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Furthermore, to make those es-
timates, we need only a remarkably 
small number of attributes. For ex-
ample, feature subset selection (FSS) 
is an automatic technique for find-
ing what attributes we can remove 
without damaging our ability to 
make a prediction from the data. 
Recent results show that traditional 
FSS methods (for example, step-
wise regression) can be improved by 
AI search algorithms that quickly 
search very large subsets of the attri-
butes to find the most useful ones.7 
Applying FSS to software defect pre-
dictors or software effort estimators 
often reduces datasets with 24 to 42  
attributes to sets with only two or  
three attributes.5,8 This means that 
(24 – 3)/24 5 88 percent to (42 – 3)/ 
42 5 93 percent of the collected at-
tributes aren’t essential to predict-
ing software quality. That is, much 
of what we thought was important 
for quality prediction turns out to 
be mostly irrelevant. And, more in-
terestingly, we can’t tell beforehand 
what attributes will be the most use-
ful9 until we test those attributes on 
real project data.

This result is surprising, to say 
the least. Software engineers tend to 
emphasize the complexities, rather 
than the simplicity, of software proj-
ects. Much has been written about 
what factors might influence a soft-
ware project, so developers often 
spend much effort collecting dozens 
of attributes. Yet for the projects 
I’ve mentioned, nearly all those at-
tributes are irrelevant for prediction.

Important Questions
Why are so many things irrelevant? 
Software engineering data often con-
tains much noise. Collecting data 
from multiple projects is difficult 
because the collected data’s mean-
ing can vary from project to project. 

We can remove such noisy attri-
butes without damaging predictive 
prowess.

We should also remove most of 
the closely associated attributes. 
Suppose a software company assigns 
its most skilled programmers to  
mission-critical projects. In that 
data, “programming skill” would 
be associated with “criticality.” We 
could dispense with either (but not 
both) of those attributes without los-
ing important information.

In addition, there’s the effect of 
context. Figure 1 shows data from 
NASA regarding software projects at 
the Jet Propulsion Laboratory (JPL). 
Most of the projects are of high 
complexity. Thus, feature selection 
would tend to delete “high complex-
ity” because it’s (mostly) a constant 
across all the data. That is, although 
no one doubts that software com-
plexity contributes to software 
cost, for the JPL data, it’s mostly 
irrelevant.

So, what does this mean for the 
practice of analytics? The previous 
examples tell us that real software 
projects can surprise and confound 
our expectations. In new projects, 
we should check all expectations 

(that some factor contributes to soft-
ware quality). That’s the bad news. 
The good news is that such checks 
are now fast to run, given the ready 
availability of data-mining tools (and 
developers skilled in using them).

M ore generally, note how 
these examples are all 
motivation for this new 

Redirections department. Our field 
is rife with any number of truisms 
that are commonly quoted but rarely 
checked. Perhaps it’s time to reverse 
that trend. Let’s all look over old re-
sults in software engineering with a 
fresh eye and ask, “Which of those 
results are most applicable?” and 
“Can we confirm those results using 
contemporary data?” Hopefully, this 
department will prompt many such 
inquiries. 
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FIGURE 1. The distribution of complexity in a NASA project dataset.5 Complexity is 

a constant across nearly all the data, so it could be removed from consideration as an 

attribute during software analytics.
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AS RAFAEL PRIKLADNICKI and 
I commented in last issue’s Voice 
of Evidence article, it’s time to ask, 
“What’s surprising about software 
engineering?”1 Accordingly, in this 
article, I explore one of the great 
mysteries of software analytics: why 
does it work at all?

Software analytics distills large 
amounts of low-value data into small 
chunks of very-high-value data. Such 
chunks are often predictive; that is, 
they can offer a somewhat accurate 
prediction about some quality attri-
bute of future projects—for exam-
ple, the location of potential defects 
or the development cost.

In theory, software analytics 
shouldn’t work because software proj-
ect behavior shouldn’t be predictable. 
Consider the wide, ever-changing 
range of tasks being implemented 

by software and the diverse, con-
tinually evolving tools used for soft-
ware’s construction (for example, 
IDEs and version control tools). 
Let’s make that worse. Now consider 
the constantly changing platforms 
on which the software executes 
(desktops, laptops, mobile devices, 
RESTful services, and so on) or the 
system developers’ varying skills and 
experience.

Given all that complex and con-
tinual variability, every software 
project could be unique. And, if that 
were true, any lesson learned from 
past projects would have limited ap-
plicability for future projects.

This turns out not to be the case. 
One of the lessons of software ana-
lytics is that software projects have 
predictable properties2 and that at 
least some of those properties hold 

for future projects. Stranger still, 
the number of variables required to 
make those predictions is small—
which means that most of the things 
we think might affect software qual-
ity have little impact in practice.

Not as Complex as We 
Thought
Consider the task of predicting 
how long it takes to build software. 
Given dozens of attributes describ-
ing a software project, we can usu-
ally guess that project’s development 
time. We can do this using qualita-
tive methods (for example, planning 
poker,3 which is favored by the agile 
community) or parametric-modeling 
methods (favored by large govern-
ment projects4,5). However we do 
it, such estimates are surprisingly 
accurate.3,5,6
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FIGURE 1. The distribution of complexity in a NASA project dataset.5 Complexity is 

a constant across nearly all the data, so it could be removed from consideration as an 

attribute during software analytics.
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