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Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics rang-

ing from software design and computer graphics to Internet computing and security, from scientific appli-

cations and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

Discovering Opioid Use 
Patterns From Social Media 
for Relapse Prevention

The United States is experienc-

ing an unprecedented opioid cri-

sis. Through a multidisciplinary ana-

lytic perspective, the authors of 

this article from the February 2022 

issue of Computer characterize opi-

oid addiction behavior patterns by 

analyzing opioid groups from Red-

dit.com—including modeling online 

discussion topics, analyzing text co-

occurrence and correlations, and 

identifying the emotional states of 

people with opioid use disorder.

Discovering Geometry in  
Data Arrays

Modern technologies produce 

a deluge of complicated data. In 

neuroscience, minimally invasive 

experimental methods can take 

recordings of large populations of 

neurons at high resolution under 

a multitude of conditions. Such 

data arrays possess nontrivial 

interdependencies along each of 

their axes. Insights into these data 

arrays may lay the foundations 

of advanced treatments for ner-

vous system disorders. The poten-

tial impacts of such data, however, 

will not be fully realized unless the 

techniques for analyzing them 

keep pace. Specifically, there is 

a need for methods for estimat-

ing the low-dimensional struc-

ture and geometry in big and noisy 

data arrays. This article from the 

November/December 2021 issue of 

Computing in Science & Engineer-

ing reviews a framework for identi-

fying complicated underlying pat-

terns in such data and recounts 

the key role that the Department 

of Energy Computational Sciences 

Graduate Fellowship played in set-

ting the stage for this work.

The Work of Writing 
Programs: Logic and 
Inscriptive Practice in the 
History of Computing

This article from the October–

December 2021 issue of IEEE 

Annals of the History of Computing 

explores the entanglement of logic 

and computing by focusing on the 

activity of writing. Although math-

ematical logic is sometimes cast 

as the immaterial spirit of the com-

puter’s material body, the study of 

logic also takes place in the phys-

ical world through the manipula-

tion of symbols on paper. Already 

in the 19th century, mathematical 

logic was understood to be related 

to mechanization, though not 

as the science behind an as-yet-

uninvented technology. Rather, 

symbolic notations were seen as 

tools that opened possibilities but 

required new kinds of work. Turn-

ing to early electronic computing 

in the 1950s, the author observes 

that researchers similarly relied 

on novel inscriptive techniques to 

mitigate labor.

Is the Perceived Comfort With 
CG Characters Increasing 
With Their Novelty?

Realistic characters from mov-

ies and games can cause strange-

ness and involuntary feelings in 

viewers, an effect known as the 

uncanny valley (UV). This article 

from the January/February 2022 

issue of IEEE Computer Graphics 

and Applications revisits the cen-

tral UV hypothesis, proposed by 

Masahiro Mori in 1970, to evaluate 
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its impact on people’s perception 

of characters created using com-

puter graphics (CG). The authors 

ask the following questions: 1) 

Are people feeling more comfort-

able with more recent CG char-

acters than older ones? 2) Does 

charisma or familiarity with vir-

tual humans correlate with per-

ceived comfort? To answer these 

questions, the authors first rep-

licated an experiment from 2012 

and compared the perception con-

cerning CG characters then and 

now, and then included images of 

more recent CG characters in the 

analysis. Results indicate that the 

perceived comfort increased over 

time when comparing the charac-

ters of 2012 and 2020. 

Embedding-Augmented 
Generalized Matrix 
Factorization for 
Recommendation With 
Implicit Feedback

Learning effective representa-

tions of users and items is crucially 

important to recommendation 

with implicit feedback. Matrix fac-

torization derives representations 

of users and items by decompos-

ing the given interaction matrix. 

However, existing matrix factor-

ization-based approaches share 

the limitation that the interac-

tion between user embedding and 

item embedding is only weakly 

enforced by fitting the given indi-

vidual rating value, which may lose 

potentially useful information. In 

this article from the November/

December 2021 issue of IEEE Intel-

ligent Systems, the authors pro-

pose a novel augmented general-

ized matrix factorization approach 

that can incorporate the historical 

interaction information of users 

and items for learning effective 

representations. Despite the sim-

plicity of the proposed approach, 

extensive experiments on four 

public implicit feedback datasets 

demonstrate that it outperforms 

state-of-the-art counterparts. 

Quantum Software as a 
Service Through a Quantum 
API Gateway

As quantum computers mature, 

the complexity of quantum soft-

ware increases. As we move from 

the initial standalone quantum 

algorithms toward complex solu-

tions combining quantum algo-

rithms with traditional software, 

new software engineering methods 

and abstractions are needed. Now-

adays, quantum computers are 

usually offered in the cloud, under 

a pay-per-use model, leading to the 

adoption of the service-oriented 

good practices that dominate the 

cloud today. However, specific 

adaptations are needed to reap the 

benefits of service-oriented com-

puting while dealing with quantum 

hardware limitations. In this article 

from the January/February 2022 

issue of IEEE Internet Computing, 

the authors propose the Quantum 

API Gateway—an adaptation of 

the API Gateway pattern that con-

siders the fact that quantum ser-

vices cannot be deployed as tradi-

tional services.

Artificial Intelligence Best 
Practices in Smart Agriculture

Smart agriculture, with the aid of 

artificial intelligence (AI), is play-

ing a pivotal role to ensure agricul-

ture sustainability. AI techniques 

are employed in soil and irrigation 

management, weather forecast-

ing, plant growth, disease predic-

tion, and livestock management. 

The authors of this article from the 

January/February 2022 issue of 

IEEE Micro review recent AI tech-

niques that have been deployed in 

these domains. 

Are Remote Play Streaming 
Systems Doomed to Fail?  
A Network Perspective

Digital games represent one of the 

most compelling fields in computer 
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science, embodying a wide variety 

of technical challenges. Thanks 

to the evolution of streaming and 

broadband technology, new ser-

vice provisioning schemes have 

emerged. Remote play stream-

ing services represent an interest-

ing case study deserving a thor-

ough investigation. To this end, 

the authors of this article from the 

October–December 2021 issue of 

IEEE MultiMedia present a network 

measurement study that can be 

useful to create traffic models and 

help researchers identify issues, 

guiding architecture, and proto-

col design. Moving beyond latency 

and jitter issues, the purpose is 

to understand whether remote 

play streaming services can oper-

ate through regular connectivity 

or are doomed to fail as happened 

to some pioneer providers. The 

authors deploy a testbed to test 

the impact of network limitations 

and emphasize the role of the avail-

able bandwidth in this context.

Predicting Job Performance 
Using Mobile Sensing

The authors of this article from the 

October–December 2021 issue of 

IEEE Pervasive Computing hypoth-

esize that behavioral patterns of 

people are reflected in how they 

interact with their mobile devices 

and that continuous sensor data 

passively collected from their 

phones and wearables can infer 

their job performance. The authors 

study day-to-day job performance 

(improvement, no change, decline) 

of 298 information workers using 

mobile sensing data and offer 

data-driven insights into what 

data patterns may lead to a high-

performing day. Through analyzing 

workers’ mobile sensing data, the 

authors predict their performance 

on a handful of job performance 

questionnaires with an F-1 score of 

75%. In addition, through numeri-

cal analysis of the model, they gain 

insights into how individuals must 

change their behavior so that the 

model predicts improvements in 

their job performance. 

Personal IoT Privacy Control 
at the Edge

This article from the January/Feb-

ruary 2022 issue of IEEE Security & 

Privacy introduces a privacy man-

ager for Internet-of-Things data 

based on edge computing. This 

poses the advantage that privacy 

is enforced before data leaves the 

control of the user, who is provided 

with a tool to express data-shar-

ing preferences based on context-

aware privacy language.

Toward Autonomic,  
Software-Intensive Digital 
Twin Systems

Digital twins (DTs) mirror and model 

the characteristics and properties of 

dynamic, real-world entities known 

as real twins (RTs). Ensuring the 

delivery of consistent and reliable 

RT insights over time demands that 

DTs preserve the correspondence 

with their counterparts, notwith-

standing change. Read more in this 

article from the March/April 2022 

issue of IEEE Software.

Intelligent Traffic Signal 
Automation Based on 
Computer Vision Techniques 
Using Deep Learning

Traffic congestion in highly popu-

lated urban areas is a huge problem 

these days. Researchers have pro-

posed many systems to monitor 

traffic flow and handle congestion 

through different techniques. But 

the current systems are not reli-

able enough to perceive traffic sig-

nals in real time. The authors of this 

article from the January/February 

2022 issue of IT Professional aim to 

build a system that can efficiently 

perform real-time environments to 

solve the traffic congestion prob-

lem through signal automation. 

Since vehicle detection and count-

ing are crucial in any traffic sys-

tem, the authors use state-of-the-

art deep-learning techniques to 

detect and count vehicles in real 

time. They then automate the sig-

nal timings by comparing the count 

of traffic on all sides of a junction. 

These automated signal timings 

sufficiently reduce congestion and 

improve traffic flow.  

Join the IEEE 
Computer Society
computer.org/join
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Editor’s Note

Digitizing Healthcare

Digital transformation of 

the healthcare industry is 

leading to enhanced efficiency, 

personalization, and precision—

with the ultimate goal of improv-

ing patient experiences and out-

comes. From communication 

portals and wearable devices to 

complex data analytics, digital 

health is having a big impact on 

patients, providers, and research-

ers. This ComputingEdge issue 

explores the latest innovations 

and obstacles in digital health.

“Visual Analytics of Smart-

phone-Sensed Human Behav-

ior and Health,” from IEEE Com-

puter Graphics and Applications, 

describes the emerging field of 

interactive visual analytics as a 

way to facilitate the discovery 

and correction of user-provided 

ground-truth health data. “Com-

mon Shortcomings in Applying 

User-Centered Design for Digi-

tal Health,” from IEEE Pervasive 

Computing, discusses challenges 

that designers often face when 

developing technologies for the 

healthcare space.

Another game-changing tech-

nology being implemented today 

is edge intelligence, or edge com-

puting that incorporates AI. 

IEEE Security & Privacy’s “Secu-

rity and Privacy for Edge Arti-

ficial Intelligence” explains the 

concept and details its security-

related benefits and disadvan-

tages. Computer’s “Edge Artificial 

Intelligence Chips for the Cyber-

physical Systems Era” reports on 

the microprocessor architecture 

that enables energy-efficient 

edge AI for applications such as 

autonomous driving and factory 

automation.

Smart manufacturing is also 

incorporating AI in creative new 

ways. In IEEE Intelligent Sys-

tems’ “Cognitive Digital Twins 

for Smart Manufacturing,” the 

authors illustrate how digital 

twins with AI capabilities are 

adding value in Industry 4.0. In IT 

Professional ’s “Reversible Exe-

cution for Robustness in Embod-

ied AI and Industrial Robots,” the 

authors combine traditional AI 

planning with reversibility and 

embodied AI when programming 

industrial robots for assembly 

operations.

Finally, this ComputingEdge 

issue features two articles on 

computing careers. In IEEE Micro’s 

“A Brief History of Warehouse-

Scale Computing,” the 2020 IEEE 

Computer Society/ACM Eckert-

Mauchly Award winner recounts 

his professional journey that 

led to his breakthrough work at 

Google. In Computer’s “Software 

Engineering: A Profession in Wait-

ing,” the author argues that we 

need licensing to transform soft-

ware development into an engi-

neering discipline. 



8	 June 2022	 Published by the IEEE Computer Society � 2469-7087/22 © 2022 IEEE

EDITOR: Theresa-Marie Rhyne, theresamarierhyne@gmail.com

DEPARTMENT: VISUALIZATION VIEWPOINTS

Visual Analytics of  
Smartphone-Sensed Human 
Behavior and Health
Hamid Mansoor , Walter Gerych, Abdulaziz Alajaji , Luke Buquicchio , Kavin Chandrasekaran ,

Emmanuel Agu , and Elke A. Rundensteiner, Worcester Polytechnic Institute, Worcester, MA, 01609, USA

Smartphone health sensing tools, which analyze passively gathered human behavior 
data, can provide clinicians with a longitudinal view of their patients’ ailments in 
natural settings. In this Visualization Viewpoints article, we postulate that interactive 
visual analytics (IVA) can assist data scientists during the development of such tools 
by facilitating the discovery and correction of wrong or missing user-provided ground-
truth health annotations. IVA can also assist clinicians in making sense of their patients’ 
behaviors by providing additional contextual and semantic information. We review the 
current state-of-the-art, outline unique challenges, and illustrate our viewpoints using 
our work as well as those of other researchers. Finally, we articulate open challenges 
in this exciting and emerging field of research.and emerging field of research.

This article originally  
appeared in 
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DEPARTMENT: VISUALIZATION VIEWPOINTS

Visual Analytics of Smartphone-Sensed
Human Behavior and Health
Hamid Mansoor , Walter Gerych, Abdulaziz Alajaji , Luke Buquicchio , Kavin Chandrasekaran ,
Emmanuel Agu , and Elke A. Rundensteiner,Worcester Polytechnic Institute, Worcester, MA, 01609, USA

Smartphone health sensing tools, which analyze passively gathered human
behavior data, can provide clinicians with a longitudinal view of their patients’
ailments in natural settings. In this Visualization Viewpoints article, we postulate
that interactive visual analytics (IVA) can assist data scientists during the
development of such tools by facilitating the discovery and correction of wrong or
missing user-provided ground-truth health annotations. IVA can also assist
clinicians in making sense of their patients’ behaviors by providing additional
contextual and semantic information. We review the current state-of-the-art,
outline unique challenges, and illustrate our viewpoints using our work as well as
those of other researchers. Finally, we articulate open challenges in this exciting
and emerging field of research.

THE CURRENT HEALTHCARE SYSTEM is under-
resourced and schedule-driven with patients
receiving little care outside of appointments.

Consequently, patient assessments are infrequent,
typically months apart, and often result in late diagno-
ses that worsen their prognoses. Emerging research is
exploring the use of sensor-rich smartphones that are
now owned by over 80% of the U.S. population,y to
passively detect various ailments, and continuously
gather valuable health behavior information and cor-
responding contexts. Ailments such as depression5,17

and influenza9 can be detected early by analyzing sen-
sor data collected from smartphones using machine
learning models. This novel paradigm is called smart-
phone health sensing or smartphone ailment pheno-
typing. Early detection can significantly improve
health outcomes.z Passive smartphone phenotyping
provides clinicians with an objective, contextualized

picture of their patients’ lives in the real world. Such
evidence can then be used to support treatment deci-
sions as patient self-reports may be inaccurate due to
recall bias and exaggeration. However, analysis of real
world smartphone-sensed health data is challenging.

In addition to traditional issues such as the highly
multivariate and complex nature of such spatio-tem-
poral data, smartphone-sensed data analysis faces
unique challenges such as the need to disambiguate
noisy ground truth labels of health behaviors and con-
text in natural settings. While passive data gathering
in natural settings yields realistic data, it also means
that users often provide wrong or no labels when they
are busy with their lives. Such labeling issues in turn
lead to weak supervision for machine learning model-
ing. Smartphone health inference and phenotyping
also faces unique challenges as user behaviors indica-
tive of health status are often intertwined with other
unrelated real world activities. Ultimately, the smart-
phone user’s specific situations, contexts, and health
status at any point in time are not always clear. More-
over, multiple ailments can have the same smart-
phone signature or phenotype, leading to confounding
effects. Finally, the degree to which users express
each symptom of the same underlying ailment vary a
lot, making intersubject comparisons challenging.

