
36	 June 2019	 Published by the IEEE Computer Society � 2469-7087/19/$33.00 © 2019 IEEE

REDIRECTIONS

 MARCH/APRIL 2018 | IEEE SOFTWARE 97

Furthermore, to make those es-
timates, we need only a remarkably
small number of attributes. For ex-
ample, feature subset selection (FSS)
is an automatic technique for find-
ing what attributes we can remove
without damaging our ability to
make a prediction from the data.
Recent results show that traditional
FSS methods (for example, step-
wise regression) can be improved by
AI search algorithms that quickly
search very large subsets of the attri-
butes to find the most useful ones.7
Applying FSS to software defect pre-
dictors or software effort estimators
often reduces datasets with 24 to 42
attributes to sets with only two or
three attributes.5,8 This means that
(24 – 3)/24 5 88 percent to (42 – 3)/
42 5 93 percent of the collected at-
tributes aren’t essential to predict-
ing software quality. That is, much
of what we thought was important
for quality prediction turns out to
be mostly irrelevant. And, more in-
terestingly, we can’t tell beforehand
what attributes will be the most use-
ful9 until we test those attributes on
real project data.

This result is surprising, to say
the least. Software engineers tend to
emphasize the complexities, rather
than the simplicity, of software proj-
ects. Much has been written about
what factors might influence a soft-
ware project, so developers often
spend much effort collecting dozens
of attributes. Yet for the projects
I’ve mentioned, nearly all those at-
tributes are irrelevant for prediction.

Important Questions
Why are so many things irrelevant?
Software engineering data often con-
tains much noise. Collecting data
from multiple projects is difficult
because the collected data’s mean-
ing can vary from project to project.

We can remove such noisy attri-
butes without damaging predictive
prowess.

We should also remove most of
the closely associated attributes.
Suppose a software company assigns
its most skilled programmers to
mission-critical projects. In that
data, “programming skill” would
be associated with “criticality.” We
could dispense with either (but not
both) of those attributes without los-
ing important information.

In addition, there’s the effect of
context. Figure 1 shows data from
NASA regarding software projects at
the Jet Propulsion Laboratory (JPL).
Most of the projects are of high
complexity. Thus, feature selection
would tend to delete “high complex-
ity” because it’s (mostly) a constant
across all the data. That is, although
no one doubts that software com-
plexity contributes to software
cost, for the JPL data, it’s mostly
irrelevant.

So, what does this mean for the
practice of analytics? The previous
examples tell us that real software
projects can surprise and confound
our expectations. In new projects,
we should check all expectations

(that some factor contributes to soft-
ware quality). That’s the bad news.
The good news is that such checks
are now fast to run, given the ready
availability of data-mining tools (and
developers skilled in using them).

M ore generally, note how
these examples are all
motivation for this new

Redirections department. Our field
is rife with any number of truisms
that are commonly quoted but rarely
checked. Perhaps it’s time to reverse
that trend. Let’s all look over old re-
sults in software engineering with a
fresh eye and ask, “Which of those
results are most applicable?” and
“Can we confirm those results using
contemporary data?” Hopefully, this
department will prompt many such
inquiries.

References
 1. R. Prikladnicki and T. Menzies,

“From Voice of Evidence to Redirec-

tions,” IEEE Software, vol. 35, no. 1,

2018, pp. 11–13

 2. T. Menzies and T. Zimmermann,

“Software Analytics: So What?,”

IEEE Software, vol. 30, no. 4, 2013,

Low Nominal High
complexity

Very high Extra high

2
5

50

2 1
0

10

20

30

40

50

No
. o

f p
ro

je
ct

s

FIGURE 1. The distribution of complexity in a NASA project dataset.5 Complexity is

a constant across nearly all the data, so it could be removed from consideration as an

attribute during software analytics.

