
2469-7087/19/$33.00 © 2019 IEEE	 Published by the IEEE Computer Society	 March 2019� 170 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E MARCH/APRIL 2018 | IEEE SOFTWARE 11

Editor: Giuliano Antoniol
Polytechnique Montréal
antoniol@ieee.org

Editor: Steve Counsell
Brunel University
steve.counsell@brunel.ac.uk

Editor: Phillip Laplante
Pennsylvania State University
pal11@psu.edu

INVITED CONTENT

Recent Progress in
Software Security
Edward Amoroso

EXACTLY 50 YEARS ago, Edsger
Dijkstra sent the article “A Case
against the GOTO Statement” to the
Communications of the ACM, ex-
plaining why GOTO introduced too
much complexity and should thus
be avoided. Given the urgency of
Dijkstra’s message, Pascal inventor
Niklaus Wirth made the prescient
decision to recast the article as a let-
ter to the editor with the now-iconic
title, “Go To Statement Considered
Harmful.”1

In the years since, our community
has, sadly, lost Dijkstra, but the de-
bate he sparked has remained active.
The cybersecurity community in par-
ticular has been vocal about fi nding
ways to improve software, because
most vulnerabilities involve exploit-
able weaknesses introduced through
badly written code. Unfortunately,
the rush to modern DevOps coding
and the demands of software mar-
keting have tended to overshadow
most correctness concerns.

Instead, the cybersecurity com-
munity has widely adopted an ap-
proach to reduce cybersecurity risk
in software that involves a collage of
techniques, tools, and methods, each
addressing some aspect of the threat
implications of bad code. Here, I
briefl y survey recent progress in each
element of this combined approach,
including the pros and cons for re-
ducing cybersecurity risk.

Advanced Malware Detection
Although improved programming
methodology continues to infl uence
software security, the cybersecurity
software community has focused
mostly on malware detection. This
situation is curious, because while it’s
in everyone’s interest in cybersecurity
to prevent exploitable bugs, agree-
ment exists that this is basically im-
possible for nontrivial code. Vendors
have thus built small empires based
on this (so far) correct assumption.

Whereas the original methods
of malware detection were built on
matching application code (or oper-
ating systems) to signatures, more-
modern methods review behaviors
for evidence of unacceptable runtime
activity. Behavioral investigation is
enabled by dynamic provision of vir-
tual machines for safe detonation of
executables. Without such virtual
contained environments, behavioral
analysis would be too dangerous for
production systems.

Modern research in malware de-
tection employs machine learning to
help train security tools to identify
bad code on the basis of samples.
So, just as AI-powered systems are
fed pictures of cats for learned rec-
ognition, comparable systems are fed
“pictures” of fi les containing mal-
ware. Deep-learning techniques use
massive parallelism to improve such
algorithms’ effi ciency.

Perhaps the unifying aspect of
this evolving space is that malware
detection tools presume the contin-
ued existence of problems, which
helps justify business investment by
start-ups and other security ven-
dors. The likelihood is thus low
that software professionals will ad-
vance our art to the point at which
no malware exists. So, the antimal-
ware industry should expect to see
continued vibrancy of its collective
offerings in terms of sales, revenue,
and growth.

Software Process Maturity
Another focus in modern software
security involves inferring code se-
curity through its associated soft-
ware process. That is, many security
experts have suggested that, rather
than directly inspecting software
for evidence of malware or vulnera-
bilities, you examine that software’s
development process. This is like de-
termining patients’ health by asking
them about their behaviors rather
than testing their blood.

The theory supporting this ap-
proach is largely empirical—namely,
that good code has tended to come
from well-trained developers work-
ing with world-class tools in modern,
well-organized development envi-
ronments. In contrast, exploitable
vulnerabilities frequently have been
found in code written by poorly

18	 ComputingEdge� March 2019

INVITED CONTENT

12 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

trained developers using make-
shift tools in ad hoc development
environments.

So, maturity models have emerged
that let you link the degree of soft-
ware security to the quality of the
process. This has the useful side ef-
fect of driving improved security for
all code that emerges from a given
vendor’s or team’s software process.
Common methods demanded in such
processes include automation, peri-
odic penetration testing, and proper
software updating and maintenance
procedures.