Prior work on IVA for health related data were
typically on structured data from sources such as

0272-1716 � 2021 IEEE
Digital Object Identifier 10.1109/MCG.2021.3062474
Date of current version 3 May 2021.

yhttps://www.pewresearch.org/internet/fact-sheet/mobile/
zhttps://www.webmd.com/depression/guide/untreated-
depression-effects
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Electronic Health Records (EHRs) with clear defini-
tions of data fields and coding of health related events
and relevant patient information.6,15 IVA systems for
sensor-based health data have visualized low level
health and wellness variables such as meals, sleep
patterns, and step counts, which were gathered using
health wearable devices such as Fitbits.18 We focus on
IVA systems for making higher level inferences [e.g.,
detecting Traumatic Brain Injury (TBI)] passively from
these low level health variables and symptoms cap-
tured in-the-wild using smartphones (Figure 1).

A prior survey by Polack et al. reviewed IVA methods
to analyze Mobile Health (mHealth) data in general.15

Topics covered included the visual representation of
complex and multivariate temporal data, interactive
cohort selection, and trend mining. Our viewpoints are
more focused on specific IVA support for passive smart-
phone health sensing or phenotyping, which typically
utilize machine learning. We add to this exciting and
emerging field by distilling novel viewpoints, defining key
stakeholders, outlining unique challenges arising from
this new method of monitoring health, and providing
concrete examples to illustrate how IVA methods can
provide additional insights and assist specific stakehold-
ers. Our viewpoints focus on the unique challenges that
stem from the weakly and sometimes incorrectly super-
vised nature of in-the-wild smartphone health sensing
studies and the dynamic, ambiguous, and sometimes
confounding behaviors of the monitored user. Aspects
our viewpoints cover include support for correcting
user-provided annotations, enhancing the understand-
ing, contextualization, and sensemaking of smartphone-
sensed health behaviors, and population-level visualiza-
tions and subject health status comparisons.

SMARTPHONE HEALTH SENSING—
STAKEHOLDERS AND
CHALLENGES

There are generally two groups of stakeholders for
smartphone health sensing or phenotyping: 1) Clinicians
and Health Professionalswho seek to use such systems
to understand their patients’ ailment-related real world
behaviors and symptom trajectories in the real world
better, and identify concerning behaviors early; 2) Data
Scientists who develop computational and machine
learning models to passively detect ailments using
weakly supervised smartphone-sensed data with
noisy labels. Their ultimate goal is to deploy those
models to continuously assess and monitor the
patient and detect ailments early in a comple-
tely unsupervised fashion. These two groups of stake-
holders face different but related challenges, which
we now summarize.

Health Behavior Understanding
Challenges
While inferences about health and contexts made
using machine learning on smartphone data can be
accurate,16,17 they are typically not explainable nor do
they incorporate expert knowledge. For example, while
machine learning can detect sleep duration and qual-
ity accurately using smartphone data,1 it does not cap-
ture a comprehensive picture of potential causes of
sleep disruptions which are important for healthcare
professionals. Such disruptions may be explainable if
additional human understandable information and the
occurrence of comorbidities such as participants’
increased reported stress were visually linked to such

FIGURE 1. During user studies to gather labeled data for developing smartphone health inference models, a user lives in-the-

wild while their smartphone passively gathers data continuously. Periodically, the user provides ground truth labels of their con-

text (situation) and health symptoms on their phone. Users often provide wrong or no labels when they become busy with their

lives, which presents a challenge for supervised machine learning methods. Visual analytics can assist data scientists in correct-

ing wrong or missing labels, cleaning such data before machine learning modeling, and debugging of such models. For clinicians

using the final machine learning-based passive health inference models, IVA provides additional patient context and semantic

information on the health symptoms, and comparisons with other patients, which enhances interpretability and trust of models’

outputs.

May/June 2021 IEEE Computer Graphics and Applications 97
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IVA systems for making higher level inferences [e.g.,
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these low level health variables and symptoms cap-
tured in-the-wild using smartphones (Figure 1).

A prior survey by Polack et al. reviewed IVA methods
to analyze Mobile Health (mHealth) data in general.15

Topics covered included the visual representation of
complex and multivariate temporal data, interactive
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utilize machine learning. We add to this exciting and
emerging field by distilling novel viewpoints, defining key
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this new method of monitoring health, and providing
concrete examples to illustrate how IVA methods can
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ers. Our viewpoints focus on the unique challenges that
stem from the weakly and sometimes incorrectly super-
vised nature of in-the-wild smartphone health sensing
studies and the dynamic, ambiguous, and sometimes
confounding behaviors of the monitored user. Aspects
our viewpoints cover include support for correcting
user-provided annotations, enhancing the understand-
ing, contextualization, and sensemaking of smartphone-
sensed health behaviors, and population-level visualiza-
tions and subject health status comparisons.

SMARTPHONE HEALTH SENSING—
STAKEHOLDERS AND
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There are generally two groups of stakeholders for
smartphone health sensing or phenotyping: 1) Clinicians
and Health Professionalswho seek to use such systems
to understand their patients’ ailment-related real world
behaviors and symptom trajectories in the real world
better, and identify concerning behaviors early; 2) Data
Scientists who develop computational and machine
learning models to passively detect ailments using
weakly supervised smartphone-sensed data with
noisy labels. Their ultimate goal is to deploy those
models to continuously assess and monitor the
patient and detect ailments early in a comple-
tely unsupervised fashion. These two groups of stake-
holders face different but related challenges, which
we now summarize.

Health Behavior Understanding
Challenges
While inferences about health and contexts made
using machine learning on smartphone data can be
accurate,16,17 they are typically not explainable nor do
they incorporate expert knowledge. For example, while
machine learning can detect sleep duration and qual-
ity accurately using smartphone data,1 it does not cap-
ture a comprehensive picture of potential causes of
sleep disruptions which are important for healthcare
professionals. Such disruptions may be explainable if
additional human understandable information and the
occurrence of comorbidities such as participants’
increased reported stress were visually linked to such

FIGURE 1. During user studies to gather labeled data for developing smartphone health inference models, a user lives in-the-

wild while their smartphone passively gathers data continuously. Periodically, the user provides ground truth labels of their con-

text (situation) and health symptoms on their phone. Users often provide wrong or no labels when they become busy with their

lives, which presents a challenge for supervised machine learning methods. Visual analytics can assist data scientists in correct-

ing wrong or missing labels, cleaning such data before machine learning modeling, and debugging of such models. For clinicians

using the final machine learning-based passive health inference models, IVA provides additional patient context and semantic

information on the health symptoms, and comparisons with other patients, which enhances interpretability and trust of models’

outputs.
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inferences. Clinicians who use smartphone health
sensing systems to monitor their patients as well as
data scientists who develop them both face health
behavior understanding challenges.

Symptom and Health Behavior
Contextualization Challenges
Human life involves multiple, intertwined experiences.
Clinician end users as well as data scientist model
developers typically would like temporal information
regarding their subjects’ situation and trajectory lead-
ing up to a smartphone-sensed assessment, concur-
rently and afterward in order to fully contextualize it.
Health analysts can utilize visual methods to contex-
tualize such information15 to disambiguate confound-
ing scenarios and improve the specificity of
diagnoses. For instance, while reductions in a smart-
phone user’s step count may be caused by depression,
it may also be a short-term reduction caused by
fatigue because the user engaged in strenuous exer-
cise the previous day.

Smartphone Data Labeling Challenges
Data scientists creating smartphone health assess-
ment models using machine learning require
labeled, real world datasets. Typically, an app
installed on users’ smartphones, continuously gath-
ers sensor data as they live their lives. To provide
ground truth labels, users periodically respond to
questions to report their health condition17 symp-
toms, as well as corresponding contexts visited,
activities performed, and social situations experi-
enced.16 Label data collection studies can be disrup-
tive leading to two data science issues: 1) Missing
Labels: participants fail to provide health or context
labels when they are busy or distracted. Participant
response rates to ground truth questions also vary
leading to imbalanced datasets, and 2) Wrong Labels:
participantsmake human errors in providing labels due
to carelessness or recall bias.12

OUR POSTULATIONS ON HOW IVA
CAN ENHANCE SMARTPHONE
HEALTH SENSING

Interactive data visualizations are useful for analyz-
ing multivariate data.7,14 Polack et al.15 previously
highlighted some research directions for IVA for
mHealth data broadly including visualizing its multi-
scale, temporal nature. We build on and extend this
work by summarizing specific Viewpoints on how IVA
can be useful for the different stakeholders of

smartphone health sensing and phenotyping, and
present concrete, illustrative examples.

IVA Support for Data Scientists
V1: Visual support for detecting mislabeled data to
improve the model development. Traditionally, IVA
works for data cleaning in complex domains such as
multimedia, trajectory, and textual data,8 rely on met-
rics such as anomaly scores to alert users of poor
quality data. In-the-wild gathered smartphone-sensed
data is more multicontextual in nature, which makes it
difficult to rely solely on such computational methods
to discover poorly labeled data. IVA is well suited to
present the complex characteristics of smartphone-
sensed health data15 and can leverage multiple visual
metaphors to display automatically derived metrics
and other intuitive cues for anomalous data indicative
of mislabeling effectively. For instance, activities
labeled as occurring simultaneously but which are
unlikely to truly be co-occurring (e.g., standing while
driving) can be visually highlighted to make them easy
to discover.

COntext Mislabel EXplorer (COMEX)11 is an IVA
framework that facilitates the discovery of mislabeled
smartphone sensed data by incorporating visuals that
provide additional context. COMEX analyzes continu-
ously gathered, in-the-wild smartphone data16 with
participant-provided ground truth health and context
labels. COMEX combines the visualization of com-
puted label anomaly scores with visual metaphors
designed to address the multicontextual and continu-
ous nature of real world, labeled smartphone sensor
data. For instance, COMEX highlights unlikely co-
occurrence of activities as a clue for discovering
wrong labels [e.g., “Driving” while “Indoors” Figure 2(A)
and (B)], alerting analysts about potential mislabels.
Unlikely context and activity durations can also pro-
vide another clue for wrong user labels [e.g., “Walking”
for 15 h, Figure 2(C)]. However, users tend to label data
at frequencies that vary over time, providing more
labels when they are free and less when busy. Conse-
quently, detecting the start-end and continuation of
contexts over time can be confusing. COMEX deals
with temporal variations in labeling frequency by pre-
senting visual indicators (“chunks”) of contextual con-
tinuity to make them easy to identify continuing
contexts, compare user-reported context durations,
and identify likely wrong reports. The intuitive use of
simple metaphors to highlight suspicious context co-
occurrence and duration demonstrate that IVA is well-
suited to assist in label correction of smartphone
sensed data.
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V2: Visual support for labeling unlabeled data to
improve the model development. In order to discern
the likely labels of unlabeled data, some IVA methods
integrate contextual visual cues of multivariate data
to enable analysts to assign labels to data more confi-
dently.3 However, such approaches require data with
verifiable ground truth labels, which is not the case in

in-the-wild smartphone data, where the user may not
have provided labels and exact ground truth labels are
not known. In cases where smartphone data are par-
tially labeled, a semisupervised visual paradigm can be
utilized, wherein the probable labels of unlabeled data
are discerned from their visual similarity to labeled
data. To make labeling easy, IVA tools can provide
contextual details from passively sensed data and
highlight similarities between labeled and unlabeled
data. For instance, time periods during which the
smartphone logs show calls have been received as
well as high noise levels can be labeled as “conversa-
tion” based on similarity between features corre-
sponding to this time period and other instances of
data labeled as “conversation.”

Detecting Erroneous Labels using Feature-linking
Insights (DELFI) (see Figure 3)12 is an IVA framework
to highlight unlabeled data, suggest similarities to
labeled data instances in terms of sensor feature val-
ues, and facilitate the assignment of labels with confi-
dence. DELFI utilized a Multi-Feature Similarity Linking
paradigm (inspired by Nguyen et al.14) to visually link
feature-similar data with an overlay of contextual
information, enhancing intuition. Interacting with con-
tinuous “chunks” of labeled or unlabeled data shows
the most feature-similar chunks (based on Euclidean
distance between feature values) for visual linking
[see Figure 3(A)], to discover potentially mislabeled
data and assign labels to unlabeled data. The values
of soft sensors such as the apps running, call, and
SMS logs, and charging status add another layer of

FIGURE 2. COMEX. (A) Showing labels across participants,

ordered by occurrence. Hovering over a circle shows its most

commonly co-occurring labels with the fill being proportional

to co-occurrence. (B) Clicking on a circle shows Chunks of

the selected label with length encoding time. The chunks are

ordered by duration and their opacity encodes their average

anomaly score. Clicking on a chunk shows its details as a his-

togram. The bars above the histogram are the co-occurring

labels for the sessions.

FIGURE 3. DELFI: (A) Habit View : Shows every user’s participation days as Continuous Context Chunks. Hovering over a chunk

hides all others except those that are most feature similar. (B) Chunk Detail View : Shows chunk details like the labeling mecha-

nism (these labels were provided using “History”). The labels making up the context are split as bars and the lines show the

respective anomaly scores or probability values (for unlabeled data) for the comprising data. The two gray bars represent the

charging status (first bar) and app usage status (second bar) for the data sessions. (C) Unlabeled chunk. The labels with the

highest average probability values are shown and the lines in the bars represent probability values for individual sessions.

May/June 2021 IEEE Computer Graphics and Applications 99

VISUALIZATION VIEWPOINTS

41mcg03-mansoor-3062474.3d (Style 7) 27-04-2021 11:11

inferences. Clinicians who use smartphone health
sensing systems to monitor their patients as well as
data scientists who develop them both face health
behavior understanding challenges.

Symptom and Health Behavior
Contextualization Challenges
Human life involves multiple, intertwined experiences.
Clinician end users as well as data scientist model
developers typically would like temporal information
regarding their subjects’ situation and trajectory lead-
ing up to a smartphone-sensed assessment, concur-
rently and afterward in order to fully contextualize it.
Health analysts can utilize visual methods to contex-
tualize such information15 to disambiguate confound-
ing scenarios and improve the specificity of
diagnoses. For instance, while reductions in a smart-
phone user’s step count may be caused by depression,
it may also be a short-term reduction caused by
fatigue because the user engaged in strenuous exer-
cise the previous day.

Smartphone Data Labeling Challenges
Data scientists creating smartphone health assess-
ment models using machine learning require
labeled, real world datasets. Typically, an app
installed on users’ smartphones, continuously gath-
ers sensor data as they live their lives. To provide
ground truth labels, users periodically respond to
questions to report their health condition17 symp-
toms, as well as corresponding contexts visited,
activities performed, and social situations experi-
enced.16 Label data collection studies can be disrup-
tive leading to two data science issues: 1) Missing
Labels: participants fail to provide health or context
labels when they are busy or distracted. Participant
response rates to ground truth questions also vary
leading to imbalanced datasets, and 2) Wrong Labels:
participantsmake human errors in providing labels due
to carelessness or recall bias.12

OUR POSTULATIONS ON HOW IVA
CAN ENHANCE SMARTPHONE
HEALTH SENSING

Interactive data visualizations are useful for analyz-
ing multivariate data.7,14 Polack et al.15 previously
highlighted some research directions for IVA for
mHealth data broadly including visualizing its multi-
scale, temporal nature. We build on and extend this
work by summarizing specific Viewpoints on how IVA
can be useful for the different stakeholders of

smartphone health sensing and phenotyping, and
present concrete, illustrative examples.