FROM THE EDITOR
Editor: Editor Name
affi l iation
email@email.com

96 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

REDIRECTIONS
Editor: Tim Menzies
North Carolina State
University
tim@menzies.us

The Unreasonable
Effectiveness of Software
Analytics
Tim Menzies

AS RAFAEL PRIKLADNICKI and
I commented in last issue’s Voice
of Evidence article, it’s time to ask,
“What’s surprising about software
engineering?”1 Accordingly, in this
article, I explore one of the great
mysteries of software analytics: why
does it work at all?

Software analytics distills large
amounts of low-value data into small
chunks of very-high-value data. Such
chunks are often predictive; that is,
they can offer a somewhat accurate
prediction about some quality attri-
bute of future projects—for exam-
ple, the location of potential defects
or the development cost.

In theory, software analytics
shouldn’t work because software proj-
ect behavior shouldn’t be predictable.
Consider the wide, ever-changing
range of tasks being implemented

by software and the diverse, con-
tinually evolving tools used for soft-
ware’s construction (for example,
IDEs and version control tools).
Let’s make that worse. Now consider
the constantly changing platforms
on which the software executes
(desktops, laptops, mobile devices,
RESTful services, and so on) or the
system developers’ varying skills and
experience.

Given all that complex and con-
tinual variability, every software
project could be unique. And, if that
were true, any lesson learned from
past projects would have limited ap-
plicability for future projects.

This turns out not to be the case.
One of the lessons of software ana-
lytics is that software projects have
predictable properties2 and that at
least some of those properties hold

for future projects. Stranger still,
the number of variables required to
make those predictions is small—
which means that most of the things
we think might affect software qual-
ity have little impact in practice.

Not as Complex as We
Thought
Consider the task of predicting
how long it takes to build software.
Given dozens of attributes describ-
ing a software project, we can usu-
ally guess that project’s development
time. We can do this using qualita-
tive methods (for example, planning
poker,3 which is favored by the agile
community) or parametric-modeling
methods (favored by large govern-
ment projects4,5). However we do
it, such estimates are surprisingly
accurate.3,5,6

Call for Submissions

Do you have a surprising result or industrial experience? Something that challenges

decades of conventional thinking in software engineering? If so, email a one-

paragraph synopsis to tim@menzies.us (use the subject line “REDIRECTIONS: Idea:

[your idea]”). If that looks interesting, I’ll ask you to submit a 1,000- to 2,400-word

article (where each graph, table, or � gure is worth 250 words) for review for IEEE

Software. Note: Heresies are more than welcome (if supported by well-reasoned

industrial experiences, case studies, or other empirical results). —Tim Menzies

www.computer.org/computingedge� 37

REDIRECTIONS

 MARCH/APRIL 2018 | IEEE SOFTWARE 97

Furthermore, to make those es-
timates, we need only a remarkably
small number of attributes. For ex-
ample, feature subset selection (FSS)
is an automatic technique for find-
ing what attributes we can remove
without damaging our ability to
make a prediction from the data.
Recent results show that traditional
FSS methods (for example, step-
wise regression) can be improved by
AI search algorithms that quickly
search very large subsets of the attri-
butes to find the most useful ones.7
Applying FSS to software defect pre-
dictors or software effort estimators
often reduces datasets with 24 to 42
attributes to sets with only two or
three attributes.5,8 This means that
(24 – 3)/24 5 88 percent to (42 – 3)/
42 5 93 percent of the collected at-
tributes aren’t essential to predict-
ing software quality. That is, much
of what we thought was important
for quality prediction turns out to
be mostly irrelevant. And, more in-
terestingly, we can’t tell beforehand
what attributes will be the most use-
ful9 until we test those attributes on
real project data.

This result is surprising, to say
the least. Software engineers tend to
emphasize the complexities, rather
than the simplicity, of software proj-
ects. Much has been written about
what factors might influence a soft-
ware project, so developers often
spend much effort collecting dozens
of attributes. Yet for the projects
I’ve mentioned, nearly all those at-
tributes are irrelevant for prediction.

