exploiting a vulnerability may need to
circumvent the system’s privilege restrictions
(successfully performing a privilege
escalation attack).

•	Best practice recommendations for design
and implementation within the device
vary depending on the underlying OS or
system architecture, such as for filesystem
permissions, access to personal information,
and sandboxing of applications. For example,
a telematics/infotainment system built
on Android will focus system privilege
restrictions by using the app permissions

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

8

system in the Android manifest for an
app, and systems built on Linux will focus
on limiting root processes and system
access. QNX and other systems will have
similar—and sometimes unique—additional
capabilities. We discuss this in more
detail in the “OS protections” section.

Overall, failure to heed Least Privilege in the
system offers an attacker a means to leverage
vulnerabilities to gain system control.

Don’t Permit CAN Bus Access—or
at Least Limit CAN Bus Access

A major concern for securing telematics/
infotainment operations lies in the boundary
between a telematics/infotainment system and
the vehicle network. The network connectivity
characteristic of all telematics/infotainment
systems creates a bridge between the vehicle
network and other networks at large. This bridge
is a potential security weakness that telematics/
infotainment system developers need to
understand.

Much research exists on the insecurity
of vehicle networks—and the Controller
Area Network (CAN) bus in particular. Taking
the correct steps, telematics/infotainment
devices can minimize the increased risk that

accompanies an increase in attack surface.
Evaluate the following considerations, and
document the risk as either accepted or
mitigated by system design.

Telematics/infotainment systems can
increase the risk of compromise by allowing
an attacker to send arbitrary CAN messages
that affect safety-critical systems within the
vehicle. Mitigate this risk by separating the
telematics/infotainment actions from the CAN
bus communication functions. For example, a
designer might decide on a hypervisor-based
separation of these functions or add a second,
separate processor dedicated to transmitting
and receiving CAN bus messages. Separating
the telematics/infotainment main processor
actions and the CAN processor actions allows
for designing and implementing an API that
would restrict the types of CAN messages
sent by the telematics/infotainment system
as a whole. If this CAN processor API is
further hardened against malicious action, an
attacker compromising the primary telematics/
infotainment system would then need to
discover and exploit a vulnerability in the CAN
processor’s APIs to send any unauthorized
CAN messages.

Failure to mitigate this risk exposes an
increased attack surface and provides a
potential entry point for a remote attacker.

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

9

Don’t Have Extraneous Functionalities

Each functional block of the system should per-
form only the functions needed to accomplish
its defined tasks. As such, integrate least func-
tionality reviews into the design, development,
and deployment process (see NIST 800-53,
Revision 4, CM-7 Least Functionality). Part of
that review includes being aware of, monitor-
ing, and removing or locking down the following
items, both in the in-house software as well as
third-party software:

Remove backdoors. Review the system
for entry or execution paths that aren’t part
of the design—mechanisms that could be
undocumented additions by developers as
shortcuts during testing or for exercising
functions and remove them from functioning.
Scan for open ports on the embedded
modem itself—because sometimes, for
example, developers enable Secure Shell
(SSH) or other ports during development.

Debug tools, functions, diagnostics, utilities,
or settings. Sometimes these items are
included for convenience during development
or testing, but they could serve as handles
for attackers to gain entry into the production
product. Disable these functions.

Eliminate support for legacy subsystems
or protocols with known vulnerabilities.
Look for system mechanisms that use
such items, perhaps during components’
protocol negotiation, session setup, or
similar situations. Remove access to the
legacy protocols and subsystems.

Eradicate unused features or APIs. Often
functionality deriving from one customer
requirement is included in another customer’s
deployment, and in consideration of maintaining
a common source, it might be left in for
all models, versions, or implementations.
Such features or extraneous APIs, preserved
in and existing outside of anything other
than the intended context, serve as
compromise points for attackers. Review
unused features in third-party libraries
where unused functions add to the attack
surface without adding functional benefit.

Remove or block unused execution paths
or code branches. Examine by inspection and
execution, focusing on monitoring the paths of
execution to spot unused sections of code that
might yield footholds for attackers to execute,
but aren’t needed in the developed product.
Likewise, for OS features and functions not
used, look for ways to remove them, block their

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

10

activation, or intercept usage depending on
the facilities of that host OS environment.

