
10	 April 2019	 Published by the IEEE Computer Society � 2469-7087/19/$33.00 © 2019 IEEE
60 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

AFTERSHOCK

Software plays an essential role in modern life and
is a major economic driver. According to Gart-
ner, software sales in 2013 topped $407 billion, a
nearly 5 percent increase over the previous year.1

Changes in the languages used to program software
necessarily a ect the entire industry. Developers must

implement new processes and poli-
cies, and users—whether enterprises,
government agencies, or consumers—
must adapt to the changes by learn-
ing new functions, conventions, and
terminology.

Programming- language changes
also impact education, where science,
technology, engineering, and math-
ematics (STEM) programs such as
Computer Science for All2 in the US
are receiving signi� cantly increased
government and corporate support.
As languages change, curricula must
be updated and teachers retrained. For
example, Exploring Computer Science
(www.exploringcs.org), which aims to
democratize computer science in K–12
schools in the US, uses seven program-
ming or markup languages: HTML,
CSS, Java Script, R, Flash, Scratch, and
Lego Mindstorms.

Given the substantial economic investment in soft-
ware and its importance to all aspects of society, one
would expect the industry to use rigorous empirical
methodologies to ascertain whether the bene� ts of
eliminating or modifying programming languages or
introducing new ones outweigh the disadvantages. As

Methodological
Irregularities in
Programming-
Language Research
Andreas Stefi k, University of Nevada, Las Vegas

Stefan Hanenberg, University of Duisburg-Essen

Substantial industry and government

investments in software are at risk due to

changes in the underlying programming

languages, despite the fact that such changes

have no empirically verifi ed benefi ts. One way

to address this problem is to establish rigorous

evidence standards like those in medicine and

other sciences.

www.computer.org/computingedge� 11
A U G U S T 2 0 1 7 61

EDITORS
HAL BERGHEL University of Nevada, Las Vegas; hlb@computer.org

ROBERT N. CHARETTE ITABHI Corp.; rncharette@ieee.org

JOHN L. KING University of Michigan; jlking@umich.edu

the “Historical Evidence Standards in
Science” sidebar points out, such stan-
dards are commonplace in many � elds.
However, research suggests that isn’t
the case in software engineering, es-
pecially with respect to programming-
language design.

LACK OF EVIDENCE IN
SOFTWARE ENGINEERING
Scholars such as Walter Tichy3 have
criticized the lack of evidence in soft-
ware engineering for decades, argu-
ing that computer scientists conduct
fewer experiments than scientists in

other � elds. A recent study by Andrew
Ko, Thomas Latoza, and Margaret Bur-
nett4 supports this assertion. The re-
searchers reviewed papers on software
engineering tools over a 10-year pe-
riod and found that, while 77 percent
of the papers included some form of

HISTORICAL EVIDENCE STANDARDS IN SCIENCE

Perhaps the fi rst evidence standard in scientifi c experimen-

tation was the blind trial, introduced as a research protocol

in the late eighteenth century to eliminate the potential impact

of bias, preconceived opinions, or imagination. Tasked by Louis

XVI of France with assessing Dr. Franz Mesmer’s claims that

he could cure illness through “animal magnetism,” a commit-

tee headed by Benjamin Franklin used a series of placebo-

controlled blind trials of test subjects to expose the treatment

as a sham.1

Since then, experimental design has been largely formal-

ized: researchers randomly assign test subjects to different

groups, including a control group, and use statistics to evaluate

the outcomes of multiple trials. The earliest double-blind

randomized control trial (RCT) of which we are aware was

the Nuremberg salt test of 1835, which invalidated a popular

homeopathic treatment.2 A century later, biostatistician

Ronald Fisher published his groundbreaking work The Design

of Experiments. In the ensuing decades, researchers refi ned

RCTs to challenge the fraudulent claims of alternative medicine

and various pseudosciences such as telepathy and psychics.1

RCTs like those carried out by the US Veterans Administration

in the 1940s paved the way for modern experimentation and

led to new medical advances. Also seminal was the work of

Austin Bradford-Hill, a British epidemiologist and statistician

who demonstrated the connection between smoking and lung

cancer in the 1950s.3

By the end of the 20th century, RCTs were commonplace.