IVA Support for Data Scientists
V1: Visual support for detecting mislabeled data to
improve the model development. Traditionally, IVA
works for data cleaning in complex domains such as
multimedia, trajectory, and textual data,8 rely on met-
rics such as anomaly scores to alert users of poor
quality data. In-the-wild gathered smartphone-sensed
data is more multicontextual in nature, which makes it
difficult to rely solely on such computational methods
to discover poorly labeled data. IVA is well suited to
present the complex characteristics of smartphone-
sensed health data15 and can leverage multiple visual
metaphors to display automatically derived metrics
and other intuitive cues for anomalous data indicative
of mislabeling effectively. For instance, activities
labeled as occurring simultaneously but which are
unlikely to truly be co-occurring (e.g., standing while
driving) can be visually highlighted to make them easy
to discover.

COntext Mislabel EXplorer (COMEX)11 is an IVA
framework that facilitates the discovery of mislabeled
smartphone sensed data by incorporating visuals that
provide additional context. COMEX analyzes continu-
ously gathered, in-the-wild smartphone data16 with
participant-provided ground truth health and context
labels. COMEX combines the visualization of com-
puted label anomaly scores with visual metaphors
designed to address the multicontextual and continu-
ous nature of real world, labeled smartphone sensor
data. For instance, COMEX highlights unlikely co-
occurrence of activities as a clue for discovering
wrong labels [e.g., “Driving” while “Indoors” Figure 2(A)
and (B)], alerting analysts about potential mislabels.
Unlikely context and activity durations can also pro-
vide another clue for wrong user labels [e.g., “Walking”
for 15 h, Figure 2(C)]. However, users tend to label data
at frequencies that vary over time, providing more
labels when they are free and less when busy. Conse-
quently, detecting the start-end and continuation of
contexts over time can be confusing. COMEX deals
with temporal variations in labeling frequency by pre-
senting visual indicators (“chunks”) of contextual con-
tinuity to make them easy to identify continuing
contexts, compare user-reported context durations,
and identify likely wrong reports. The intuitive use of
simple metaphors to highlight suspicious context co-
occurrence and duration demonstrate that IVA is well-
suited to assist in label correction of smartphone
sensed data.
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explainability. For instance, around the time the phone
was plugged in, the unlabeled chunk in Figure 3(C) had
an increased likelihood of having the label “Table up”
(phone position) and a decline for the label “In pocket.”
Visual overlays increase the analyst’s confidence
by presenting intuitive contextual information to
enhance interpretation. Such intuition is difficult to
generate with nonvisual and purely computational
methods.

V3: Visual clustering of smartphone-sensed data to
improve scalability and steer the development of
machine learning classifiers for health applications.
Groups of data similar in terms of sensor feature val-
ues can be visualized with overlays of analyst-under-
standable semantic information that can help in
building classification models. For instance, grouping
days with poor sleep reports can help identify user
phenotypes and patterns in smartphone-sensed data
features that can be predictive of them. In addition, as
the scale of such studies grows, Population level anal-
ysis becomes necessary for understanding differences
between groups and subpopulations of people. IVA is
well-suited for the task of cohort selection and com-
parison as noted by Polack et al.15 For instance sleep
problems in late shift workers versus early shift work-
ers can be contextualized based on the distribution of
sensor-detected sleep hours, and can help analysts in
assigning chronotypes (groups with similar sleep-
wake cycles)1 (e.g., morning person versus night owl)
to participants. Presenting inferred as well as reported
symptom data with contextual information such as
phone interactions, mobility patterns, and days of the
week can enable analysts to understand the differen-
ces in sensed data between participants and allow for
larger scale, longer term analyses.

Prior work enabled unsupervised analysis of multi-
feature data by presenting results from multiple clus-
tering and dimension reduction algorithms.7 We are
researching and developing INTeractive Observation
of Smartphone Inferred Symptoms (INTOSIS), an IVA
tool which adopted a similar approach for a large-
scale smartphone-sensed dataset in an ongoing study.
The data include sensors such as anonymized geolo-
cation and activity levels along with sparse daily and
weekly symptom labels. A ranked list of clustering
results (based on quality of clustering) was generated
using various algorithms such as K-Means and spec-
tral distancing [see Figure 6(E)] from clustering all
days across users based on sensor features. The clus-
ters are then visualized across a plane using t-distrib-
uted stochastic neighbor embedding (t-SNE), a visual
dimension reduction technique. This enables analysts
to see similarity of features between symptomatic

days and provide explanations for the distributions of
clusters. In addition, this shows the sensor-detected
factors that may be indicative of symptoms. For exam-
ple, a cluster with several days labeled as “Poor sleep”
may be correlated with less time at the participant’s
primary location at night.

The “Feature Averages Heatmap” [see Figure 6(D)]
shows the feature value distribution, ordered by their
importance (ANOVA F-statistic). This shows the defin-
ing characteristics of clusters [e.g., purple cluster
shows days with more than usual time spent at home,
Figure 6(D)] and assign semantic meaning to objective
sensor data. IVA enables easier interpretation of such
unsupervised data in a way that lets analysts make
such important associations.

IVA Support for Health Professionals
V4: Visualizing anomalous, passively sensed unhealthy
patterns of user behaviors. Deviations from routines
can provide health analysts with clues about causes of
symptoms/concerning behaviors. Human Bio behavioral
Rhythms (HBR) such as sleep–wake cycles or circadian
rhythms and their disruptions have health ramifications
and are detectable from smartphone data.1 While such
computational approaches are accurate, they usually
provide little explainability, which is an issue as the
scope of such studies grows and as users provide more
sparse labels with increased study durations. Alternate
nonvisual analysis methods exploit the multiscale tem-
porality of behavioral rhythms derived from smart-
phone-sensed data. IVA techniques can combine
multiple views that facilitate contextualization of multi-
scale temporal data for trend and pattern mining, which
can reveal important, health-relevant information15

such as sleep patterns and stress levels during hectic
times such as weekdays versus more relaxed times
such asweekends, etc.

ARGUS10 is an IVA framework that displays smart-
phone-sensed HBRs and disruptions in them, using
multiple visual concepts to assist analysts in not only
identifying but also explaining HBR disruptions.
ARGUS utilizes a novel Rhythm Deviation Score (RDS)
that quantifies the degree of periodicity of the under-
lying sleep wake-cycle based on sensor data. Each
participant day is assigned an RDS score, which can
then be visualized effectively in conjunction with other
contextual information. ARGUS uses a glyph based on
the Z-glyph,4 a visual metaphor to present disruptions
from the norm. The black circle [see Figure 4(A)] repre-
sents the overall rhythm (larger circle means more
rhythmic) and the dips in the purple line represent
days with disruptions. Bigger dips toward the center
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indicate bigger HBR disruptions. Contextual data
about possible causes of HBR disruptions such as aca-
demic and project deadlines and the places visited are
overlaid on the glyph. Presenting additional contextual
information such as the type of places visited enables
analysts to assign contextual meaning to the sensed
HBR (see Figures 4 and 5).

For instance, a university student’s17 smartphone-
sensed rhythm was disrupted for two days by dead-
lines [see Figure 4(A)]. Exploration shows that they
were in a “Lab” during the early hours of the 2 days
[see Figure 4(B)]. Such detailed visual analysis not only
shows concerning data, but also helps to explain and
contextualize it. Nonvisual methods are limited in their
ability to make use such connections in order to
explain the degree of HBR periodicity.

V5: Visually overlay health markers and symptom
reports to assign semantic values to objective sensor
data for health analysis. Smartphone-sensed data are
often anonymized, with loss of information that can
potentially explain symptoms. For instance, not know-
ing semantic information about a participant’s work-
life routine may make it harder to explain depressive
symptoms since staying longer at work has been
linked with depression.2, 13 Consequently, the ability to
semantically label unlabeled/anonymized smart-
phone-sensed data can be valuable (e.g., labeling the
place where a participant “Stays” most as their
home5). IVA can provide views to show temporal
trends in smartphone-sensed data15 that can enable
semantic labeling of objective sensor data. INTO-SIS
utilizes the same large-scale dataset from the ongoing
study previously mentioned, to visualize day-level
mobility features, based on location data per day [daily
values shown for a user in Figure 6(A) and (C)]. Figure 6
(B) shows a list of the geoclusters (clustered using
DBSCAN), sorted by the duration of participants’
“Stays” in them. For each geocluster, the average 24-h

distribution of presence is shown (flatter lines indicate
uniform presence). Days with positive symptom
responses can be highlighted [see Figure 6(A)] for drill-
down. For instance, the user was in geocluster 0
approximately every day [see Figure 6(B)], with uniform
distribution, suggesting this is a residence. They are in
geocluster 3, the second longest amount of time. This
geocluster is likely their workplace, as they were never
in that geocluster before 12 pm nor on weekends and
also not since mid-March, when social distancing
went into effect in the U.S. due to COVID-19 and work-
places were closed. Also, after mid-March, there was a
decrease in location entropy, which measures how
much the user visited popular locations. The ability to
flexibly define and assign semantic labels can help
analysts assign meaningful/ predictive labels to unla-
beled data and improve inference.

CALL TO ACTION: OPEN
RESEARCH CHALLENGES

While significant progress has been made toward real-
izing the vision of using IVA to enhance smartphone-
sensed health assessment tools, several open chal-
lenges still need to be solved. Asthesize of studies
grow, data scientists and health experts will need to
address challenges associated with increases in both
the duration of studies and the number of users moni-
tored including

› Scalable visualizations: As the scope of in-the-
wild studies broadens and larger groups of
smartphone users are analyzed, visual scalability
must be considered. Specifically, the ability to
visualize larger numbers of users with more data
and over longer periods of time becomes impor-
tant. The wealth of data available on the current
COVID-19 pandemic is a case in point. While this
may be tackled by using longer time windows
(weeks instead of days) for analysis, this could
inversely affect the quality or precision of the
inferred results as ailments may not manifest

FIGURE 4. (A) Larger black circle means more rhythm. The

purple line shows daily disruption in rhythm (closer to center

means higher disruption). Every slice is a day, with the beige sli-

ces being weekends. Days can be selected for analysis in (B).

(B) displays the daily distribution across sensor values (lines)

along with durations spent in geoclusters (colored bars over

lines are place types).

FIGURE 5. Contextualizing a rhythm break by showing

human understandable information. For instance there was a

large break in rhythm detected over a weekend where we see

the participant in a “Hotel.”
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explainability. For instance, around the time the phone
was plugged in, the unlabeled chunk in Figure 3(C) had
an increased likelihood of having the label “Table up”
(phone position) and a decline for the label “In pocket.”
Visual overlays increase the analyst’s confidence
by presenting intuitive contextual information to
enhance interpretation. Such intuition is difficult to
generate with nonvisual and purely computational
methods.

V3: Visual clustering of smartphone-sensed data to
improve scalability and steer the development of
machine learning classifiers for health applications.
Groups of data similar in terms of sensor feature val-
ues can be visualized with overlays of analyst-under-
standable semantic information that can help in
building classification models. For instance, grouping
days with poor sleep reports can help identify user
phenotypes and patterns in smartphone-sensed data
features that can be predictive of them. In addition, as
the scale of such studies grows, Population level anal-
ysis becomes necessary for understanding differences
between groups and subpopulations of people. IVA is
well-suited for the task of cohort selection and com-
parison as noted by Polack et al.15 For instance sleep
problems in late shift workers versus early shift work-
ers can be contextualized based on the distribution of
sensor-detected sleep hours, and can help analysts in
assigning chronotypes (groups with similar sleep-
wake cycles)1 (e.g., morning person versus night owl)
to participants. Presenting inferred as well as reported
symptom data with contextual information such as
phone interactions, mobility patterns, and days of the
week can enable analysts to understand the differen-
ces in sensed data between participants and allow for
larger scale, longer term analyses.

Prior work enabled unsupervised analysis of multi-
feature data by presenting results from multiple clus-
tering and dimension reduction algorithms.7 We are
researching and developing INTeractive Observation
of Smartphone Inferred Symptoms (INTOSIS), an IVA
tool which adopted a similar approach for a large-
scale smartphone-sensed dataset in an ongoing study.
The data include sensors such as anonymized geolo-
cation and activity levels along with sparse daily and
weekly symptom labels. A ranked list of clustering
results (based on quality of clustering) was generated
using various algorithms such as K-Means and spec-
tral distancing [see Figure 6(E)] from clustering all
days across users based on sensor features. The clus-
ters are then visualized across a plane using t-distrib-
uted stochastic neighbor embedding (t-SNE), a visual
dimension reduction technique. This enables analysts
to see similarity of features between symptomatic

days and provide explanations for the distributions of
clusters. In addition, this shows the sensor-detected
factors that may be indicative of symptoms. For exam-
ple, a cluster with several days labeled as “Poor sleep”
may be correlated with less time at the participant’s
primary location at night.

The “Feature Averages Heatmap” [see Figure 6(D)]
shows the feature value distribution, ordered by their
importance (ANOVA F-statistic). This shows the defin-
ing characteristics of clusters [e.g., purple cluster
shows days with more than usual time spent at home,
Figure 6(D)] and assign semantic meaning to objective
sensor data. IVA enables easier interpretation of such
unsupervised data in a way that lets analysts make
such important associations.

IVA Support for Health Professionals
V4: Visualizing anomalous, passively sensed unhealthy
patterns of user behaviors. Deviations from routines
can provide health analysts with clues about causes of
symptoms/concerning behaviors. Human Bio behavioral
Rhythms (HBR) such as sleep–wake cycles or circadian
rhythms and their disruptions have health ramifications
and are detectable from smartphone data.1 While such
computational approaches are accurate, they usually
provide little explainability, which is an issue as the
scope of such studies grows and as users provide more
sparse labels with increased study durations. Alternate
nonvisual analysis methods exploit the multiscale tem-
porality of behavioral rhythms derived from smart-
phone-sensed data. IVA techniques can combine
multiple views that facilitate contextualization of multi-
scale temporal data for trend and pattern mining, which
can reveal important, health-relevant information15

such as sleep patterns and stress levels during hectic
times such as weekdays versus more relaxed times
such asweekends, etc.

ARGUS10 is an IVA framework that displays smart-
phone-sensed HBRs and disruptions in them, using
multiple visual concepts to assist analysts in not only
identifying but also explaining HBR disruptions.
ARGUS utilizes a novel Rhythm Deviation Score (RDS)
that quantifies the degree of periodicity of the under-
lying sleep wake-cycle based on sensor data. Each
participant day is assigned an RDS score, which can
then be visualized effectively in conjunction with other
contextual information. ARGUS uses a glyph based on
the Z-glyph,4 a visual metaphor to present disruptions
from the norm. The black circle [see Figure 4(A)] repre-
sents the overall rhythm (larger circle means more
rhythmic) and the dips in the purple line represent
days with disruptions. Bigger dips toward the center
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clearly on larger time scales. The visualization
techniques themselves have to be scalable and
interactive. While some of our work has begun to
address this challenge, more research is
required.15 Visual clustering can also be used
along with multiscale visual interactive techni-
ques such as zooming, filtering, and details on
demand which can facilitate drill-downs, high-
level meta views, and inter and intragroup analy-
sis as the number of participants grows.

› Visualizing causative presymptom patterns: To
facilitate retrospective analysis and the discov-
ery of behaviors that caused illness, it may be
useful to support visual lookbacks on data and
highlight users’ behavior patterns that occurred
frequently leading up to specific symptom
reports. These can serve as clues for potential
ailment causes. For instance, it may be informa-
tive to display a pattern of higher than usual
activity levels on days preceding the time when
a subject reported fatigue.