Monitor network traffic. Review how
network traffic is inspected during system
execution; ensure that it filters the traffic
down to only what’s required, possibly logging
traffic that’s outside the norm. Certain traffic
of known type and impact severity might
warrant triggering an alarm or other action.

Isolate and contain the impact. Observe
and design the system to limit the impact
of a compromised interface or component.
Isolate or segment it, especially if it’s a
more complex or robust system element.

Don’t Trust External Input

A common problem in insecure systems is that
those systems, or individual modules, assume
certain features of external input, or trust the
validity of external input. Good examples of
that are a software module’s trust in navigation
maps’ legitimacy, an MP3 or media file’s
integrity, an SMS message’s authenticity, or
text’s legitimacy. Such trust leads to a variety
of attacks, including SQL injection, command
injection, and buffer overflows.

The underlying problem is that software
module designers don’t take into account

the tool’s or module’s security claims, or
make unwarranted assumptions about those
security claims. This leads to external inputs
that aren’t validated, or they’re validated only
by the interface driver (for example, cellular
communication modules) but not by all software
modules that use the received data (for example,
an MP3 codec). The following are typical errors
that make such attacks possible:

•	 input is validated improperly, with no sanity
check executed;

•	 input validation is executed in the wrong
place (see the original top 10 list); and

•	 failure to check that sizes and
boundaries are honored.

The adversary’s objective is usually to
gain control over the vehicle or telematics/
infotainment unit by injecting remote code to
control functionality, or to extract data. The
best policy is for each software module to
consider any received data as untrustworthy and
potentially malicious. Use the following steps to
mitigate the threat of external input. Note that
no individual step will suffice as a standalone
solution. All are recommended.

•	Ensure that the input complies with the
underlying protocol—for example, that an
MP3 file is a valid MP3 file. In many cases,

http://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

11

input validation designs do not check for
additional data and many protocols don’t
consider security at all.

•	Validate all inputs at all times when they’re
used.

•	Design and execute functional test cases
with non-standard input.

•	Perform static analysis.
•	Perform fuzz testing, ideally supported by

fuzzing test tools. Such tools are typically
available for common protocols.

•	Heed the SAE J3061 standard guidelines
section on software testing.

•	Use parsers properly, such as an Abstract
Syntax Notation One (ASN.1) parser.
Improper use might lead to vulnerabilities.
Also, be aware that parsers might come with
vulnerabilities as well.

•	Consider the use of formally verified or
thoroughly reviewed and tested source
code for critical interfaces—for example,
the US National Highway Traffic Safety
Administration works on a formally verified
vehicle-to-everything dedicated short-
range communications (V2X DSRC) parser
of basic safety messages (SAE J2735-
compliant messages). Limit the damage
when something does get through (see the
previous section about not running these
activities with administrative access, and
additional OS protections).

Don’t Mishandle Credentials

Common flaws in credential management
include password reuse across devices
(allowing a single compromise of a credential
to compromise every device using the same
credential), use of weak password generation
algorithms, and easily crackable passwords.
All passwords should be unique and have high
entropy.

Proper use of credentials within a
telematics/infotainment system is critical to
protect the system, data, and vehicle operation.
This is especially critical for any credential used
for privileged access. In fact, privileged access
should require specially signed software to
enable that interface.

Don’t Use Cryptography Incorrectly

Most systems need to use strong cryptography
in cases where control information or personally
identifiable information (PII) are transferred
across a trust boundary. Many telematics/
infotainment devices mistakenly fail or decline to
use cryptography.

Implement cryptography correctly (refer
to top 10 flaws document). When choosing a
cryptographic algorithm, use a tried and tested
cryptographic algorithm as defined by NIST or
other standard bodies. Whenever possible, use

http://standards.sae.org/wip/j3061/
https://www.kb.cert.org/vuls/id/790839
http://standards.sae.org/j2735_201603
http://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

12

standard libraries for encryption rather than
coming up with your own (don’t attempt your
own cryptographic implementation without a
comprehensive understanding of the increase in
risk). Consult with cryptography subject matter
experts, who can help verify the cryptographic
implementation as well as the key management
process that will preserve confidentiality and
integrity over time.

Cryptography can entail several common
issues. One issue is not creating separate keys
for distinct functions, and hence not reducing the
attack surface and attack impact. For example,
an encryption key used for communication
functions should differ from the encryption
key used for an unrelated purpose, such as
control functions. Assign a unique key to each
telematics/infotainment device to ensure that if
a single device key is reverse-engineered, other
devices in the ecosystem won’t be affected.
Another issue is lack of sufficient randomness,
to remedy use of cryptographically strong random
value generators for encryption algorithms, where
strong random values are necessary.