For example, 114,850 RCT-based medical studies were

published between 1990 and 2001—approximately 2.2

percent of all such studies and an 11.2 percent increase per

year since the early 1960s.4 In 1996, efforts to develop

unifi ed recommendations for RCTs in medicine culminated in

the Consolidated Standards of Reporting Trials (CONSORT)

Statement,5 which was subsequently revised in 2001 and

2010 (www.consort-statement.org/consort-2010). In the

education fi eld, the US Department of Education’s Institute

of Education Sciences created the What Works Clearinghouse

(ies.ed.gov/ncee/wwc) in 2002 to evaluate “different pro-

grams, products, practices, and policies … to provide educators

with the information they need to make evidence-based deci-

sions.” As of 2014, 652 of the 11,771 studies the organiza-

tion had reviewed—about 5.5 percent—used RCTs that met the

highest standard of “without reservations.”6

In short, while not yet a high proportion of the overall litera-

ture, RCTs provide an important check and balance on research

in a variety of scientifi c disciplines. Unfortunately, that isn’t the

case in software engineering.

References
1. T.J. Kaptchuk, “Intentional Ignorance: A History of Blind Assess-

ment and Placebo Controls in Medicine,” Bull. of the History of

Medicine, vol. 72, no. 3, 1998, pp. 389–433.

2. M. Stolberg, “Inventing the Randomized Double-Blind Trial: The

Nuremberg Salt Test of 1835,” J. Royal Soc. of Medicine, vol. 99,

no. 12, 2006, pp. 642–643.

3. H. Marks, The Progress of Experiment: Science and Therapeutic

Reform in the United States, 1900–1990, Cambridge Univ. Press,

1997.

4. M. Tsay and Y. Yang, “Bibliometric Analysis of the Literature of

Randomized Controlled Trials,” J. Medical Library Assoc., vol. 93,

no. 4, 2005, pp. 450–458.

5. T.R. Elliott, “Registering Randomized Clinical Trials and the Case

for CONSORT,” Experimental and Clinical Psychopharmacology,

vol. 15, no. 6, 2007, pp. 511–518.

6. What Works Clearinghouse: Procedures and Standards Handbook,

version 3.0, Inst. of Education Sciences, US Dept. of Education,

2014; ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc

_procedures_v3_0_standards_handbook.pdf.

60 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

AFTERSHOCK

Software plays an essential role in modern life and
is a major economic driver. According to Gart-
ner, software sales in 2013 topped $407 billion, a
nearly 5 percent increase over the previous year.1

Changes in the languages used to program software
necessarily a ect the entire industry. Developers must

implement new processes and poli-
cies, and users—whether enterprises,
government agencies, or consumers—
must adapt to the changes by learn-
ing new functions, conventions, and
terminology.

Programming- language changes
also impact education, where science,
technology, engineering, and math-
ematics (STEM) programs such as
Computer Science for All2 in the US
are receiving signi� cantly increased
government and corporate support.
As languages change, curricula must
be updated and teachers retrained. For
example, Exploring Computer Science
(www.exploringcs.org), which aims to
democratize computer science in K–12
schools in the US, uses seven program-
ming or markup languages: HTML,
CSS, Java Script, R, Flash, Scratch, and
Lego Mindstorms.

Given the substantial economic investment in soft-
ware and its importance to all aspects of society, one
would expect the industry to use rigorous empirical
methodologies to ascertain whether the bene� ts of
eliminating or modifying programming languages or
introducing new ones outweigh the disadvantages. As

Methodological
Irregularities in
Programming-
Language Research
Andreas Stefi k, University of Nevada, Las Vegas

Stefan Hanenberg, University of Duisburg-Essen

Substantial industry and government

investments in software are at risk due to

changes in the underlying programming

languages, despite the fact that such changes

have no empirically verifi ed benefi ts. One way

to address this problem is to establish rigorous

evidence standards like those in medicine and

other sciences.

12	 ComputingEdge� April 2019
62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

AFTERSHOCK

empirical evaluation, only 27 percent
involved human use of a tool. Further,
in 62 percent of these studies, the tool
users were the authors themselves—
an obvious conflict of interest and
source of bias. Over the entire decade,
just 44 studies had both independent
test participants and a control group.

One might assume that work
on programming-language design
would have higher evidentiary stan-
dards given that much of it is funded
by the NSF, which explicitly requires
analysis of the broader impact of re-
search. However, a detailed survey by
Antti-Juhani Kaijanahoo5 of the lit-
erature up to 2012 found only 22 ran-
domized controlled trials (RCTs) with
human subjects.