› Visual encodings that align with experts training
and build on domain knowledge. Many users of
IVA tools for smartphone sensing such as psy-
chiatrists, doctors, and nurses will already have
substantial prior domain training that they could
bring to bear in interpreting various visual clues.
Working with experts to develop visual encod-
ings that build on their domain knowledge is
important. For instance, psychologists and
health experts are trained that a patient’s behav-
ior differs on weekdays versus weekends. In our
work with them, they liked encodings of user

behaviors on weekdays versus weekends along
with specific smartphone sensed patterns such
as mobility or app usage during day versus night.
Such visuals will enable the experts to apply
their domain expertise to the analysis task.
Therefore, any data visualizations for smart-
phone data should explicitly encode contextual
information accepted by the health domain.

› Multifacet aggregation of contextual variables.
A smartphone user’s context has multiple fac-
ets including their activity, app being used and
the type of place they are at. Displaying these
disparate bits of information as separate visual
streams across long periods of time can quickly
become overwhelming. Future work may con-
sider multicontext visual metaphors that repre-
sent analyst-specified aggregations of various
sensor channels or those accepted by the
health domain in a human-understandable
fashion. For instance, aggregating low user
activity, and environmental light and sounds
levels as well as information that the user
stayed at the same geolocation at nights to be
visually displayed as “sleeping at night.” Once
labeled, subsequently collected data can then
be automatically labeled with the “sleeping at
night” label as appropriate.

› User-friendly visual metaphors for variable visu-
alization literacy among health experts and
general public. Smartphone-sensed health
detection is a multidisciplinary topic, including
researchers with varying levels of visualization,
computer, and data science literacy. Future

FIGURE 6. INTOSIS: Interacting with a geocluster distribution (B) shows the days where the user was in that cluster for some

time with a black stroke. Flatter lines mean even presence for all hours of the day. Specifying a symptom (A) shows days with

positive instances with a red stroke. Based on sensor features, data were analyzed using multiple clustering and dimension

reduction techniques (E) to project each day (circle ¼ day) of data across all participants on a 2-D plane. The clustering results

are ordered by quality. Average feature value distribution across clusters is shown as a heatmap. Red and blue represent high

and low values, respectively (D).
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work can develop universally comprehensible
visual metaphors to lower the learning curve for
researchers across the spectrum of expertise in
the health domain, who use IVA frameworks.
Additionally, smartphone-sensed studies may
also benefit from deploying on-device, user-
friendly visualizations, and gamification strate-
gies to increase participant compliance such as
encouraging accurate and frequent labeling.
Visualizing smartphone-sensed health data on
a personal level may also mitigate the privacy
issues that are inherent in most smartphone
data gathering projects by giving participants
access to their own data. Likewise, health rec-
ommendations generated by automated mod-
els can be provided to the user without analyst
intervention.

CONCLUSION
Smartphones-sensed human behavior and health
data are rapidly increasing in both quantity and com-
plexity. Smartphone health sensing and phenotyping
analyses try to utilize objective data to passively
assess the health of the smartphone user and derive
meaningful insights. However, labeling issues and the
complex nature of smartphone-sensed, real world
data present challenges to analysts who utilize pre-
dominately computational approaches. Interactive
data visualizations are a viable alternative that can
assist health professionals in such phenotyping anal-
ysis and improve the understanding and contextuali-
zation of health behaviors. IVA can also provide data
scientists with valuable tools for mitigating data
labeling issues and debugging machine learning
health inference models during model development.
In this visualization viewpoints article, we posited
that interactive data visualization is an exciting
approach to empower health scientists to discover
smartphone-sensed human behaviors and symptoms
that are predictive of health ailments and presented
illustrative examples.
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clearly on larger time scales. The visualization
techniques themselves have to be scalable and
interactive. While some of our work has begun to
address this challenge, more research is
required.15 Visual clustering can also be used
along with multiscale visual interactive techni-
ques such as zooming, filtering, and details on
demand which can facilitate drill-downs, high-
level meta views, and inter and intragroup analy-
sis as the number of participants grows.

› Visualizing causative presymptom patterns: To
facilitate retrospective analysis and the discov-
ery of behaviors that caused illness, it may be
useful to support visual lookbacks on data and
highlight users’ behavior patterns that occurred
frequently leading up to specific symptom
reports. These can serve as clues for potential
ailment causes. For instance, it may be informa-
tive to display a pattern of higher than usual
activity levels on days preceding the time when
a subject reported fatigue.

› Visual encodings that align with experts training
and build on domain knowledge. Many users of
IVA tools for smartphone sensing such as psy-
chiatrists, doctors, and nurses will already have
substantial prior domain training that they could
bring to bear in interpreting various visual clues.
Working with experts to develop visual encod-
ings that build on their domain knowledge is
important. For instance, psychologists and
health experts are trained that a patient’s behav-
ior differs on weekdays versus weekends. In our
work with them, they liked encodings of user

behaviors on weekdays versus weekends along
with specific smartphone sensed patterns such
as mobility or app usage during day versus night.
Such visuals will enable the experts to apply
their domain expertise to the analysis task.
Therefore, any data visualizations for smart-
phone data should explicitly encode contextual
information accepted by the health domain.

› Multifacet aggregation of contextual variables.
A smartphone user’s context has multiple fac-
ets including their activity, app being used and
the type of place they are at. Displaying these
disparate bits of information as separate visual
streams across long periods of time can quickly
become overwhelming. Future work may con-
sider multicontext visual metaphors that repre-
sent analyst-specified aggregations of various
sensor channels or those accepted by the
health domain in a human-understandable
fashion. For instance, aggregating low user
activity, and environmental light and sounds
levels as well as information that the user
stayed at the same geolocation at nights to be
visually displayed as “sleeping at night.” Once
labeled, subsequently collected data can then
be automatically labeled with the “sleeping at
night” label as appropriate.

› User-friendly visual metaphors for variable visu-
alization literacy among health experts and
general public. Smartphone-sensed health
detection is a multidisciplinary topic, including
researchers with varying levels of visualization,
computer, and data science literacy. Future

FIGURE 6. INTOSIS: Interacting with a geocluster distribution (B) shows the days where the user was in that cluster for some

time with a black stroke. Flatter lines mean even presence for all hours of the day. Specifying a symptom (A) shows days with

positive instances with a red stroke. Based on sensor features, data were analyzed using multiple clustering and dimension

reduction techniques (E) to project each day (circle ¼ day) of data across all participants on a 2-D plane. The clustering results

are ordered by quality. Average feature value distribution across clusters is shown as a heatmap. Red and blue represent high

and low values, respectively (D).
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U ser-centered design (UCD) is the focus 
of many teams developing digital health 
innovations, yet principles are not always 

effectively employed. We have identified several 
common ways that UCD principles fall short at all 
stages of the design process and steps to overcome 
those pitfalls.

From connecting patients, providers, and caregiv-
ers, to remotely monitoring patient health outcomes, 
to aiding individuals self-managing their own condi-
tions, technology is changing how we manage health. 
As technologies with potential application to health-
care have advanced, so has interest in pushing the 
envelope.

As experienced researchers of digital health 
solutions, we have been researching, publishing, and 
reviewing grants in this space and working with our 
own multidisciplinary teams of engineers, computer 
scientists, clinicians, and patients. We have learned 
many lessons from our successes and failures, and 
those of others. On one hand, we have seen solutions 
change lives, but on the other, we have seen innova-
tions make advancements in science and engineer-
ing but lack clinical utility. Sometimes these are true 
“hammers in search of nails,” where an innovation is 
inadequately applied to healthcare; other times they 
are misguided attempts at innovation, lacking proper 
understanding of clinical context.

Through this, we have observed and experienced 
several common challenges that determine the suc-
cess of digital health projects. When these challenges 
arise, these are the projects that do not get funded, do 
not move forward, or end up sitting on a shelf. When 

reflecting back, despite widespread acknowledge-
ment and understanding of user-centered design 
(UCD) principles in academia and industry, UCD meth-
odologies are often overlooked, given short shrift, or 
pointedly ignored in the face of different constraints, 
including lack of time, money, resources, and person-
nel; they are also ignored because of ego, outright 
hubris, and the belief that we as innovators know 
exactly what is needed.

No one is immune from skimping on the UCD pro-
cess. Despite our own formal training, we also make 
missteps and regret not following our own advice. 
Some examples of common situations that lead to 
oversights include.

›› Funding opportunities with short turnaround 
times, which may cause teams to guess about 
the types of solutions users need or want.

›› Engineering labs that make quick progress on 
solutions with healthy volunteers before mov-
ing to feasibility testing in target populations, 
which often end up with technically innovative 
solutions that lack clinical utility.

›› Lack of suitable resources (money, time, 
personnel, etc.), or access to clinicians and 
patients.

›› Teams seasoned in working with a target 
population who want to develop new types of 
solutions without starting from the ground up.
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The goal of this article is to point out the pitfalls 
that development teams face when working in the 
digital health space, structured through the lens of the 
UCD framework, so that the pitfalls can be avoided in 
the future and good products can be designed.

COMMON UCD CHALLENGES

Not Getting the Clinical Context Right
Getting the clinical context right is a common chal-
lenge experienced during the design of new innova-
tions. Without adequate expertise, we have seen grant 
proposals focused on all stages of technology devel-
opment get rejected because of the lack of adequate 
clinical expertise on the team, or lack of clinical util-
ity. Just because something can be developed does 
not mean it should be developed, or that it is the right 
thing to develop. Having suitable clinical expertise on 
the team can help with the following.

›› Finding the correct clinical domain.
›› Finding the critical symptom, health-behavior, or 

health-outcome to target.
›› Providing clinical perspective for collecting, 

interpreting, and monitoring data.
›› Integrating the design with clinical workflow.
›› Understanding feasible design in the clinical 

context.

Overcome the Pitfall: 
Assemble the Right Team
To get clinical context right, it is essential to have not 
just any clinical expertise, but to have the right clini-
cal expertise. Building bridges between technical and 
clinical collaborators can be difficult. Universities with 
schools or colleges devoted to medicine, nursing, phar-
macy, public health, or other allied health professions 
may have an advantage over universities that do not; 
however, colocation of technical and clinical depart-
ments on a campus does not mean that collabora-
tions naturally emerge. It takes time and care to build 
trust and understanding, both of which are essen-
tial for productive interdisciplinary relationships. It is 
also not necessarily enough to have clinicians on your 
team who are experts in their clinical domain. Finding 
clinicians with experience working with developers, 
or who are excited to think about, and act on ways to 

transform current clinical practice, can be key to hav-
ing a good, collaborative relationship for building dig-
ital health solutions. To determine whether you have 
the right clinical people on your team, ask yourself the 
following.

›› Do my clinical team members work with patients 
who have the target health condition?

›› Are my clinical team members experts in 
condition-specific pathophysiology and 
treatment?

›› Do my clinical team members have knowledge 
of and experience working with the target 
population?

›› Have my clinical team members conducted 
research with the condition and population in 
the past?

›› Have my clinical team members developed 
digital health solutions before and do they have 
experience working with developers?

Not Getting the User Context Right
Failure to understand users' context is also common-
place. Even as those who are aware of UCD's funda-
mental principle––to understand users’ needs and 
contexts, we often overestimate the desire that indi-
viduals have to understand and manage their health. 
We also overestimate the lengths that users are will-
ing to take to improve their health-related behav-
iors. For example, one common component of digital 
health solutions is tracking health outcomes. Tech-
nology provides opportunities to track data in ways 
that have never been possible before. We often make 
assumptions that people want to track data for health 
purposes, because there is an assumption that people 
want to change their behavior or improve their health. 
This is not always the case. Oftentimes, health-related 
behaviors are not something people engage in 
because people want to do them; rather they do so 
because they have to.

For instance, food logging is a common component 
of many digital health solutions; however, getting peo-
ple to faithfully and accurately record dietary intake 
over time is hard. Despite evidence that modifying diet 
can lead to long-term health benefits, our research has 
taught us that food logging is typically seen by users as 
burdensome, boring, and unenjoyable. It sounds easy 
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in theory, but is difficult in practice. Previous research 
has shown that when asked to log diet, many individu-
als batch enter and back-fill data instead of tracking 
in real, or near-real time as intended.1 This can lead to 
inaccurate data regarding food, portions, or timing of 
meals, which may undermine behavior change.

Lack of understanding user beliefs and cultural 
context also speaks to technology use. Although we 
may think users will want to provide an endless stream 
of data that is collected in perpetuity, that is not a 
realistic ask. Some users may be willing to engage in 
the short-term, but not the long-term. Even with auto-
mated sensor-based tracking, burdens still exist with 
having to wear sensors and make sure data are flowing 
appropriately. For some, lack of sustained and faithful 
tracking occurs because of burden, but for others, the 
desire to not engage is related to situated social and 
cultural concerns, such as privacy and confidentiality.

User context can be biased through lack of experi-
ence working with target populations, or reliance on 
students or employees for formative development 
activities, instead of target end users. The solution we 
as digital health innovators think is useful for us is not 
always also useful for users.

Overcome the Pitfall:  
Get User Context Right
We should get to know the target end users as we 
start the project, not in hindsight. Leaving the walls 
of your office and finding your average user on the 
street takes time and effort, but is worth it to be more 
user-centered, and will likely result in better design. 
You can start this process by first asking yourself the 
following.

›› What am I asking a user to do, and would I (or my 
family/friends) be willing to do that?

›› How frequently am I asking a user to use my 
innovation, and would I (or my family/friends) be 
willing to do that?

›› For how long am I asking a user to use my 
innovation, and would I (or my family/friends) be 
willing to use it for that long?

›› How much of a burden am I placing on a user and 
is that comparable to the benefit they will get?

›› What potential risks am I bringing to users by 
using my innovation?

Not Properly Identifying 
User Requirements
Even if we get the context right, we might fail to get 
the user and their requirements right. Creation of per-
sonas that guide development for different groups 
is a common starting point for design. These perso-
nas are archetypes of different types of users, often 
given names, faces, and a backstory, and are used to 
delineate tasks and goals that may be accomplished 
through the use of a product. Although these perso-
nas are great for capturing user task context, they may 
miss essential aspects of users themselves. We think 
we know the user, but we often do not.

For example, cell phone app development has 
exploded in parallel with widespread cell phone adop-
tion, even among populations who have historically 
experienced barriers to adopting technology. How-
ever, in our work, we find that users often struggle with 
the devices they have. They struggle with downloading 
apps because they do not know their password, tech-
nical literacy is questionable, and pairing devices can 
be an incredible burden to overcome.

In addition to overestimating technical abilities, 
designers often overestimate users’ understanding 
of their health. We have a lot of information about the 
information needs of patients who are active in social 
media; however, this is a biased group of people who 
enjoy posting about their health online. Not all patients 
with Type 2 diabetes, for instance, will have as good of 
a handle on how their diet contributes to blood sugar 
fluctuations as we expect from seeing what is shared 
in online diabetes communities.

Furthermore, most use contexts involve multiple 
stakeholders who influence individuals’ health behav-
iors. The roles of social networks, including caregiv-
ers, friends and family, and healthcare teams often 
go unnoticed, as innovators often focus on users 
themselves. In reality, the health of an individual is an 
enormous lesson in situated action as people are influ-
enced by the context they live in, which can have pro-
found effects on health behaviors. For example, if you 
are trying use an app to improve diet among pregnant 
adolescents, you must understand that teens often 
do not have control over the foods they have access 
to within the home. Likewise, those looking to create 
a care coordination app for dementia care need to 
understand that both informal and formal caregivers 
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(including social workers, physicians, nurses, and 
nursing home administrators) all influence the health 
of a patient. As Orlikowsky's Technological Frames 
work argues,2 these multiple stakeholders would 
have vastly different understandings of what technol-
ogy adoption might mean for their work context, and 
unless the new technology solution addresses all of 
their needs, the adoption may fail.