Don’t Overlook Authentication for
Messages Used in Critical Functions

Cautionary real-world incidents abound of not
including proper authentication on telematics/
infotainment messaging. In one instance,

the system erroneously used the vehicle
identification number (VIN) included in the
request as authentication. In others, the system
used common global keys to authenticate key
features or assumed authentication because the
transport channel was encrypted.

The key design guidance here is that the
underlying messages themselves should be
authenticated—for example, digitally signed
or use message authentication code (MAC)—
and optionally encrypted. This especially bears
true where command and control allow direct
control over cyber-physical systems, such as
an automobile in this case. Even when the
transport has some form of underlying security
(possibly WiFi, Bluetooth, or cellular), don’t
assume that this encrypted communication
provides authentication.

For message-level communications, unique
device credentials should be used rather than
using hardcoded credentials embedded across a
range of devices. This causes numerous security
issues, because an attacker would only need to
extract keys from one device to exploit a larger
number of devices.

An additional pitfall is relying on seemingly
unique or non-random values for authentication.
This confuses two security terms: identification
and authentication. Identification will use a
unique, often common identifier protected by
authentication to determine which device is

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

13

communicating. Using a unique per-device serial
number is common but not secure. In other
instances, values such as the VIN, phone number,
or email address have been used. Take care when
selecting what identifier to use, because several
identifiers in the previous list are personally
identifiable and have legal implications with
their wide use within systems. Even seemingly
innocent identifiers like a VIN reveal considerable
data about the vehicle’s make, model, year, and
features; in many countries, this is considered PII.
Authenticate using proof of knowledge, such as a
shared secret that isn’t public (unlike the identity
used for identification). You can implement this
as a combination of a symmetric key, digital
certificate, or cryptographic token—just make
sure to protect this secret within the device
(we discuss this more in the “Best Practices to
Employ” section).

Check authentication at the appropriate
level and between components. Numerous
security issues have arisen because a client
locally performed authentication and the party it
communicated with didn’t perform independent
authentication. This allowed the attacker to
bypass the client’s local authentication and
make unauthenticated requests directly.
Authentication can be end-to-end between a
user, or through the back end (including the
vehicle), but more commonly it occurs explicitly
between components.

The final point is that encryption isn’t the
same as authentication. Encrypted data can
be manipulated and cybersecurity experts have
found predictable ways to manipulate data
within encrypted streams or replay portions of
known ciphertext. Confirm authentication and
integrity through digital signing or message
authentication codes. Both encryption and
integrity controls are necessary.

Don’t Assume Underlying
Communication Channels Are Secure

Telematics/infotainment units operate on a
variety of different communication networks.
These may or may not be under the control of
the device’s vendor or consumer. These include
cellular (data) networks, short message service
(SMS) and voice, wireless (IEEE 802.11),
Bluetooth, CAN, and others. The telematics/
infotainment unit should assume the underlying
communication channels are compromisable and
that someone is watching the communications.
Therefore, the unit’s design must protect against
common network attacks such as man-in-the-
middle (MITM) and spoofing, without relying on
protections offered by the underlying network.
For example, cellular protocols such as Global
System for Mobile communication (GSM) and
Long-Term Evolution (LTE) have known security
limitations, such as the ability to force fallback

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

14

to older protocols that don’t use encryption,
and a variety of methods for location tracking.
(Note that some embedded LTE modems
don’t have hardware capability for fallback
support; but don’t assume that because an
LTE modem doesn’t have fallback support
that it isn’t vulnerable.) Bluetooth also has
known vulnerabilities in both its encryption and
authentication methods.

Device makers can mitigate these risks by
treating the underlying networks as potentially
hostile and implementing compensating
mitigations. For example, end-to-end encryption
at the device or application level can mitigate
problems with any underlying weak encryption
methods or the lack of encryption at all. Data
received from these networks should also be
treated as untrusted.

Best Practices to Employ

Now that we’ve highlighted common mistakes to
avoid, here we outline key helpful practices.