Some language-design subfields
lack any empirical foundation. For
example, Phillip Uesbeck and his col-
leagues6 tracked the evidence stan-
dards of research presented at the In-
ternational Conference on Functional
Programming from its founding in
1996 to 2014 and found that not one
study followed methodological guide-
lines like those recommended by the
What Works Clearinghouse (WWC; ies
.ed.gov/ncee/wwc) or the Consolidated
Standards of Reporting Trials (CON-
SORT) Group (www.consort-statement
.org)—for example, having a control
group, randomly assigning partici-
pants to avoid bias, and using statistics
to check assumptions. Nevertheless,
this research community has vehe-
mently and successfully argued for
the inclusion of functional features in
popular programming languages such
as Java, C++, and Snap!

EXISTING RESEARCH ON
PROGRAMMING LANGUAGES
Although work on programming lan-
guages is limited, researchers have
conducted some experiments.

Evidence from one videotaped RCT
of programming sessions suggests that
static typing is generally more benefi-
cial than dynamic typing, perhaps be-
cause with the latter there are no type
annotations on bind points and thus it

takes time to discover what to pass to
a function.7

Empirical research indicates that
inexperienced programmers struggle
with notations.8 Another RCT shows
that, in C++, novices have particular
trouble with lambda expressions.6

A large-scale survey of Java com-
piler errors from students across the
world9 reinforces RCT findings on
common typing and syntax mistakes,
suggesting a coherence between field
and lab studies.

Another investigation found that
blocks- and visualization-based pro-
gramming can be slightly more ben-
eficial than a purely text-based ap-
proach in certain regions of code, but
not in others.10

Beyond these few studies, the vast
majority of language features haven’t
been evaluated using reasonable evi-
dence standards.

ALTERNATIVES TO EVIDENCE
Without evidence of the broader im-
pact of programming-language changes,
on what grounds is the software engi-
neering community arguing for or
against particular design choices?

Each year, hundreds of papers are
published at conferences such includ-
ing PLDI (Programming Language
Design and Implementation), OOPSLA
(Object- Oriented Programming, Sys-
tems, Languages, and Applications),
ICFP (the International Conference on
Functional Programming), and ECOOP
(the European Conference on Object-
Oriented Programming). Mathemat-
ical approaches play an essential role
in many of these papers—for example,
the authors describe a new language
construct, define its semantics and
a type system for it, and then show a
proof of type soundness. While use-
ful, mathematic reasoning alone won’t
reveal whether a particular proposed
feature is easy to understand or would
actually be useful in practice.

Further, the call for papers at these
venues is very odd compared to other
scientific gatherings. For example, the
calls for papers at the flagship OOPSLA

conference in 2014–2016 stated that ac-
ceptable examples of evidence include
“proofs, implemented systems, exper-
imental results, statistical analyses,
case studies, and anecdotes.” ICFP has
a similar statement. No other scientific
field known to us accepts anecdotes as
a standard of evidence.

In addition, the methodologies used
by programming-language scholars
are highly suspicious. For example,
one common approach that we think
lacks merit is the so-called cognitive
dimensions of notations framework, a
set of design principles conceived by
Thomas R.G. Green in 1989 and ex-
panded in a 1996 article.11 According
to Google Scholar this influential arti-
cle has been cited some 500 times, but
Green’s theory wasn’t based on sound
empirical evidence—by 1989 there
had only been seven programming-
language design studies.5

Another popular approach called
grounded theory, which originated in
the social sciences in 1967, describes a
process to come up with new theories
by making observations and reasoning
about context. However, in a study of
98 papers at software engineering con-
ferences that applied grounded-theory
techniques, only eight actually came
up with explicit theories.12

In sum, programming-language
studies rely on such weak method-
ological procedures that it’s doubt-
ful whether they could even detect
fraud, let alone be replicated by other
scholars.

CHECKS AND BALANCES
To address the current methodolog-
ical regularities in programming-
language research, we offer two main
suggestions.

First, we implore software engi-
neering conferences and journals to
adopt CONSORT as initial standards
of evidence for empirical investiga-
tions. Such standards would need to be
adapted from medicine to software en-
gineering, but they would provide guid-
ance for all stakeholders, including
researchers, students, programmers,

www.computer.org/computingedge 13
 A U G U S T 2 0 1 7 63

and reviewers and editors seeking
higher-quality evidence. Mathematical
reasoning will always remain central
to programming-language science, but
we need significantly more input from
developers and users.