Overcome the Pitfall: Get 
User Requirements Right
Although the role of personas is important for forma-
tive task-based design work, we must be careful not to 
reduce target users to archetypes that fail to grasp the 
essence of what users struggle with and need. Under-
standing the range of skills and abilities of users is crit-
ical. To ensure that we know what the realistic user 
requirements are, ask the following questions.

›› What ranges of tech savviness do the target 
users have?

›› Do target users have experiences using the 
technology platform my solution relies on?

›› Is my target solution suitable for use by my 
friends/family?

›› Do the target users understand enough about 
the specific health condition to lead them to 
understand why behavior change is beneficial?

›› Even if they understand the benefits, do they 
have any economic, social, or cultural barriers 
that might hinder change?

›› Have I considered who else may be influencing 
the behavior of the target users?

Failure to Design the Right Solution
Even if the context is well understood and users and 
their requirements are well defined, new innovations 
can fail in the design phase, particularly when it comes 
to envisioning and refining adequate solutions to a 
problem. Many projects fail because teams do not 
understand what the right kind of solution is, and they 
do not iterate until the solution evolves into some-
thing that meets the needs of all stakeholders. Tech-
nology vendors in the marketplace constantly develop 
technically innovative tools for collecting, compil-
ing, and transmitting data from patient-side periph-
eral remote monitoring devices to providers, with the 

goal of revolutionizing care. Although these tools will 
likely be an essential component in healthcare in the 
future, our current healthcare system is not ready to 
use these tools clinically on a broad scale. Not only is 
our current health IT infrastructure not yet optimized 
to handle large-scale patient self-monitoring, but our 
workflow processes are not yet optimized to that 
model of care.

In our current model of care, physicians are limited 
in the time they can spend on individual patients. 
Working with clinicians can help ensure that proposed 
solutions can fit within the existing model of care. 
Furthermore, the better we can integrate solutions 
into current care environments, the more likely we 
can overcome the often touted 17-year uphill battle of 
making evidence-based changes to clinical practice.3

Overcome the Pitfall:  
Get the Design Right
We must take steps to make sure that proposed solu-
tions are amenable and well positioned to be effective 
for the target population. Ways to ensure that we are on 
track include asking the following questions.

›› What is the likelihood that my solution will be 
used by the appropriate people at the desig-
nated time?

›› How will users incorporate this into their daily life?
›› What do users need to change about their habits 

in order to use the solution as intended?

Flaws in Evaluation
Ideally, the team has worked closely with clinical col-
laborators and user stakeholders from the beginning, 
and iteratively refined the system according to UCD 
processes. However, even if good solutions have been 
designed, we have seen projects make missteps dur-
ing the evaluation, which can sink a grant applica-
tion, or prohibit a solution from advancing. This usu-
ally occurs when we select the wrong metrics for 
evaluation. These metrics, which are the criteria used 
to determine whether the project has succeeded, are 
often highly dependent on clinical and use contexts. 
For instance, we have seen evaluations that hinge on 
irrelevant or suboptimal metrics, or metrics that are so 
highly confounded that it is impossible to tell if a digi-
tal health solution worked.
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Overcome the Pitfall:  
Get the Evaluation Right
We need to make sure that the metrics we use to ascer-
tain success are the measures that will actually tell us 
if a digital health solution works. Ways to ensure that 
we are on track include asking the following questions.

›› Do my evaluation metrics tell me critical 
information about the success of my product?

›› Are my evaluation metrics rooted within the 
appropriate clinical context?

›› Are my evaluation metrics the best ones for use 
in this context?

CONCLUSION
The UCD process is just one tool in our toolkit for 
achieving success; however, it is essential that careful 
application of the steps be made. We have seen many 
ways that good development teams have ignored parts 
of the UCD process, and we too have not been immune 
from failing to apply the process appropriately. Some-
times, we get lucky and no serious harm befalls the 
design process, but more often than not, when a proj-
ect does not pan out, hindsight can show us that fail-
ure to adequately engage in UCD was the catalyst. In 
reflecting on our years of digital health development, 
our lessons learned can be distilled down pretty eas-
ily. Within healthcare, providers, and especially nurses, 
are familiar with the “5 rights” of medication use, which 
include the “right patient, right drug, right time, right 
dose, and right route.” For UCD, it is “users are not like 
me.” These mantra together emphasize the need for a 
proper application of UCD principles for digital health 
development; the right clinical context, the right user 
context, the right user requirements, the right design, 
and the right evaluation. 
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Security and Privacy for  
Edge Artificial Intelligence
James Bret Michael, Associate Editor in Chief

Edge artificial intelligence (AI) takes decen-
tralization of data and computing to a new 
level, providing for optimization of resource 

allocation, and development and functioning of AI, 
on edge devices. It also introduces opportunities and 
challenges in the realm of security and privacy.

The convergence of AI, edge computing, and cloud 
computing impacts our daily lives. For instance, the 
smart thermostat I recently installed in my home has 
been learning what my family considers to be a com-
fortable temperature for different times of the day and 
night. The thermostat is an edge device that takes as 
input the sensed room temperature and temperature 
settings manually input by my family members, refines 
the machine learning (ML) algorithm on this data, and 
then makes inferences using the algorithm to select 
the output control signals to send to my home’s fur-
nace. The automation of the temperature-adjusting 
function with in-situ learning has already resulted in 
energy savings and the house being neither too warm 
nor too cool.

Devices like the smart thermostat are part of 
what is known as edge AI or edge intelligence. In this 
“From the Editors” column, I use the former term. But 
let’s back up a moment. What is edge computing? It 
is a form of distributed computing in which an edge 
device, or a set of neighboring edge devices, performs 
computing tasks that would otherwise be done on 
remote cloud servers. Why is edge computing appeal-
ing? With the rapid growth of the Internet of Things 
(IoT), there is now a vast amount of data being sensed 
and produced at the edge so enormous in size that it is 

not technically feasible using the bandwidth of today’s 
Internet to transfer the entirety of the data from the 
edge devices to cloud servers for storage and process-
ing; even if the bandwidth was available, there would 
need to be enough data center resources available to 
handle all of the data. In addition to bandwidth issues, 
the communication latency incurred by treating edge 
devices as clients of cloud servers can make it imprac-
tical to meet user requirements for fast reaction or 
response times, such as supporting the real-time 
decision making performed by collision-avoidance 
systems embedded in passenger vehicles, buses, and 
trucks. In other words, there is a need for some degree 
of federated intelligence. The edge devices, the cars 
in this example, need local processing for much (but 
not all of) their activity. Some tasks performed by 
edge devices may require a combination of local and 
remote processing.

EDGE AI COMPARED TO  
EDGE COMPUTING

What differentiates edge AI from edge comput-
ing? Edge AI incorporates AI capabilities on the edge 
devices. Deng et al. partition edge AI into two catego-
ries: AI for edge (also known as intelligence-enabled 
edge computing) and AI on edge.1 The former is con-
cerned with optimizing the allocation of resources used 
at the edge, whereas the latter includes “carry[ing] out 
the entire process of building [and running] AI models 
on the edge.” The smart thermostat serves as an exam-
ple of AI on edge: this IoT device updates the ML algo-
rithm, makes inferences, and decides what actions to 
take to shape the behavior of the heating, ventilation, 
and air-conditioning system. One of the benefits of 
edge AI technology is that the data needed for refin-
ing the algorithm is decentralized. Another advantage 
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is that analysis and decision making can be performed 
close to the source of the data. From a security and 
privacy perspective, edge AI can remove attack vec-
tors by minimizing or eliminating the transfer of data 
between the edge devices and their data centers. In 
the case of my home thermostat, however, there is 
likely a continuing connection between my thermo-
stat and some vendor-operated server. Thus, it is likely 
that my smartphone app is communicating with a cen-
tral server, which is collecting data and using a session 
that was previously set up by the thermostat when it 
connects to the server. I did not set up port forwarding 
on my router (this has its own security issues).

There are security and privacy issues that arise 
with the use of edge AI. My thermostat transmits 
information about its reliability, its performance with 
optimizing the use of the furnace under multiple 
constraints, and the parameters of its ML model to 
cloud servers for use by the company that manufac-
tured the device, ostensibly for improving the com-
pany’s product line of smart thermostats. How much 
pattern-of-life information about my family can be 
deduced from these data? Who has access to them 
and why? I do not know whether any raw data (for 
example, unprocessed sensor readings), personally 
identifiable information about my family and me, or 
details about my home network security settings (e.g., 
router password and firewall settings) are shared with 
the company. I also have no knowledge of how the 
company transfers those data. Does it use secure con-
nections? Does the company protect this information 
from side-channel attacks? Finally, does the company 
update the ML model’s parameters from afar (that is, 
by pushing those parameters from on-cloud servers) 
without notifying me?

I can remotely communicate with the thermostat 
from my smartphone via my home’s wireless network 
and the Internet, such as to check on the temperature 
of my home and change temperature settings, but how 
much trust should, or can, I place in the authentication 
and other protocols used with the remote-access 
functions of the smartphone app for the thermostat? 
Another issue is that I do not know how much trust to 
place in my home’s wireless infrastructure. I recently 
received a message from the manufacturer of the 
routers that I use stating that I need to perform firm-
ware updates. What actually happened when I tried 

to apply the updates was that the company installed 
an unwanted network security-scanning application. I 
lump this into the category of a supply-chain risk. But 
let’s get back to the topic at hand.

In addition, the smart thermostat can operate 
autonomously. As I mentioned, it learns to self- 
regulate the temperature inside the home, with no 
need for attention or input by the user. After about the 
third week of the thermostat’s operation, I stopped 
fiddling with and checking on the device. I had no 
situational awareness of what the thermostat was 
doing, other than that the temperature in the home 
was comfortable. I stopped logging into the app. I 
also did not bother to change my password after the 
initial installation. However, I did set up two-factor 
authentication. But what if someone hacks my smart 

thermostat app on my phone and disables the ther-
mostat or hacks the device itself? If someone hacks 
into my thermostat, then my network is vulnerable, 
and possibly my family’s computing devices become 
targets—likely of more interest than the thermostat. 
Could the attacker start a fire or other significant dis-
ruption in the house? (Turning the furnace on and off 
repeatedly over a short period of time might cause it 
to fail in unexpected ways.)

Before I purchased the thermostat, I was aware 
that it and other IoT devices are not immune to attack: 
they are tempting targets for cybermischief, and hack-
ers have demonstrated the exploitation of vulnerabili-
ties in edge devices designed for the home.2 I accepted 
the security and privacy risks for the convenience of 
automating mundane home-management tasks. I also 
installed an IoT-based digital door lock. The lock has no 
AI functionality, so it is an example of edge computing 
but not edge AI. That is the extent, so far, of my foray 
into home automation.

Furthermore, with my thermostat falling into the 
category of AI on edge, there is the possibility that 

IEEE SECURITY & PRIVACY WELCOMES 
SUBMISSION OF ARTICLES ON THIS 
FASCINATING, RAPIDLY ADVANCING, 
AND GAME-CHANGING TECHNOLOGY.
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someone may launch an ML adversarial attack, poi-
soning the data used by the ML algorithm. However, 
someone could also perform a physical adversarial 
attack by just leaving a window open near the thermo-
stat. The result of such an attack would likely be the 
thermostat behaving in an unexpected way, such as 
causing wide swings in temperature or short-cycling 
the furnace (that is, causing it to rapidly turn on and 
off), ultimately resulting in damage to the furnace and 
an inefficient use of energy. I am not overly concerned 
about the risks to security and privacy posed by my 
home-based IoT devices, but I am concerned about 
those types of issues for industrial and national secu-
rity uses of edge AI, for which the stakes are higher in 
the event of compromised security or privacy.

Let’s consider a use case for the Industrial IoT. 
Chemical manufacturing plants, such as those used in 
the refining of oil and gas, are instrumented with lots of 
sensors and microcontrollers, with the aim of collect-
ing trusted data to be analyzed as a part of optimizing 
the processing of the chemicals, maintaining product 
quality, and monitoring the safety and security of the 
plant operations. Decentralizing the data provided by 
the sensors and microcontrollers, in addition to apply-
ing AI on edge, is already happening in the chemical 
manufacturing industry and is viewed as being a vital 
means for companies to gain an edge—pardon the 
pun—over their competitors.3

For this use case, consider the following scenario. 
A manufacturing plant produces hydrogen sulfide 
(H2S), a colorless chalcogen hydride gas also known 
as hydrosulfuric acid. H2S is poisonous, corrosive, 
and flammable. Further, let’s suppose that the plant 
employs a federated approach to ML at the edge, with 
AI-on-edge devices located near sensors that monitor 
the storage-and-feed, reactor, and clean-up sections 
of the production unit. In federated ML, each device 
uses its own “local data to cooperatively train an ML 
model required by a federated learning (FL) server. 
They then send the model updates, i.e., the model’s 
weights to the FL server for aggregation. The steps are 
repeated in multiple rounds until a desirable accuracy 
is achieved.”4

What can possibly go wrong? Well, for one thing, it 
is conceivable that the server acting as the aggregator 
could leak the trained model or information about the 
local data sets. In addition, as pointed out by Lim et al., 

malicious participants (that is, one or more compro-
mised edge devices) could poison the data and model 
by, for example, “send[ing] incorrect parameters or 
corrupted models to falsify the learning process dur-
ing global aggregation.”4 The hacker’s intent might be 
to cause the inference models to improperly manage 
the cooling water exchangers needed to keep the 
reactor or clean-up units from overheating, potentially 
resulting in a mishap if the plant fails to contain the 
H2S product. There is the age-old problem of deciding 
which of the devices can be trusted.

The foregoing example could have been made 
more complex, allowing for the distributed system to 
be composed of heterogeneous edge devices (this 
includes sensors) and cloud servers, along with data 
sources of varying and possibly unknown levels of 
quality and trust. What do such systems portend for 
the specification and implementation of policy and 
mechanisms for security and privacy?

Edge AI is a burgeoning area of research and 
development, in part because the enabling tech-

nologies are becoming available, such as 5G networks, 
high-performance AI chips,5 lightweight AI models, 
AI-specific service architectures for the edge,6 
co-design methodologies tailored for edge computing 
and edge AI,7 and lightweight and leakage-resilient 
authenticated key exchange protocols for edge AI.8 
Lim et al. are investigating ways to apply edge AI to 
large-scale mobile edge networks of heterogeneous 
devices while preserving the privacy of the data of 
each of the participants (edge nodes) that are taking 
part in FL in the presence of one or more malicious 
participants or aggregators (servers).4 They have 
explored several solutions to the problem of not being 
able to assume that all participants and aggregators 
can be trusted, such as schemes for secure aggrega-
tion and differential privacy. As another example, Libri 
et al. have demonstrated the application of edge AI by 
using large-scale sensor networks to detect malware 
in data centers.9

On a personal note, in the mid-1990s, I was a 
research engineer with the University of California, 
Berkeley’s California Partners for Advanced Transit 
and Highways program. My colleagues and I were at 
the forefront of mobile edge computing, demonstrat-
ing in 1997 the technical feasibility of safely operating 
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dual-mode automobiles under fully automated control 
in platoon formations under high-performance driv-
ing conditions (e.g., maintaining a velocity of 30 m/s 
with as little as one car length between vehicles) on 
dedicated highway lanes.10 We used classical control 
system technology to implement the system, with a 
four-layer hierarchical control architecture: network, 
link, planning, and regulation.11 The individual vehicles 
processed their own sensor data and the data shared 
among the vehicles. The vehicles also communicated 
with the instrumented roadway infrastructure. AI on 
edge would have been helpful, used in concert with the 
design of the controllers, for developing and continu-
ously improving the models and algorithms used to 
achieve optimizations, such as for lane-change maneu-
vers, emergency braking and other safety-related 
actions under various environmental conditions, 
minimizing sulfur and nitrogen oxides emissions, and 
reaching levels of throughput of vehicles that come 
close to the theoretical capacity of dedicated lanes on 
the automated highway system.