Important Questions
Why are so many things irrelevant?
Software engineering data often con-
tains much noise. Collecting data
from multiple projects is difficult
because the collected data’s mean-
ing can vary from project to project.

We can remove such noisy attri-
butes without damaging predictive
prowess.

We should also remove most of
the closely associated attributes.
Suppose a software company assigns
its most skilled programmers to
mission-critical projects. In that
data, “programming skill” would
be associated with “criticality.” We
could dispense with either (but not
both) of those attributes without los-
ing important information.

In addition, there’s the effect of
context. Figure 1 shows data from
NASA regarding software projects at
the Jet Propulsion Laboratory (JPL).
Most of the projects are of high
complexity. Thus, feature selection
would tend to delete “high complex-
ity” because it’s (mostly) a constant
across all the data. That is, although
no one doubts that software com-
plexity contributes to software
cost, for the JPL data, it’s mostly
irrelevant.

So, what does this mean for the
practice of analytics? The previous
examples tell us that real software
projects can surprise and confound
our expectations. In new projects,
we should check all expectations

(that some factor contributes to soft-
ware quality). That’s the bad news.
The good news is that such checks
are now fast to run, given the ready
availability of data-mining tools (and
developers skilled in using them).

M ore generally, note how
these examples are all
motivation for this new

Redirections department. Our field
is rife with any number of truisms
that are commonly quoted but rarely
checked. Perhaps it’s time to reverse
that trend. Let’s all look over old re-
sults in software engineering with a
fresh eye and ask, “Which of those
results are most applicable?” and
“Can we confirm those results using
contemporary data?” Hopefully, this
department will prompt many such
inquiries.

References
 1. R. Prikladnicki and T. Menzies,

“From Voice of Evidence to Redirec-

tions,” IEEE Software, vol. 35, no. 1,

2018, pp. 11–13

 2. T. Menzies and T. Zimmermann,

“Software Analytics: So What?,”

IEEE Software, vol. 30, no. 4, 2013,

Low Nominal High
complexity

Very high Extra high

2
5

50

2 1
0

10

20

30

40

50

No
. o

f p
ro

je
ct

s

FIGURE 1. The distribution of complexity in a NASA project dataset.5 Complexity is

a constant across nearly all the data, so it could be removed from consideration as an

attribute during software analytics.

FROM THE EDITOR
Editor: Editor Name
affi l iation
email@email.com

96 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

REDIRECTIONS
Editor: Tim Menzies
North Carolina State
University
tim@menzies.us

The Unreasonable
Effectiveness of Software
Analytics
Tim Menzies

AS RAFAEL PRIKLADNICKI and
I commented in last issue’s Voice
of Evidence article, it’s time to ask,
“What’s surprising about software
engineering?”1 Accordingly, in this
article, I explore one of the great
mysteries of software analytics: why
does it work at all?

Software analytics distills large
amounts of low-value data into small
chunks of very-high-value data. Such
chunks are often predictive; that is,
they can offer a somewhat accurate
prediction about some quality attri-
bute of future projects—for exam-
ple, the location of potential defects
or the development cost.

In theory, software analytics
shouldn’t work because software proj-
ect behavior shouldn’t be predictable.
Consider the wide, ever-changing
range of tasks being implemented

by software and the diverse, con-
tinually evolving tools used for soft-
ware’s construction (for example,
IDEs and version control tools).
Let’s make that worse. Now consider
the constantly changing platforms
on which the software executes
(desktops, laptops, mobile devices,
RESTful services, and so on) or the
system developers’ varying skills and
experience.

Given all that complex and con-
tinual variability, every software
project could be unique. And, if that
were true, any lesson learned from
past projects would have limited ap-
plicability for future projects.