Second, we should adopt similar
strategies to those of the WWC in re-
gard to peer review. In our own expe-
rience, most reviewers have a sound
grasp of theoretical principles but lack
the expertise to evaluate empirical
work. WWC uses reviewer certification,
which might or might not be appropri-
ate for software engineering, but we
must do something to stem the publica-
tion of methodologically tenuous work.

Substantial industry and govern-
ment investments in software
are at risk from changes in the

underlying programming languages,
despite the fact that such changes
have no empirically verified benefits.
One way to address this long-standing
problem is to establish rigorous evi-
dence standards like those in other sci-
ences, beginning with the adaptation
of well-established methodological
guidelines from medicine and educa-
tion to software engineering.

ACKNOWLEDGMENTS
This work was partially funded by the NSF
under grant CNS-1440878.

REFERENCES
1. “Gartner Says Worldwide Software

Market Grew 4.8 Percent in 2013,”
press release, Gartner, 31 Mar. 2014;
www.gartner.com/newsroom/id
/2696317.

2. M. Smith, “Computer Science for
All,” blog, 30 Jan. 2016; obamawhite
house.archives.gov/blog/2016/01
/30/computer-science-all.

3. W.F. Tichy, “Should Computer Scien-
tists Experiment More?,” Computer,
vol. 31, no. 5, 1998, pp. 32–40.

4. A.J. Ko, T.D. Latoza, and M.M. Bur-
nett, “A Practical Guide to Controlled
Experiments of Software Engineer-
ing Tools with Human Participants,”

Empirical Software Eng., vol. 20, no. 1,
2015, pp. 110–141.

5. A.-J. Kaijanaho, “Evidence-Based
Programming Language Design:
A Philosophical and Methodological
Exploration,” PhD dissertation, Univ.
of Jyväskylä, 2015.

6. P.M. Uesbeck et al., “An Empirical
Study on the Impact of C++ Lambdas
and Programmer Experience,” Proc.
38th Int’l Conf. Software Eng. (ICSE 16),
2016, pp. 760–771.

7. S. Endrikat et al., “How Do API
Documentation and Static Typing
Affect API Usability?,” Proc. 36th
Int’l Conf. Software Eng. (ICSE 14),
2014, pp. 632–642.

8. A. Stefik and S. Siebert, “An Empiri-
cal Investigation into Programming
Language Syntax,” ACM Trans. Com-
puting Education, vol. 13, no. 4, 2013,
article no. 19.

9. A. Altadmri and N.C.C. Brown, “37
Million Compilations: Investigating
Novice Programming Mistakes in
Large-Scale Student Data,” Proc.
46th ACM Technical Symp. Computer
Science Education (SIGCSE 15), 2015,
pp. 522–527.

10. D. Weintrop and U. Wilensky, “Us-
ing Commutative Assessments to
Compare Conceptual Understanding

in Blocks-Based and Text-Based
Programs,” Proc. 11th Ann. Int’l Conf.
Int’l Computing Education Research
(ICER 15), 2015, pp. 101–110.

11. T.R.G. Green and M. Petre, “Usability
Analysis of Visual Programming
Environments: A Cognitive Dimen-
sions Framework,” J. Visual Languages
and Computing, vol. 7, no. 2, 1996,
pp. 131–174.

12. K.-J. Stol, P. Ralph, and B. Fitzger-
ald, “Grounded Theory in Software
Engineering Research: A Critical
Review and Guidelines,” Proc. 38th
Int’l Conf. Software Eng. (ICSE 16), 2016,
pp. 120–131.

ANDREAS STEFIK is an associate

professor of computer science at the

University of Nevada, Las Vegas.

Contact him at stefika@gmail.com.

STEFAN HANENBERG is a scien-

tific assistant at Paluno—The Ruhr

Institute for Software Technology,

University of Duisburg-Essen.

Contact him at stefan.hanenberg@

uni-due.de.

Take the CS Library
wherever you go!

IEEE Computer Society magazines and Transactions are now
available to subscribers in the portable ePub format.

Just download the articles from the IEEE Computer Society Digital
Library, and you can read them on any device that supports ePub. For
more information, including a list of compatible devices, visit

www.computer.org/epub

62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

AFTERSHOCK

empirical evaluation, only 27 percent
involved human use of a tool. Further,
in 62 percent of these studies, the tool
users were the authors themselves—
an obvious conflict of interest and
source of bias. Over the entire decade,
just 44 studies had both independent
test participants and a control group.