As edge AI advances and significant progress is 
made in the evolution from weak to strong AI (that is, 
from custom AI systems that are tailored to a specific 
application or limited number of tasks to AI system 
that have general intelligence abilities), it will be inter-
esting to see how existing security and privacy risks 
are handled and what new risks and opportunities 
arise. IEEE Security & Privacy welcomes submission 
of articles on this fascinating, rapidly advancing, and 
game-changing technology. Please also keep your 
eyes open for an upcoming call for papers for a theme 
issue of the magazine on this subject. 

DISCLAIMER
The views and conclusions contained herein are 
those of the author’s and should not be interpreted 
as necessarily representing the official policies or 
endorsements, either expressed or implied, of the U.S. 
government.
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DEPARTMENT: CYBER-PHYSICAL SYSTEMS

Edge Artificial Intelligence  
Chips for the Cyberphysical 
Systems Era
Hiroshi Fuketa and Kunio Uchiyama, National Institute of Advanced Industrial Science  
and Technology, Japan

Artificial intelligence (AI) chips draw much attention for cyberphysical systems 
since AI chips are promising to realize edge AI computing. We introduce the chip 
architecture that enables energy-efficient computing and design tools for AI chips.

The dramatic progress of artificial intelligence 
(AI) in recent years is mainly the result of 
advances in deep learning (DL) algorithms. 

DL-based AI is used now in a wide variety of appli-
cations, such as image recognition and machine 
translation. However, it is reported that the amount 
of computation required to run these algorithms has 
been exponentially increasing, with a 3.4-month dou-
bling time since 2012.1 Therefore, AI chips, which can 
compute DL algorithms more efficiently compared 
to conventional CPUs and GPUs, have been drawing 
much attention. [In this column, we use “AI chips” as 
a generic term for DL accelerators, and hence the fol-
lowing two types of implementations for AI chips are 
considered: 1) independent large-scale integrations, 
including Google’s tensor processing unit, and 2) intel-
lectual property (IP) cores, such as the neural engine in 
Apple’s A series system on chip.]

For example, Google and Amazon have been 
developing original AI chips for their own data centers. 
These chips are called cloud AI chips, and they are 
used for training deep neural network (DNN) models 
as well as for inference using DNN models when the 
amount of computation is too large for edge devices. 
However, for cyberphysical system (CPS) applications, 
such as autonomous driving and factory automation 
(Figure 1), it is critical to conduct AI processing on edge 

devices since performing the work on cloud servers 
entails overhead related to the communication time 
between the edge and the cloud and the power that 
is consumed, which is often a crucial factor in CPSs. 
Therefore, “edge AI chips” that enable AI processing 
on edge devices are demanded for CPSs. For example, 
Tesla recently developed an original edge AI chip 
for autonomous driving. One of the most important 
requirements for edge AI chips is energy efficiency 
since edge device power budgets are usually severe. 
Therefore, various processor architectures to perform 
DL algorithms on edge devices with high energy effi-
ciency have been recently proposed.

In this column, we describe the architecture of 
edge AI chips, and we introduce tools that help engi-
neers design such edge AI chips. We mainly focus on 
image recognition tasks, which are required in typical 
CPS applications such as autonomous driving and fac-
tory automation.

AI CHIP ARCHITECTURE  
FOR ACHIEVING HIGH  
ENERGY EFFICIENCY 

Architecture suitable for 
computation in neural networks
A DNN consists of many stacked layers of neural net-
works. As a typical neural network architecture, Fig-
ure 2 shows a fully connected (FC) neural network 
and a convolutional neural network (CNN). In the FC 
version, the output activations are calculated by the 
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weighted sum of the input activations [Figure 2(a)]. As 
the number of input and output activations increases, 
a large amount of memory capacity and bandwidth 
for weights and computation is required. On the other 
hand, a CNN is often used for image recognition tasks. 
CNNs consist of multiple filters, and the output fea-
ture map is calculated by sliding those filters in the 
input feature map, as represented in Figure 2(b).

The FC and CNN calculation methods are described 
at the bottom of Figure 2(a) and (b). As indicated by 
these equations, the calculations mainly consist of 
multiply and accumulate (MAC) operations. It is well 
known that the performance of MAC operations can 
be improved by parallelization. In common GPUs, mas-
sive arithmetic logic units (ALUs) are implemented 
based on the temporal architecture,2 as in Figure 2(c), 
and operate in parallel, which makes it possible to per-
form MAC operations fast. Therefore, GPUs are widely 
used for DNN processing.

Another form of parallelization is the spatial archi-
tecture (dataflow processing),2 as depicted in Figure 
2(d). In this architecture, processing elements (PEs) 
are organized in tiles, and each one consists of an 
ALU, a register file (RF), and a control circuit. In the 
temporal architecture [Figure 2(c)], the ALU reads the 
input data from and writes the calculation result back 
to the shared RF, whereas in the spatial architecture 
[Figure 2(d)], data (activations, weights, and partial 

sums) can be moved from one PE to another, which 
reduces the memory access energy requirement. 
For example, the values of filters (weights) are used 
many times for computation in a CNN, as in Figure 
2(b). The memory access can be reduced by 1) storing 
these values to the RF in a PE and reusing them and 2) 
transferring partial sums from one PE to another. This 
makes computation more energy efficient, and hence 
the spatial architecture is suitable for edge AI chips.

Reducing computational precision
The most effective way to improve energy effi-
ciency is to reduce computational precision. For 
common computational tasks, 32-bit floating point 
(FP32) precision is usually used. In contrast, it is 
well known that the degradation of computational 
accuracy is ignorable for DNN tasks (training and 
inference), even if a lower precision than FP32 is 
used. For training, 16-bit FP (FP16) precision is often 
used, and hence many GPUs currently support FP16. 
In addition, recent studies show the possibility of 
reducing the computational precision to 8–9 bits for 
multiplication.3,4

On the other hand, a further reduction of the com-
putational precision is feasible for the inference. For 
example, Guo et al.5 reported that the image recogni-
tion accuracy deteriorates by less than 3%, even if the 
computational precision is altered to an 8-bit integer 

Edge AI Chip 
• Mainly Inference
• High Energy E�ciency

Cloud AI Chip 
• Training and Inference
• High Performance

Autonomous
Driving 

5G Mobile
Computing Data Center

(a) (b)

Factory
Automation 

FIGURE 1. AI chips for (a) the edge and (b) the cloud in CPSs.
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from FP32. At this time, the computation energy is 
significantly reduced; the energy of the 8-bit integer 
adder and multiplier is 1/30 and 1/19 times smaller 
than that of the FP32 adder and multiplier, respec-
tively.6 This means that reducing the computational 
precision is very attractive to attain high energy 
efficiency. Therefore, many edge AI chips that sup-
port the low-precision format of a 4/8/16-bit integer 
have recently been developed since edge AI comput-
ing mainly focuses on the inference, as detailed in 
Figure 1. Figure 3(a) presents the power dissipation 
of edge AI chips as a function of the performance [in 
tera operations per second (TOPS)], with their energy 
efficiency (TOPS/W). By reducing the computational 
precision to a 4/8-bit integer, a high energy efficiency 
of several TOPS/W can be achieved.

Recently, many researchers have explored a more 
aggressive reduction of the computational precision 
to 1 bit (binary), which is the lowest that is possible. 

Neural networks with a 1-bit precision are called bina-
rized neural networks (BNNs).7 In BNNs, a single XNOR 
gate is substituted for a multiplier, and a population 
counter that tallies the number of ones in an input 
word is used as an accumulator [as shown in Figure 
3(b)], which makes the implementation of the MAC 
unit much simpler. Thus, extremely high energy effi-
ciency can be achieved by a BNN. For example, Intel 
developed an AI chip dedicated to BNNs and demon-
strated that a significantly high energy efficiency of 
617 TOPS/W can be achieved.8 However, one of the 
disadvantages of BNNs is that the networks’ infer-
ence accuracy degrades due to the reduction of the 
computational precision, especially for complicated 
tasks. For instance, the inference accuracy when 
using BNNs deteriorates by only 1% compared to FP32 
precision for the “CIFAR10” small photo classification 
task, whereas the accuracy worsens by 16% for the 
more complicated “ImageNet” image classification 
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task.7,9 A practical solution for this issue is to optimize 
the computational precision at each layer of a neural 
network. This makes it possible to achieve both high 
accuracy and energy efficiency.

DESIGN TOOLS FOR EDGE AI CHIPS
Almost all engineers develop DL algorithms by using 
Python. On the other hand, AI chips are usually 
devised through a hardware description language, 
such as Verilog. It is desirable to more easily or auto-
matically create hardware optimized for DL algo-
rithms written in Python. Thus, various design tools 
for AI chips have recently been developed. As exam-
ples, we will describe two tools that focus on develop-
ing field-programmable gate array (FPGA)-based edge 
AI chips.

1.	 Vitis AI: Xilinx has been developing the Vitis AI 
development environment for its own FPGA 
products. Vitis AI supports major DNN frame-
works written in Python, such as TensorFlow 
and PyTorch, and offers various tools that 

optimize DNN models for hardware implemen-
tations, such as 1) pruning, which reduces the 
model parameters (the number of weights), 
with a minimal impact on accuracy, and 2) 
quantization, which lessens the computational 
precision, from FP32 to the 8-bit integer.

2.	 GUINNESS: This is a graphical user 
interface-based framework that provides 
bitstream generation for a Xilinx FPGA. One 
of the advantages of GUINNESS10 is that it 
supports BNNs (the details were explained 
in the previous section), which enables more 
energy-efficient computing.

Please note that these tools target FPGAs only. 
One of the reasons is that, currently, the research and 
development of DL algorithms are mainly conducted 
by software engineers. FPGAs are appropriate devices 
for those engineers to use to try to accelerate DL 
algorithms on custom hardware since the cost of the 
FPGA development environment, i.e., design tools and 
the evaluation board, is reasonable.
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A lthough FPGAs are easy to use, their perfor-
mance and energy efficiency are less than those 

of application-specified integrated circuits (ASICs). 
Thus, ASICs for AI are preferable under performance- 
and power-constrained situations. In particular, 
ASICs offer the most efficient solution in application 
domains such as edge computing in CPSs, on which 
we mainly focused in this column, in terms of power, 
performance, and cost. However, expensive design 
environments, such as electronic design automation 
tools, IPs, and emulators, are required to design AI 
ASICs, which is a big hurdle for start-ups and small 
enterprises. To overcome this hurdle, for example, 
the AI chip design center11 funded by the Japanese 
government provides a design and verification envi-
ronment for accelerating the development of AI chips 
in that country. Through such measures, it is expected 
that various edge AI chips will be developed in the near 
future, which will promote the growth of CPSs. 
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Smart manufacturing or Industry 4.0, a trend
initiated a decade ago, aims to revolutionize
traditional manufacturing using technology-

driven approaches. Modern digital technologies such
as the Industrial Internet of Things (IIoT), Big Data ana-
lytics, augmented/virtual reality, and artificial intelli-
gence (AI) are the key enablers of new smart
manufacturing approaches.

The digital twin is an emerging concept whereby a
digital replica can be built of any physical object. Digi-
tal twins are becoming mainstream; many organiza-
tions have started to rely on digital twins to monitor,
analyze, and simulate physical assets and processes.1

The current use of digital twins for smart manufactur-
ing is largely limited to i) status monitoring, ii) simula-
tion, and iii) visualization. For status monitoring,
digital replicas of physical assets (e.g., machines) are
created, machines are continuously monitored using
IIoTs, and the latest status of a machine can be
assessed by querying its digital twin. For simulation,
digital twins of machines, processes, and products are
created to mimic real settings. Simulation allows the
design, development, and testing of new products and
processes using their digital twins before applying
them to actual physical assets, this is presented in.5

For visualization, digital twins can include real-time
dashboards and alert systems to monitor and debug
an operational environment.2 However, in contempo-
rary cases, digital twins are simply considered to be an
exact replica of the physical assets, without any value-
added services built on top of them which could

convert physical assets into autonomous intelligent
agents. A major advantage of this enhanced design of
digital twins is that they can offer much more than
just an exact replica to support value-added services
on top of digital twins, which are not possible on the
physical assets.

COGNITIVE DIGITAL TWINS
Cognitive digital twins are an extension of existing
digital twins with additional capabilities of commu-
nication, analytics, and intelligence in three layers:
i) access, ii) analytics, and iii) cognition.

The access layer is responsible for communication
with the machine and gets access to data regarding
the status of a physical asset to update the status of
the digital twin. The analytics layer provides edge ana-
lytics capabilities at the device level. Similar to the
edge analytics at the edge, this layer of the digital twin
can perform additional analytical tasks on top of real-
time collected data to help with the process of deci-
sion making by converting the raw sensory input into
actionable knowledge.3 The cognitive layer enables
cognition by the digital twins. It is capable of perform-
ing complex decision making using edge analytics,
domain expertise, and global knowledge bases. It is
also responsible for communication among digital
twins, allowing them to build their own networks and
perform autonomous decision making. Cognitive digi-
tal twins will convert traditional digital twins into
smart and intelligent agents that can access, analyze,
understand, and react to their current status. In case
of anomalies, rather than resorting to a simple alert
system, the cognitive digital twin can interact with the
operational environment and digital twins of products,
running processes to further analyze and intelligently
understand the anomalies. The cognitive digital twin
can draw conclusions of situations locally and then
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also interact with other digital twins of physical assets
operating in similar operational conditions to better
understand shared local anomalies. Once identified,
cognitive digital twins can interact socially with other
peers and share knowledge and generate alerts in
advance of any future potential unexpected situa-
tions. Insights from the analytics performed by cogni-
tive digital twins will eventually help to build
enterprise-level knowledge graph extraction, capture,
and storage of domain knowledge.

Cognitive digital twins will disrupt existing tech-
nologies and applications used for digital twins by
making them intelligent as well as social. The
emerging concept of self-healing, self-configuring,
and self-orchestrating systems is made possible
using this approach. The team at the Confirm SFI
Research Centre for Smart Manufacturing has
implemented an initial prototype of cognitive digital
twins using a benchmark dataset for production
line performance monitoring6 and intend to fully
test the implemented prototype on the actual pro-
duction lines of a smart factory in collaboration
with an industry partner. An initial factory of the
future to assess and implement this emerging con-
cept is also being constructed at the University of

South Carolina (Figure 1, see Xia et al.7 for details).
Having a social and interactive network of digital
twins and a shared knowledge space will allow ana-
lytics and intelligence to go beyond the physical
walls of a factory where digital twins can share
their experience and lessons learned across
the board.