One excellent benefit of process
maturity approaches is that little
downside exists in any effort to im-
prove the steps taken to create code.
If the underlying rubric is sound, the
associated effort to bring the soft-
ware process in line with accepted
best practices will have benefits far
beyond just improved protection.
Code reduction, time-to-market im-
provements, and quality increases
will all result from improved soft-
ware processes.

Software Review
and Scanning
The most traditional means for im-
proving software security involve
direct inspection of code, some-
times using code-scanning tools.
The tools’ earliest use seems to have
been at Bell Labs in the 1970s, with
the introduction of the lint prepro-
cessing program, which scanned C
code and recommended improve-
ments. All subsequent code-scanning
tools trace their lineage to this early
concept.

The ongoing use of manual code
reviews is much debated in the soft-
ware community, with traditional-
ists insisting that human inspection
remains essential to high-quality,
secure products. The challenge is

that with the rapid cycle times in a
DevOps environment, little time ex-
ists for human review of source code.
Automated scans thus have become
the norm in such environments; this
has its pros and cons.

Software security will always in-
clude some degree of review and
scans, presumably done properly
once for reusable components, thus
precluding the need for repeat se-
curity analysis. Critics claim that
reusable componentry has been an
elusive goal for decades. How-
ever, few would argue that modern
DevOps and cloud-based software
process environments are fertile
ground for standard, well-reviewed
components.

Runtime Software Controls
Perhaps the most promising advance
in software security involves using
runtime controls that are embedded
in the execution environment. This
technique is sometimes called runtime
application self-protection (RASP).
Through the integration of behav-
ioral and even machine-learning con-
trols into and around an executable, a
programmed protection environment
emerges—one that can compensate
for code weaknesses.

RASP controls, cloud develop-
ment, and DevOps are all tightly
woven in most software develop-
ment organizations. All three aim to
increase delivered code’s speed and
flexibility. However, a somewhat
open question is whether these three
initiatives result in more secure code.
Certainly, RASP will reduce the risk
of any application good or bad, but
it’s unclear whether programmers
write better code in the presence
of RASP.

Nevertheless, runtime software
controls will continue to influence
software security, especially in the

context of new self-learning meth-
ods. Machine-learning techniques
have advanced to the point at which
observed behaviors can serve as
training data to label new variants
of software exploits. This is an ex-
citing new way to drive improved,
autonomous software control using
platform automation.

Deep-learning advances are es-
pecially promising for software se-
curity. This is because the improved
efficiency and massive parallelism
that characterize the approach are
perfectly suited to the large number
of combinations that must be exam-
ined in typical software execution.
We might hope that deep-learning
algorithms would be a superior way
to review code for unused execution
paths, dead code, logic errors, race
conditions, and the like.

O ur industry’s early focus on
methodology, as evidenced
by Edsger Dijkstra’s teach-

ings on software, remains an impor-
tant consideration in the assurance
of secure software. However, the
community has taken many practi-
cal steps to improve code quality and
security in the absence of any real
correctness progress by program-
mers. Bugs still abound in nontrivial
software, and security teams must
be practical in their risk reduction
efforts.

We can hope that in the coming
years, these methods will synthe-
size with improved programming
languages and ever-improving pro-
gramming techniques into an ecosys-
tem that reduces risk by improving
software. Given modern infrastruc-
ture’s dependency on well-designed
code with a minimum of exploitable
flaws, this is certainly a welcome
goal.

www.computer.org/computingedge� 19

INVITED CONTENT

MARCH/APRIL 2018 | IEEE SOFTWARE 13

Reference
1. E. Dijkstra, “Go To Statement Con-

sidered Harmful,” Comm. ACM,

vol. 11, no. 3, 1968, pp. 147–148.

ABOUT THE AUTHOR

EDWARD AMOROSO is the founder and chief executive offi cer of TAG

Cyber. He’s also a Distinguished Research Professor in the New York

University Tandon School of Engineering’s Computer Science Department,

an adjunct professor of computer science at the Stevens Institute of Tech-

nology, and a senior advisor at Johns Hopkins University’s Applied Physics

Laboratory. Contact him at eamoroso@tag-cyber.com.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

For more information on paper submission, featured articles, calls for papers,
and subscription links visit: www.computer.org/tsusc

SUBSCRIBE AND SUBMIT

IEEE TRANSACTIONS ON

SUSTAINABLE COMPUTING
SUBMIT
TODAY

INVITED CONTENT

12 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

trained developers using make-
shift tools in ad hoc development
environments.