This turns out not to be the case.
One of the lessons of software ana-
lytics is that software projects have
predictable properties2 and that at
least some of those properties hold

for future projects. Stranger still,
the number of variables required to
make those predictions is small—
which means that most of the things
we think might affect software qual-
ity have little impact in practice.

Not as Complex as We
Thought
Consider the task of predicting
how long it takes to build software.
Given dozens of attributes describ-
ing a software project, we can usu-
ally guess that project’s development
time. We can do this using qualita-
tive methods (for example, planning
poker,3 which is favored by the agile
community) or parametric-modeling
methods (favored by large govern-
ment projects4,5). However we do
it, such estimates are surprisingly
accurate.3,5,6

Call for Submissions

Do you have a surprising result or industrial experience? Something that challenges

decades of conventional thinking in software engineering? If so, email a one-

paragraph synopsis to tim@menzies.us (use the subject line “REDIRECTIONS: Idea:

[your idea]”). If that looks interesting, I’ll ask you to submit a 1,000- to 2,400-word

article (where each graph, table, or � gure is worth 250 words) for review for IEEE

Software. Note: Heresies are more than welcome (if supported by well-reasoned

industrial experiences, case studies, or other empirical results). —Tim Menzies

38	 ComputingEdge� June 2019

REDIRECTIONS

98 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

pp. 31–37; doi:10.1109/MS.2013.86;

goo.gl/aGS7wP.

 3. K. Molokken-Ostvold and N.C.

Haugen, “Combining Estimates

with Planning Poker—an Empirical

Study,” Proc. 18th Australian Soft-

ware Eng. Conf. (ASWEC 07), 2007,

pp. 349–358; doi:10.1109/ASWEC

.2007.15.

 4. F. Sarro, A. Petrozziello, and M.

Harman, “Multi-objective Soft-

ware Effort Estimation,” Proc.

38th Int’l Conf. Software Eng.

(ICSE 16), 2016, pp. 619–630;

doi:10.1145/2884781.2884830.

 5. Z. Chen et al., “Finding the Right

Data for Software Cost Modeling,”

IEEE Software, vol. 22, no. 6, 2005,

pp. 38–46; doi:10.1109/MS.2005

.151.

 6. F. Zhang et al., “Towards Building

a Universal Defect Prediction Model

with Rank Transformed Predictors,”

Empirical Software Eng., vol. 21,

no. 5, 2016, pp. 2107–2145.

 7. M.A. Hall and G. Holmes, “Bench-

marking Attribute Selection Tech-

niques for Discrete Class Data

Mining,” IEEE Trans. Knowledge

and Data Eng., vol. 15, no. 6, 2003,

pp. 1437–1447.

 8. T. Menzies et al., “Defect Predic-

tion from Static Code Features:

Current Results, Limitations, New

Approaches,” Automated Software

Eng., vol. 17, no. 4, 2010, pp. 375–

407; doi:10.1007/s10515-010-0069-5.

 9. R. Krishna and T. Menzies, “Bell-

wethers: A Baseline Method for

Transfer Learning,” 3 Dec. 2017;

arxiv.org/abs/1703.06218.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

ABOUT THE AUTHOR

TIM MENZIES is a full professor at North Carolina State University, where

he leads the RAISE (Real-World AI for Software Engineering) research

group. Contact him at tim@menzies.us; menzies.us.

Author guidelines:
www.computer.org/software/author
Further details: software@computer.org

www.computer.org/software

IEEE Software seeks practical,

readable articles that will appeal to

experts and nonexperts alike. The

magazine aims to deliver reliable,

useful, leading-edge information

to software developers, engineers,

and managers to help them stay

on top of rapid technology change.

Topics include requirements,

design, construction, tools, project

management, process improvement,

maintenance, testing, education and

training, quality, standards, and more.

Call
Articlesfor

This article originally
appeared in
IEEE Software, vol. 35, no. 2,
2018.

@s e cur it ypr ivac y

FOLLOW US