ECOSYSTEMOF COGNITIVE
DIGITAL TWINS

We envision that once the cognitive digital twins are in
place, they can build a network among themselves,
having fully automated machine-to-machine interac-
tion and decision making resulting in an ecosystem of
cognitive digital twins. The knowledge gained by edge
analytics, communication among digital twins, and
domain knowledge including user experiences will be
captured as a unified knowledge graph. This knowl-
edge graph will gradually evolve and will become a
major source of information within the ecosystem of
cognitive digital twins. Figure 2 presents a generic
overview of cognitive digital twins ecosystems. We fur-
ther elaborate our vision with an example use case of
a manufacturing plant producing orthopedic implants,

FIGURE 1. Proposed CPS-enabled control for future factories: control network administers physical cell and digital twin to syn-

chronize process signals and intelligently actuate field devices by system smart layers. System smart layers consist of business

intelligence from cloud services and semantic integration of visual signals from the edge ends.
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e.g., knee, hip, and elbow joint replacements. On the
shop floor, various machines are placed in an assem-
bly line performing different operations, e.g., cutting,
grinding, and polishing, etc. Each machine is equipped
with different sensors to monitor its functional state,
e.g., temperature, voltage, vibration, and rotation. A
cognitive digital twin is created for all machines, prod-
ucts, and processes. Collaboration and communica-
tion among the digital twins during decision making is
conducted in four stages as follows.

At the first stage, the cognitive digital twin of an
industrial machine (e.g., a grinding machine) equipped
with edge analytics is continuously monitoring values
against predefined thresholds. An alert is created
whenever a threshold is breached (e.g., the tempera-
ture of a motor inside the grinding machine goes
beyond an acceptable threshold).4 At the second
stage, the cognitive digital twin starts the sensemak-
ing process by collecting contextual information
including product characteristics (e.g., to check the
rigidity of a metal alloy being used for a product), con-
figurations of the processes being applied by the
machine (e.g., pressure and speed of a grinding pro-
cess), and operational conditions on the factory shop
floor such as temperature, humidity, etc. The cognitive
digital twins are capable of correlating all acquired
information and initiating a sensemaking process to
understand whether the current spike in temperature
is due to a fault in the machine, characteristics of the

product being manufactured, the manufacturing pro-
cess being applied, or conditions on the shop floor. A
factory level knowledge base is gradually created for
all previous anomalies detected and their remedial
actions. If a preexisting similar cause is identified, and
its remedial action is available in the knowledge base,
the cognitive digital twin will adjust its configuration,
request a process adjustment, and/or adjust opera-
tional conditions accordingly. In the third stage, if a
cognitive digital twin is unable to make sense of local
information, it seeks further assistance from the social
network of its peers and requests information from
similar machines with similar operational conditions,
e.g., a grinding machine of the same make and brand
being used in a different plant. If an anomaly in tem-
perature is only being observed locally, the digital twin
of the machine adjusts itself to the configuration of
machines running optimally without any issues. If the
anomaly is observed across the board, a network-wide
alert is broadcasted to request remedial actions. In
the fourth stage, a record of captured events, interac-
tions, the outcome of analytics, and the sensemaking
process together with domain expertise is stored in a
shared knowledge base in the shape of an enterprise-
level knowledge graph. This knowledge graph will act
as a central information portal for any future occur-
rences of similar events. We see that in the future, this
knowledge graph will act as a central hub for all opera-
tional machines to post questions and get immediate

FIGURE 2. Cognitive ecosystem of digital twins.
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answers. When necessary, a human expert may also
be consulted.

RESEARCH CHALLENGES
To realize the vision of cognitive digital twins, we envi-
sion a design and implementation of a distributed
cross-domain autonomous system for smart
manufacturing. The goal of this system is to enhance
autonomous manufacturing by empowering man-
ufacturing resources to think, learn, and understand
the dynamics of industrial environments by effectively
integrating human cognition through AI and Semantic
Web technologies into the design of autonomous
manufacturing, respecting the Industry 4.0 system
design principles. The approach can be cross-disciplin-
ary, involving AI, semantic-empowered techniques, as
well as semantic data integration in autonomous
manufacturing scenarios. To achieve the above-men-
tioned vision, the following intertwined Research
Questions (RQs) need to be addressed:

RQ1: HOW TO CREATE AN
AUTONOMOUS DISTRIBUTED SYSTEM
CONJOINING THE BOTTOM-LEVEL
MANUFACTURING RESOURCES TO
ENHANCE RESPONSIVENESS AND
INTELLIGENCE? THIS RESEARCH
QUESTION IS FURTHER DIVIDED INTO
THE FOLLOWING RESEARCH AREAS:

› A Collaborative Network of Intelligent Agents:
This research investigates the design of an
autonomous system that can discover and
detect faults and disturbances autonomously as
well as collaboratively. In addition to this, it can
attempt to go beyond the existing knowledge of
known problems to mitigate new problems
and anomalies, thus capable of operating in
unknown environments. Furthermore, they can
build a collaborative network of intelligent
agents locally to improve the responsiveness of
the system.

› Automated Analytics for Resource-constrained
Manufacturing Resources8: This research
requires the investigation of the suitability of
existing interoperability standards (e.g., Web
of Things, RAMI 4.0, Semantic Web) and the
suitability of existing architecture patterns

(e.g., fog, Intelligent edge,3 and smart agent)
for resource-constrained manufacturing reso-
urces as it demands quick response and auto-
matic analytics with enhanced intelligent
capabilities.

› Autonomous Models on top of Knowledge
Graph: This research requires investigation of
incorporating several autonomous models on
top of semantic-empowered technologies as
we do not want to limit our vision of cognitive
digital twins only for a specific autonomous
model. For instance, an integration of self-
comparison models, where a single machine
can be compared with a fleet of similar
machines. This capability can be extended fur-
ther by leveraging historical information to
predict its suitability for autonomous resource
allocation.

RQ2: HOW TO ENABLE AN
AUTONOMOUS CROSS-DOMAIN
REASONING OVER DISTRIBUTED
INDUSTRY 4.0 APPLICATIONS?

Industry 4.0 applications are currently designed
while keeping a single application domain in view.
Most of these applications target a domain-specific
problem. Cross-domain collaborations allow to
deduce additional events from a silo and can be
turned into useful actuation, e.g., before allocating
manufacturing resources, a system considers external
electricity rates and supply chain data (e.g., weather
and traffic conditions) in order to achieve the goal of
reducing the factory’s energy consumption and car-
bon footprint.

To address this research question, we need to
investigate an autonomous cross-domain system,
which can leverage semantic reasoning to derive
new knowledge and AI techniques to monitor and
process events from totally independent applica-
tions. It can integrate the techniques of knowledge
discovery and inference that is not possible from
data generated by a single application. Moreover, it
can use algorithms for autonomous decision-
making with uncertain, dynamic, and incomplete
information. Having a framework among industrial
machines and shared collaborative intelligence
identified in RQ1 can prepare the necessary ground
to achieve RQ2, synthesizing analytics and
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intelligence of factories with other external knowl-
edge and services for decision making.
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Reversible computation is a computing paradigm where execution can progress
backward as well as in the usual, forward direction. It has found applications in
many areas of computer science, such as circuit design, programming languages,
simulation, modeling of chemical reactions, debugging, and robotics. In this article,
we give an overview of reversible computation focusing on its use in robotics. We
present an example of programming industrial robots for assembly operations
where we combine classical AI planning with reversibility and embodied AI to
increase the robustness and versatility of industrial robots.

Reversibility can be defined as the ability of a
program or a system to execute in reverse in
order to undo the effects of its (forward) com-

putation. Reversibility has interested scientists for
many years. Landauer has discovered over 60 years
ago that erasing information in computers requires
energy and that loss of information, such as erasing a
value stored in a variable, during computation is mani-
fested by the release of heat.1 The scientists thought
at the time that if we could build logic circuits and,
ultimately, hardware that reduces or even avoids
completely the need to remove information, then
computers would be more energy efficient. Subse-
quently, Fredkin and Toffoli developed reversible uni-
versal logic gates as an alternative to the traditional
CMOS technology gates.2 This meant that, at least in
theory, it was possible to design and manufacture
reversible computers. There has been a significant
amount of research on reversible computers since the
discovery of reversible logic gates, culminating in
many projects to develop reversible circuits and hard-
ware, but these have not changed the way modern
hardware is built yet. Apart from this original

motivation for physical reversibility, there are many
other reasons for, and benefits of, logical reversibility.3

The latter form of reversibility concerns enhancing
systems and software (that run on a physically irre-
versible hardware) with the ability to undo (or simulate
undoing of) computation. There are reversible pro-
gramming languages such as Janus4 and there are
techniques for reversing traditional imperative pro-
gramming languages such as C.5

We have also discovered the basics of how to
reverse the computation of concurrent programs and
systems.6–9

The purpose of this article is to introduce the topic
of reversible computation by presenting a robotics
case study where logical reversibility has made a dif-
ference. The case study, and more generally, reversible
computation research in Europe were partially sup-
ported by COST Action IC1405 on Reversible Compu-
tation—Extending Horizons of Computing.10 We shall
touch gently on the theories we have developed and
explain how they assisted us in solving practical prob-
lems of the case study. We will also indicate how we
have adjusted our formal techniques to strengthen a
traditional AI planning approach to produce a full
working solution.

Our case study is about programming industrial
robots performing assembly operations (i.e., building a
physical product) in a way that, based on a fixed
assembly sequence generated by an AI-based planner,
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achieves automatic error recovery and even auto-
matic disassembly. Error recovery is achieved by tem-
porarily reversing the direction of execution,
effectively undoing recent steps, and then trying
again. This approach works well in the physical world
of robots because slight imprecisions can cause the
robot to get stuck, but partially disassembling the
object and trying again can often solve the problem.
Taken to an extreme, the entire assembly sequence
can be reversed, effectively providing an automatic
way to disassemble an object.

We thus demonstrate how a traditional AI-based
planning approach is enriched by an underlying revers-
ible execution model that relies on the embodiment of
the robot system to provide a robust, probabilistic
way of executing the plan. The approach is based on
the principles of the Janus reversible programming
language,4 where every step of the computation
must in itself be reversible, thus ensuring that the
program as a whole is reversible. In Janus, this
means that certain irreversible operations, such as
multiplication by zero, are not allowed. Similarly, for
the robots, reversible execution can not be applied
to intrinsically irreversible steps such as cutting or
welding.

REVERSIBILITY IN ROBOTICS
Robots act upon the physical world, and depending on
the type of robot, may be capable of performing
actions that can be considered reversible.

Consider the specific case of an industrial robot,
i.e., a general-purpose robot arm as depicted in Figure 1
(left), normally consisting of six or more joints

connected in series and programmed using a special-
purpose robot programming language. Moving an
object from one location to another, or screwing two
pieces of metal together using a bolt, could be consid-
ered reversible actions. Conversely, breaking an object
in two or welding two pieces of metal together would
not be considered reversible. If a robot is performing a
sequence of operations that can be considered revers-
ible, such as the steps required to assemble a kitchen
appliance or a photocopier, then could the entire
sequence of operations be perhaps considered a
reversible program?

This thought experiment motivated the study and
development of reversible domain-specific robot pro-
gramming languages. (Domain-specific languages are
special-purpose languages designed to solve specific
problems such as robot programming11). The key
insight is that if the robot is constrained to only per-
form operations that are physically reversible, then an
entire sequence of operations (i.e., a robot program)
can be considered physically reversible. Reversible
robot programming languages have been studied for
industrial robots and modular self-reconfigurable
robots. Industrial robots are the topic of this article.

Self-reconfigurable robots are robots that can
physically rebuild themselves to take on different
shapes.12 As a concrete example, the ATRON modular
robot13 is shown in Figure 2: each module is an individ-
ual robot, and a snake robot composed of multiple
modules can rebuild itself into a car robot. A modular
robot shaped as a car can for example rebuild itself
into a snake to traverse an obstacle, and then after-
ward return to the car shape to continue normal
operations.

FIGURE 1. Experimental setup: industrial robot (left) and the two product parts being automatically assembled and disas-

sembled (right).
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This process, referred to as self-reconfiguration,
can be considered reversible if each of the steps per-
formed by the individual modules is reversible and can
be repeated in reverse order.14

Industrial Robots, AI, and Reversibility
Programming industrial robots is challenging due to
the difficulty of precisely specifying general yet robust
operations. As the complexity of these operations
increases, so does the likelihood of errors. The classi-
cal AI-based approach is to derive a plan for the
sequence of operations required to complete a given
task.15, 16

Such plans however break down in case of errors,
resulting in the need to replan the sequence of opera-
tions. Replanning can be costly, in particular in com-
plex operations where errors could occur quite often.17

We propose to generate plans as reversible opera-
tion sequences, such that if random failure causes a
step to fail, the system can automatically backtrack
and retry without replanning. Reverse execution here
allows the robot to back out of an erroneous situation,
after which the operation can be automatically retried.
In a perfectly predictable system retrying would usu-
ally result in the same errors, but the embodiment of
the robot here works to our advantage: retrying the
same physical operation multiple times can produce
different results. In effect, the AI-generated plan is
made robust toward specific kinds of errors and can
be executed robustly without any need for costly
dynamic replanning. The combination of automatic
retries based on reversibility and probabilistic opera-
tions can be considered a form of embodied AI, where
reversibly retrying the same operation multiple times
results in increased robustness.

As we will see, the combination of AI-based plan-
ning and reversibility is amongst others useful for
automatic error recovery for small-sized batch produc-
tion of assembly operations, where precisely specify-
ing error-free operations would be time-consuming
and expensive, and dynamic replanning would add a
significant overhead to the operation. Moreover,
reversibility can in this case be used to automatically
derive a disassembly sequence from a given assembly
sequence or vice versa. These capabilities can be
achieved using a reversible domain-specific language
for specifying assembly sequences.

Robotic assembly and disassembly are done in
terms of sequences of operations, such as placement
of objects, insertions, screwing operations, and so
forth. All are challenged by uncertainties from sensors,
robot kinematics, and part tolerances. Not all opera-
tions are reversible, some are not even repeatable!
Many physical phenomena and actions can neverthe-
less be considered reversible, depending on the
abstraction level at which they are observed. For
example, an industrial robot that pushes an object to
a new position could easily move this object back to
its original position, but cannot simply do this by
reversing its pushing movements, as pulling requires
gripping the object first. Moreover, some operations,
such as cutting and welding, are in practice nonrevers-
ible. A study of 13 real-world industrial cases showed
roughly 76% of the operations to be reversible,18 but
many of the operations require the robot to perform a
different physical action to reverse a given action. Tak-
ing inspiration from this study, we divide reversible
operations into two categories: directly reversible
operations that simply can be reversed by performing
the forward action in reverse; and indirectly reversible
operations, which can be reversed, but require a

FIGURE 2. ATRONmodular robot: a singlemodule (left), car/snake configurations (middle), and the snake changing shape (right).
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achieves automatic error recovery and even auto-
matic disassembly. Error recovery is achieved by tem-
porarily reversing the direction of execution,
effectively undoing recent steps, and then trying
again. This approach works well in the physical world
of robots because slight imprecisions can cause the
robot to get stuck, but partially disassembling the
object and trying again can often solve the problem.
Taken to an extreme, the entire assembly sequence
can be reversed, effectively providing an automatic
way to disassemble an object.

We thus demonstrate how a traditional AI-based
planning approach is enriched by an underlying revers-
ible execution model that relies on the embodiment of
the robot system to provide a robust, probabilistic
way of executing the plan. The approach is based on
the principles of the Janus reversible programming
language,4 where every step of the computation
must in itself be reversible, thus ensuring that the
program as a whole is reversible. In Janus, this
means that certain irreversible operations, such as
multiplication by zero, are not allowed. Similarly, for
the robots, reversible execution can not be applied
to intrinsically irreversible steps such as cutting or
welding.

REVERSIBILITY IN ROBOTICS
Robots act upon the physical world, and depending on
the type of robot, may be capable of performing
actions that can be considered reversible.