So, maturity models have emerged
that let you link the degree of soft-
ware security to the quality of the
process. This has the useful side ef-
fect of driving improved security for
all code that emerges from a given
vendor’s or team’s software process.
Common methods demanded in such
processes include automation, peri-
odic penetration testing, and proper
software updating and maintenance
procedures.

One excellent benefit of process
maturity approaches is that little
downside exists in any effort to im-
prove the steps taken to create code.
If the underlying rubric is sound, the
associated effort to bring the soft-
ware process in line with accepted
best practices will have benefits far
beyond just improved protection.
Code reduction, time-to-market im-
provements, and quality increases
will all result from improved soft-
ware processes.

Software Review
and Scanning
The most traditional means for im-
proving software security involve
direct inspection of code, some-
times using code-scanning tools.
The tools’ earliest use seems to have
been at Bell Labs in the 1970s, with
the introduction of the lint prepro-
cessing program, which scanned C
code and recommended improve-
ments. All subsequent code-scanning
tools trace their lineage to this early
concept.

The ongoing use of manual code
reviews is much debated in the soft-
ware community, with traditional-
ists insisting that human inspection
remains essential to high-quality,
secure products. The challenge is

that with the rapid cycle times in a
DevOps environment, little time ex-
ists for human review of source code.
Automated scans thus have become
the norm in such environments; this
has its pros and cons.

Software security will always in-
clude some degree of review and
scans, presumably done properly
once for reusable components, thus
precluding the need for repeat se-
curity analysis. Critics claim that
reusable componentry has been an
elusive goal for decades. How-
ever, few would argue that modern
DevOps and cloud-based software
process environments are fertile
ground for standard, well-reviewed
components.

Runtime Software Controls
Perhaps the most promising advance
in software security involves using
runtime controls that are embedded
in the execution environment. This
technique is sometimes called runtime
application self-protection (RASP).
Through the integration of behav-
ioral and even machine-learning con-
trols into and around an executable, a
programmed protection environment
emerges—one that can compensate
for code weaknesses.

RASP controls, cloud develop-
ment, and DevOps are all tightly
woven in most software develop-
ment organizations. All three aim to
increase delivered code’s speed and
flexibility. However, a somewhat
open question is whether these three
initiatives result in more secure code.
Certainly, RASP will reduce the risk
of any application good or bad, but
it’s unclear whether programmers
write better code in the presence
of RASP.

Nevertheless, runtime software
controls will continue to influence
software security, especially in the

context of new self-learning meth-
ods. Machine-learning techniques
have advanced to the point at which
observed behaviors can serve as
training data to label new variants
of software exploits. This is an ex-
citing new way to drive improved,
autonomous software control using
platform automation.

Deep-learning advances are es-
pecially promising for software se-
curity. This is because the improved
efficiency and massive parallelism
that characterize the approach are
perfectly suited to the large number
of combinations that must be exam-
ined in typical software execution.
We might hope that deep-learning
algorithms would be a superior way
to review code for unused execution
paths, dead code, logic errors, race
conditions, and the like.

O ur industry’s early focus on
methodology, as evidenced
by Edsger Dijkstra’s teach-

ings on software, remains an impor-
tant consideration in the assurance
of secure software. However, the
community has taken many practi-
cal steps to improve code quality and
security in the absence of any real
correctness progress by program-
mers. Bugs still abound in nontrivial
software, and security teams must
be practical in their risk reduction
efforts.

We can hope that in the coming
years, these methods will synthe-
size with improved programming
languages and ever-improving pro-
gramming techniques into an ecosys-
tem that reduces risk by improving
software. Given modern infrastruc-
ture’s dependency on well-designed
code with a minimum of exploitable
flaws, this is certainly a welcome
goal.

This article originally appeared in
IEEE Software, vol. 35, no. 2,
2018.