Do Heed Vulnerabilities in Integrated
Software Components

Many well-known system exploits come from
outside components integrated into the larger
system. Examples include achieving control
over a telematics system through a weak

media parsing library when presented with a
malicious media file through exposures, such as
Heartbleed, or through vulnerabilities in cellular
or communications libraries.

Often, companies ship systems with outdated
and vulnerable versions of a component, even
though a newer version exists that remediates
the known vulnerabilities. The existence of
these known vulnerabilities in the components
can be particularly consequential, because
they’re often easy for an attacker to identify,
and often a proof-of-concept of how to exploit
the vulnerability is publicly available. Software
needs to ship with the most up-to-date version
that can be incorporated at the time the system
is produced. Hence, it’s important to know all
the components (for example, libraries, external
code samples, and frameworks) that exist within
the system. This should be done to support
licensing requirements and security measures.
Use this list when researching and examine the
entries for known common vulnerabilities and
exposures (CVEs). Consider the number and
severity of known vulnerabilities—as well as the
ongoing support of the team that creates each
component—when deciding whether to use an
external component. Look, for example, at the
team’s responsiveness in remediating identified
vulnerabilities, and contemplate how support
is likely to evolve in the future, along with other
operational factors such as licensing and cost.

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

15

Tools can assist with creating an inventory
of integrated software components or bill-of-
materials. Tools exist to scan source code and
unscramble library binaries. Ideally, the third-
party source will attest to what’s included in the
component since a scan may not enumerate all
the content of protected binary code. Overall, you
need an accurate inventory of components for
proper security protection of the device produced.

After product delivery, it’s important to
continue to update the inventory with new
software versions. Maintain and compare
all historical lists with new CVEs as they’re
discovered. This can be challenging, as multiple
versions of components might exist even in a
single instance of a system. Then it might be
necessary to understand where and how the
component is used to determine the exact
implication for a given CVE.

When a CVE is discovered for a component,
the first considered course of action should be
updating the system to a component’s newer
version. In some instances, this might not be
feasible. This could be because the component
is part of another component that’s no longer
supported or is incompatible with the updated
component. In this case, understanding the
risk for the CVE in the component as used is
important to manage the risk based on the
response. For instance, if you must use a
software with known vulnerabilities, then it’s

essential to implement compensating controls,
such as strictly limiting the available API or
running the vulnerable component in a sandbox.
Furthermore, you might monitor the component
continuously in the system to detect abusive
action, and, when noticed, immediately stop
such action.

Do Harness Existing Protections

There are a wide variety of hardware, operating
systems, and compilers used in telematics/
infotainment units, from 8-bit microcontrollers
to robust platforms with capabilities similar
to a desktop operating system. The security
features in these also vary widely. It’s impossible
to enumerate all or even most of the relevant
security controls. The following examples
illustrate some of the common mitigations
available to a telematics/infotainment unit’s
architect.

Many of these controls traditionally are seen
as exploit mitigation. That is, if a vulnerability
is compromised, the platform makes it more
difficult for the attacker to compromise the
device’s Confidentiality, Integrity, or Availability
(CIA; see the definition on p. 56 of J3061),
along with its connection to other devices. The
following discusses examples of how to make
use of platform-based security features for
hardware, OS, and compiler controls.

http://standards.sae.org/j3061_201601

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

16

Security hardware protections. Use
hardware protections (or hardware with
security protections) to protect access to
your code. This generally involves checking
the signature on code before executing it.
Methods vary depending on the processor.
See the datasheet of your processor.

If your hardware supports a secure
enclave or Trusted Platform Module (TPM),
use the functions of that coprocessor to
securely generate cryptographic keys, execute

security-sensitive code, or perform standard
cryptographic operations. (Usually, writing
such code is difficult; only undertake this
responsibility if you have technical staff
members with suitable experience.)

Because these devices are easily accessible
to consumers, they’re likely to be physically
disassembled and analyzed. Before shipping
a device to customers, close off any hardware
debugging paths via hardware. For example, you
might use fuses to disable the JTAG interface
or cut the “transmit” wire on a serial console.
Disabling the JTAG interface via fuse is a secure
option if the fuses are internal to the process,
but if they’re external, and especially in the case
of serial consoles or JTAG where the wires aren’t

brought simply to the connector, this can give
you a dangerously false sense of security. To be
effective, you must be disable them inside the
device. Locking JTAG with a device-unique key
or password is a possibility if you don’t want
to disable it entirely. Where that isn’t desired,
locking JTAG with a device-unique key/password
is less ideal, but still an acceptable option.