One might assume that work
on programming-language design
would have higher evidentiary stan-
dards given that much of it is funded
by the NSF, which explicitly requires
analysis of the broader impact of re-
search. However, a detailed survey by
Antti-Juhani Kaijanahoo5 of the lit-
erature up to 2012 found only 22 ran-
domized controlled trials (RCTs) with
human subjects.

Some language-design subfields
lack any empirical foundation. For
example, Phillip Uesbeck and his col-
leagues6 tracked the evidence stan-
dards of research presented at the In-
ternational Conference on Functional
Programming from its founding in
1996 to 2014 and found that not one
study followed methodological guide-
lines like those recommended by the
What Works Clearinghouse (WWC; ies
.ed.gov/ncee/wwc) or the Consolidated
Standards of Reporting Trials (CON-
SORT) Group (www.consort-statement
.org)—for example, having a control
group, randomly assigning partici-
pants to avoid bias, and using statistics
to check assumptions. Nevertheless,
this research community has vehe-
mently and successfully argued for
the inclusion of functional features in
popular programming languages such
as Java, C++, and Snap!

EXISTING RESEARCH ON
PROGRAMMING LANGUAGES
Although work on programming lan-
guages is limited, researchers have
conducted some experiments.

Evidence from one videotaped RCT
of programming sessions suggests that
static typing is generally more benefi-
cial than dynamic typing, perhaps be-
cause with the latter there are no type
annotations on bind points and thus it

takes time to discover what to pass to
a function.7

Empirical research indicates that
inexperienced programmers struggle
with notations.8 Another RCT shows
that, in C++, novices have particular
trouble with lambda expressions.6

A large-scale survey of Java com-
piler errors from students across the
world9 reinforces RCT findings on
common typing and syntax mistakes,
suggesting a coherence between field
and lab studies.

Another investigation found that
blocks- and visualization-based pro-
gramming can be slightly more ben-
eficial than a purely text-based ap-
proach in certain regions of code, but
not in others.10

Beyond these few studies, the vast
majority of language features haven’t
been evaluated using reasonable evi-
dence standards.

ALTERNATIVES TO EVIDENCE
Without evidence of the broader im-
pact of programming-language changes,
on what grounds is the software engi-
neering community arguing for or
against particular design choices?

Each year, hundreds of papers are
published at conferences such includ-
ing PLDI (Programming Language
Design and Implementation), OOPSLA
(Object- Oriented Programming, Sys-
tems, Languages, and Applications),
ICFP (the International Conference on
Functional Programming), and ECOOP
(the European Conference on Object-
Oriented Programming). Mathemat-
ical approaches play an essential role
in many of these papers—for example,
the authors describe a new language
construct, define its semantics and
a type system for it, and then show a
proof of type soundness. While use-
ful, mathematic reasoning alone won’t
reveal whether a particular proposed
feature is easy to understand or would
actually be useful in practice.

Further, the call for papers at these
venues is very odd compared to other
scientific gatherings. For example, the
calls for papers at the flagship OOPSLA

conference in 2014–2016 stated that ac-
ceptable examples of evidence include
“proofs, implemented systems, exper-
imental results, statistical analyses,
case studies, and anecdotes.” ICFP has
a similar statement. No other scientific
field known to us accepts anecdotes as
a standard of evidence.

In addition, the methodologies used
by programming-language scholars
are highly suspicious. For example,
one common approach that we think
lacks merit is the so-called cognitive
dimensions of notations framework, a
set of design principles conceived by
Thomas R.G. Green in 1989 and ex-
panded in a 1996 article.11 According
to Google Scholar this influential arti-
cle has been cited some 500 times, but
Green’s theory wasn’t based on sound
empirical evidence—by 1989 there
had only been seven programming-
language design studies.5

Another popular approach called
grounded theory, which originated in
the social sciences in 1967, describes a
process to come up with new theories
by making observations and reasoning
about context. However, in a study of
98 papers at software engineering con-
ferences that applied grounded-theory
techniques, only eight actually came
up with explicit theories.12

In sum, programming-language
studies rely on such weak method-
ological procedures that it’s doubt-
ful whether they could even detect
fraud, let alone be replicated by other
scholars.

CHECKS AND BALANCES
To address the current methodolog-
ical regularities in programming-
language research, we offer two main
suggestions.

First, we implore software engi-
neering conferences and journals to
adopt CONSORT as initial standards
of evidence for empirical investiga-
tions. Such standards would need to be
adapted from medicine to software en-
gineering, but they would provide guid-
ance for all stakeholders, including
researchers, students, programmers,

This article originally appeared in Computer, vol. 50, no. 8, 2017.