OS protections. More full-featured OSs have
inherent security features available, including

exploit mitigation (and if the OS doesn’t have
this capability, consider using an OS that
supports it instead). Many of these security
features involve making exploitation payload
execution efforts difficult. Preventing the
execution of code in user-writable data space
(heap or stack) is a common feature, often
referred to as Data Execution Prevention
(DEP) and set via the No eXecute (NX) bit.
Another is address space layout randomization
(ASLR), which makes it more difficult for an
attacker to determine where the code they
want to execute is located in memory.

The OS also commonly offers the ability to
run applications in a less-privileged execution
environment (for example, among users, apps, or

Before shipping a device to customers, close off any hardware debugging paths
via hardware. For example, you might use fuses to disable the JTAG interface.

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

17

sandboxes). This makes a subset of the device’s
memory accessible to the application. It also
enforces standardized access to devices, via
device drivers, and other applications via various
forms of inter-process communication. Be aware
of any open ports (with applications listening) on
the network interfaces of the device or modem,
if applicable (for example, SSH port 22).

Compiler protections. Many compilers have
built-in functions that either warn the developer
of potential security issues or attempt to
mitigate future attacks. One such protection is
the use of a stack canary, which is known data
that’s checked before executing certain code.
An attack would overwrite the canary, causing
this check to fail. An example of warning the
developer comes in the form of the /sdl flag in
Visual Studio or -Wall flag to GCC (these are just
two examples). Another technique is the use of
inline reference guards—control flow integrity
and software fault isolation (CFI/XFI)—which
are protections inserted into target binaries.

Do Update Components Securely

All software has flaws, and during a system’s
lifetime, it’s likely that some of these flaws will
be identified and possibly represent a system
risk. An important characteristic of a system’s
overall lifecycle security is its ability to be

updated to address flaws that are identified
while the device is in service. We recommend
that telematics/infotainment devices have a
secure and efficient way to update software
that controls the devices’ operations, including
independent software that controls critical
system subcomponents (for example, the
baseband firmware in the cellular modem used
in a telematics system).

Although such mechanisms can be used
to substantially improve these systems’
overall security, by allowing identified flaws
to be remediated, update mechanisms can
themselves represent a significant security
risk to the system if they aren’t implemented
securely. These mechanisms allow code
updates that fundamentally determine device
behavior, but history shows many examples of
systems in this space using insecure software
update methods. Examples include using weak
methods (or even no method at all) to verify the
authenticity and integrity of software presented
to a device for update, failure to prevent rollback
to previously insecure versions of the software,
and methods that only address the integrity
(for example, cyclic redundancy checks over the
software that prevent undetected accidental
modification)—none of these address security
concerns adequately.

Telematics/infotainment systems should
ensure that software updates are obtained only

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

18

from authorized sources, without modification
in the process of delivery to the device. Ideally
the protection afforded should be end-to-
end, with protection maintained all the way
from the legitimate software source to the
device (a specific processor, for example, that
actually executes the code). Preferably a single
mechanism should protect the software’s end-to-
end delivery. Consider the development needs,
and the risks that development capabilities
could present to a vehicle fleet, when designing
a secure update mechanism.

This is fundamentally an application of
authentication, and thus the advice of the
section “Don’t Overlook Authentication for
Messages Used in Critical Functions” is
applicable. The mechanisms used to achieve
this authentication (as well as confidentiality,
if required) will likely rely on cryptography, so
the issues discussed in the section “Don’t
Use Cryptography Incorrectly” deserve careful
consideration.

It’s worth noting that other projects have
considered several of the issues involved with
software updates—see, for example, the issues
and techniques discussed in the automotive-
specific Uptane project (see also https://
uptane.github.io/).

Do Understand What Your
System Logs and Monitors

Systems log a variety of data for different
purposes, such as enabling engineers to run
diagnostics procedures, understand usage
behavior, performing forensics, or understanding
a security compromise. Today no clear
consensus exists on whether such logging is
useful and needed, what actions and what level
of details must be monitored, what actions
should be taken after monitoring detects an
issue, and whether such monitoring should be
executed in the vehicle, in the cloud, or in both.
(Note that there’s consensus in the PC world
to log as much as possible to recreate events,
assuming that the data can still be efficiently
searched for errors.) Rather than clarifying
such points, here we provide guidance about
monitoring once the system owner decides on
a strategy.

Consider the following as guidance when
creating a log file:

1.	 Don’t log key credentials or sensitive
information (such as a VIN or social security
number).

2.	 Monitor key decisions and actions.
Such key actions could include firmware

https://isis.poly.edu/~jcappos/papers/kuppusamy_escar_16.pdf
https://uptane.github.io/
https://uptane.github.io/

D E S I G N F L AWS A N D S E C U R I T Y C O N S I D E R AT I O N S F O R T E L E M AT I C S A N D
I N F O TA I N M E N T S YS T E M S

19

updates (both successful and failed tries,
including signature verification errors), and
authentication failures of any kind.

3.	 Logging, if improperly implemented, might
provide quite a bit of information about the
system that could be useful to the attacker.
The system state information itself might
be useful to understand the system’s
operation, but even the logging code, and
the messages that it generates, if stored in
clear text, can provide invaluable information
that can help the adversary understand how
the system operates, particular portions
of the code’s functions, the capability of
functions, and so on. Consider these risks
and remediate or accept them.

4.	 The options to log locally or to backend
systems has multiple implications.

•	Local logs might lack a sufficient
baseline to detect anomalies and
might be compromised if the system is
compromised. They also could fail to alert
central authorities of issues.

•	Backend logging might have PII and
tracking concerns, as data are centralized
and aggregated. Additionally, the data
could be quite large and unwieldy, making

it either impossible or costly to transport
all data from the vehicle to the backend.

•	Often a combination of local and
cloud-based logging is deployed.

5.	 Logging can potentially include, or relate
to, anomaly detection. For example, a
telematics/infotainment unit can monitor the
in-vehicle network bus to detect anomalies.

Conclusion

This document is part of a series of practical
artifacts from the Center for Secure Design.
If you’re interested in keeping up with the
Center for Secure Design’s activities, follow
us on Twitter @ieeecsd or via the website
(cybersecurity.ieee.org). If you would like to help
with CSD activities, contact us at ieee-csd@
ieee.org.

For more information about design
considerations and vulnerabilities for vehicles’
telematics and infotainment systems, see
IOactive’s white paper related to this topic. Also,
see Geotab’s “15 Security Recommendations for
Building a Telematics Platform Resilient to Cyber
Threats” for more information.

https://twitter.com/ieeecsd?ref_src=twsrc^google|twcamp^serp|twgr^author
http://cybersecurity.ieee.org
mailto:ieee-csd@ieee.org
mailto:ieee-csd@ieee.org
https://www.ioactive.com/whitepaper_car.html
http://www.geotab.com/geoimages/blog/download/geotab-telematics-cybersecurity-recommendations.pdf
http://www.geotab.com/geoimages/blog/download/geotab-telematics-cybersecurity-recommendations.pdf
http://www.geotab.com/geoimages/blog/download/geotab-telematics-cybersecurity-recommendations.pdf

	Public Access
	Top of document
	TOC

	Button 4z:
	IEEE:
	IEEE Computer Society:
	IEEE Cybersecurity Initiative:
	Next Page:
	Page 2: Off
	Page 31: Off
	Page 42: Off
	Page 53: Off
	Page 64: Off
	Page 75: Off
	Page 86: Off
	Page 97: Off
	Page 108: Off
	Page 119: Off
	Page 1210: Off
	Page 1311: Off
	Page 1412: Off
	Page 1513: Off
	Page 1614: Off
	Page 1715: Off
	Page 1816: Off
	Page 1917: Off

	Previous Page:
	Page 2: Off
	Page 31: Off
	Page 42: Off
	Page 53: Off
	Page 64: Off
	Page 75: Off
	Page 86: Off
	Page 97: Off
	Page 108: Off
	Page 119: Off
	Page 1210: Off
	Page 1311: Off
	Page 1412: Off
	Page 1513: Off
	Page 1614: Off
	Page 1715: Off
	Page 1816: Off
	Page 1917: Off

	IEEE 2:
	IEEE Computer Society 2:
	Back to TOC:
	Page 4: Off
	Page 51: Off
	Page 62: Off
	Page 73: Off
	Page 84: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 139: Off
	Page 1410: Off
	Page 1511: Off
	Page 1612: Off
	Page 1713: Off
	Page 1814: Off
	Page 1915: Off