Consider the specific case of an industrial robot,
i.e., a general-purpose robot arm as depicted in Figure 1
(left), normally consisting of six or more joints

connected in series and programmed using a special-
purpose robot programming language. Moving an
object from one location to another, or screwing two
pieces of metal together using a bolt, could be consid-
ered reversible actions. Conversely, breaking an object
in two or welding two pieces of metal together would
not be considered reversible. If a robot is performing a
sequence of operations that can be considered revers-
ible, such as the steps required to assemble a kitchen
appliance or a photocopier, then could the entire
sequence of operations be perhaps considered a
reversible program?

This thought experiment motivated the study and
development of reversible domain-specific robot pro-
gramming languages. (Domain-specific languages are
special-purpose languages designed to solve specific
problems such as robot programming11). The key
insight is that if the robot is constrained to only per-
form operations that are physically reversible, then an
entire sequence of operations (i.e., a robot program)
can be considered physically reversible. Reversible
robot programming languages have been studied for
industrial robots and modular self-reconfigurable
robots. Industrial robots are the topic of this article.

Self-reconfigurable robots are robots that can
physically rebuild themselves to take on different
shapes.12 As a concrete example, the ATRON modular
robot13 is shown in Figure 2: each module is an individ-
ual robot, and a snake robot composed of multiple
modules can rebuild itself into a car robot. A modular
robot shaped as a car can for example rebuild itself
into a snake to traverse an obstacle, and then after-
ward return to the car shape to continue normal
operations.

FIGURE 1. Experimental setup: industrial robot (left) and the two product parts being automatically assembled and disas-

sembled (right).
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different sequence of instructions, which must be
manually specified by the programmer.

In the design of our robot programming language,
we take inspiration from the Janus reversible pro-
gramming language, where programs are said to be
time-invertible.4 Each computational step in Janus
has a specific inverse, and a given program that when
executed forwards computes a function will compute
the inverse of this function when executed backward.
Subtracting a constant is for example the inverse of
adding a constant. In our robot programming lan-
guage, each physically reversible operation similarly
has an inverse. In the case of directly reversible opera-
tions, the inverse is automatically derived by the sys-
tem. In the case of indirectly reversible operations, the
programmer must manually specify the sequence of
operations that constitutes the reverse of a given
operation. Executing such a manually specified
inverse can temporarily bring the system into a state
not normally encountered during forward execution.
Moreover, switching execution direction in the middle
of such a manually specified inverse might again take
the system into a new state. This contrasts a main
property of reversibility in programming languages like
Janus and of causal-consistent reversibility,6, 7 a
notion used in concurrent systems, which says that
any reachable state is forwards reachable. In causal-
consistent reversibility, any step of computation of a
concurrent system can be undone provided that all its
effects, if any, are undone first.9 Such a property also
fails in other contexts, e.g., in some biological sys-
tems.19 Since an operation and its (indirect) reverse
are paired, the program has unique starting and end-
ing states, and execution will only terminate in one of
these two states. Infinite loops of error correction can
manifest and are handled using a monitoring heuristic
that detects if the assembly operation might be stuck.

The programming model we have developed is
based on this abstract semantics-based model
extended with various features required for reversible
control of industrial robots in real-world scenarios.18

The actual implementation is in the form of an
internal DSL in Cþþ, meaning that a sequence of
Cþþ method calls is used to build a model of the
reversible assembly sequence, as shown in Figure 3. A
robot assembly task is programmed as a sequential
flow of operations. It is sequential since in practice
assembly tasks tend to be a simple sequence of oper-
ations (except for error handling, but we aim to auto-
matically handle errors using reverse execution).
Reversibility is nevertheless still relevant due to the
presence of random behavior of the physical opera-
tions: reversing and re-executing an operation may
produce a different result. Each operation (denoted by
the keyword “sequence”) represents a high-level
assembly case logic and is a sequence of primitive
instructions. Each instruction is either directly revers-
ible (default), indirectly reversible (indicated by the
keyword “reverseWith”), or nonreversible (indicated by
“nonreversible”).

Our approach was evaluated experimentally using
two industrial assembly use-cases,18 Figure 1 shows
the physical robot platform (left) and the two assem-
bled use-cases (right). Both use-cases were used to
test the principle of reversible assembly and the use
of reverse execution for error correction. For revers-
ible assembly, the program was executed forward to
assemble each use-case. Afterward the finished
object was manually placed back into the system, and
the program was executed backward to disassemble
the object. This was done multiple times for each use-
case with no errors.

The use of reverse execution as an effective error
correction tool was experimentally demonstrated by
assembling a large number of objects, as follows. The
workcell was set to assemble 100 objects of each type
consecutively and without pause. During these 200
assemblies a total of 22 errors occurred, of which 18,
corresponding to 82%, were automatically resolved
and corrected using reverse execution. Errors that
were automatically corrected include failed peg-in-
hole operations (fixed by backtracking and trying

FIGURE 3. Sample reversible assembly program: a sequence is defined to consist of an “insert screw” action, a call to another

sequence, and two move actions. The “insert screw” action is not itself reversible and is marked as indirectly reversible using

the “remove screw” action.
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again), dropping a tube (fixed by reversing until a new
tube was picked from the feeder), failed to grasp a
screw, and screwing failing due to misalignment.

Errors that could not be automatically corrected
include air-tubing from the gripper getting stuck on the
platform, causing the gripper to misalign, and a screw
being inserted at a skewed angle causing a bracket to
misalign, which could not be corrected as the system
had nomeans of detecting the bracketmisalignment.

CONCLUSION
Reversing of computation is conceptually and techni-
cally a challenging task even if we only consider logical
reversibility. We have illustrated significant potential
benefits of reversibility to improve AI-planning in the
robotics case study.

We have presented briefly some of the recently
developed theoretical underpinnings for the case study,
concentrating mainly on explaining how reversibility
helps. Exploring this application area helped us to exem-
plify the richness of different forms of reversibility.

While the case study we have discussed is based
on sequential reversibility, the notion of causal-consis-
tent reversibility,6, 7 is key to scalable reversible pro-
gramming of modular robotic systems such as the
ATRON robot shown in Figure 2. This is because the
modules perform operations in parallel and hence
reversing the system must respect dependencies
between the actions of individual modules. Provided
the ATRON robot does not perform any irreversible
steps, we have this strong property: any reachable (by
an arbitrary combination of reverse and forward steps)
state is forwards reachable. Applying causal consis-
tency to achieve scalable and robust reversible pro-
gramming for swarming robot systems like the ATRON
and unmanned aerial vehicles (UAVs, drones) is con-
sidered future work. In the specific case of UAVs, a
programming model based on reversibility would
hypothetically allow a drone swarm as a whole to
“reverse” distributed control decisions, thus easing
requirements on reaching consensus (before begin-
ning new operations) and increasing the robustness of
the system.

Robots are controlled through programming, but
we cannot be certain of their actions since they inter-
act with an unpredictable physical world. Contrary to
causal-consistent reversibility, we have seen that
some inverses of indirectly reversible operations may
lead to new “get-out-of-trouble” states, albeit tempo-
rarily, which are not forwards reachable. Such states
are needed due to the irreversibility of the physical
world with which the robot interacts.

There are also other forms of reversibility suitable
for different applications. Probably the best known is
backtracking, where steps of computation are undone
in the inverse order of execution.

Apart from many traditional applications of
backtracking such as, for example, in search
algorithms or logic programming, it has been
used to undo concurrent C-like programs for
debugging.10, 20
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different sequence of instructions, which must be
manually specified by the programmer.

In the design of our robot programming language,
we take inspiration from the Janus reversible pro-
gramming language, where programs are said to be
time-invertible.4 Each computational step in Janus
has a specific inverse, and a given program that when
executed forwards computes a function will compute
the inverse of this function when executed backward.
Subtracting a constant is for example the inverse of
adding a constant. In our robot programming lan-
guage, each physically reversible operation similarly
has an inverse. In the case of directly reversible opera-
tions, the inverse is automatically derived by the sys-
tem. In the case of indirectly reversible operations, the
programmer must manually specify the sequence of
operations that constitutes the reverse of a given
operation. Executing such a manually specified
inverse can temporarily bring the system into a state
not normally encountered during forward execution.
Moreover, switching execution direction in the middle
of such a manually specified inverse might again take
the system into a new state. This contrasts a main
property of reversibility in programming languages like
Janus and of causal-consistent reversibility,6, 7 a
notion used in concurrent systems, which says that
any reachable state is forwards reachable. In causal-
consistent reversibility, any step of computation of a
concurrent system can be undone provided that all its
effects, if any, are undone first.9 Such a property also
fails in other contexts, e.g., in some biological sys-
tems.19 Since an operation and its (indirect) reverse
are paired, the program has unique starting and end-
ing states, and execution will only terminate in one of
these two states. Infinite loops of error correction can
manifest and are handled using a monitoring heuristic
that detects if the assembly operation might be stuck.

The programming model we have developed is
based on this abstract semantics-based model
extended with various features required for reversible
control of industrial robots in real-world scenarios.18

The actual implementation is in the form of an
internal DSL in Cþþ, meaning that a sequence of
Cþþ method calls is used to build a model of the
reversible assembly sequence, as shown in Figure 3. A
robot assembly task is programmed as a sequential
flow of operations. It is sequential since in practice
assembly tasks tend to be a simple sequence of oper-
ations (except for error handling, but we aim to auto-
matically handle errors using reverse execution).
Reversibility is nevertheless still relevant due to the
presence of random behavior of the physical opera-
tions: reversing and re-executing an operation may
produce a different result. Each operation (denoted by
the keyword “sequence”) represents a high-level
assembly case logic and is a sequence of primitive
instructions. Each instruction is either directly revers-
ible (default), indirectly reversible (indicated by the
keyword “reverseWith”), or nonreversible (indicated by
“nonreversible”).

Our approach was evaluated experimentally using
two industrial assembly use-cases,18 Figure 1 shows
the physical robot platform (left) and the two assem-
bled use-cases (right). Both use-cases were used to
test the principle of reversible assembly and the use
of reverse execution for error correction. For revers-
ible assembly, the program was executed forward to
assemble each use-case. Afterward the finished
object was manually placed back into the system, and
the program was executed backward to disassemble
the object. This was done multiple times for each use-
case with no errors.

The use of reverse execution as an effective error
correction tool was experimentally demonstrated by
assembling a large number of objects, as follows. The
workcell was set to assemble 100 objects of each type
consecutively and without pause. During these 200
assemblies a total of 22 errors occurred, of which 18,
corresponding to 82%, were automatically resolved
and corrected using reverse execution. Errors that
were automatically corrected include failed peg-in-
hole operations (fixed by backtracking and trying

FIGURE 3. Sample reversible assembly program: a sequence is defined to consist of an “insert screw” action, a call to another

sequence, and two move actions. The “insert screw” action is not itself reversible and is marked as indirectly reversible using

the “remove screw” action.
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DEPARTMENT: AWARDS

A Brief History ofWarehouse-Scale
Computing
Reflections Upon Receiving the 2020 Eckert-Mauchly Award

Luiz Andr�e Barroso , Google, Mountain View, CA, 94043, USA

Receiving the 2020 ACM-IEEE Eckert-Mauchly
Award this past June was among the most
rewarding experiences of my career. I am

grateful to IEEE Micro for giving me the opportunity to
share here the story behind the work that led to this
award, a short version of my professional journey so
far, as well as a few things I learned along the way.�

THE PRACTICE OF COMPUTER
SCIENCE

For many of us our earliest models of professional-
ism come from observing our parents’ approach to
their work. That was the case for me observing my
father, a surgeon working in public hospitals in Rio
de Janeiro. Throughout his career, he was continu-
ally investigating new treatments, collecting case
studies, participating and publishing in medical con-
ferences, despite never having held an academic or
research position. He was dedicated to the practice
of medicine but always made time to help advance
knowledge in his area of expertise.

Without really being aware of it, I ended up following
my father’s path and became a practitioner myself. As a
practitioner, my list of peer-reviewed publications is
notably shorter than most of the previous winners of
this award, but every time I had something valuable to
share with the academic community, I felt welcomed by
our top research conferences, and those articles tended
to be well received. Practitioners like myself tend to pub-
lish papers in the past tense, reporting on ideas that

have been implemented and launched as products.
Practitioners can contribute to our community by look-
ing back and showing us how those ideas played out (or
not) in practical applications. Commercial success or
the lack thereof can be an objective judge of the merits
of research ideas; even if cruelly so at times. In giving
me this award, the IEEE Computer Society and ACM are
highlighting the role of practitioners in our field.

Now, as this award is about the practice of ware-
house-scale computing, I should get to that with no
further delay.

A BRIEF HISTORY OF
WAREHOUSE-SCALE COMPUTING

If it is indeed true that “great poets imitate and
improve,”1 poetry and computing may have something
in common after all. Warehouse-scale computers (the
namewe eventually gave to the computers we began to
design at Google in the early 2000s) are the technical
descendents of numerous distributed computing sys-
tems that aimed to make multiple independent com-
puters behave as a single unit. That family begins with
VAXclusters2 in the 1980s, a networked collection of
VAX computers with a distributed lock manager that
attempted to present itself as a single system to the
user. In the 1990s, the concept of computing clusters
began to be explored using lower end or desktop com-
puters and local area networks with systems such as
NASA’s Beowulf clusters3 and UC Berkeley’s NOW
project.4

FORMANY OF US OUR EARLIEST
MODELS OF PROFESSIONALISM
COME FROMOBSERVING OUR
PARENTS’ APPROACH TO THEIR
WORK. THATWAS THE CASE FORME
OBSERVINGMY FATHER, A SURGEON
WORKING IN PUBLIC HOSPITALS IN
RIO DE JANEIRO.

0272-1732 � 2021 IEEE
Digital Object Identifier 10.1109/MM.2021.3055379
Date of current version 26 March 2021.

�Administered jointly by ACM and the IEEE Computer Soci-
ety, the award is given for contributions to computer and digi-
tal systems. In 2020, my award was given for pioneering the
design of warehouse-scale computing and driving it from
concept to industry.
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When I arrived at Google, in 2001, I found a company
of brilliant programmers that was short on cash but not
on confidence as they had already committed to a
strategy of systems built from inexpensive desktop-
class components. Cheap might be a fairer characteri-
zation of those early systems than inexpensive. The
first generation of those computer racks, tenderly nick-
named “corkboards” consisted of desktop mother-
boards loosely resting on sheets of cork that isolated
the printed circuit boards from themetal tray, with disk
drives themselves loosely resting on top of DIMMs.

Despitemy hardware background,y I had joinedGoo-
gle to try to become a software engineer. In my early
years, I was not involved in building computers but
instead I worked developing our index searching soft-
ware and related software infrastructure components
such as load balancers and remote procedure call librar-
ies. Three years later, Urs H€olzle asked me to build a
hardware team capable not only of building sound
server-class systems but to invent new technologies in
the datacenter space. The years I had spent in software
development turned out to be extremely useful in this
new role since my first-hand understanding of Google’s
software stack was essential to architecting the
machinery needed to run it. We published some of those
early insights into the architectural requirements for
Google-class workloads in an IEEEMicro paper in 2003.6

OUR TEAM’S LACK OF EXPERIENCE IN
DATACENTER DESIGNMAY HAVE
BEEN AN ASSET ASWE SET OUT TO
QUESTION NEARLY EVERY ASPECT OF
HOW THESE FACILITIESWERE
DESIGNED

In our earliest days as a hardware team we focused
primarily on designing servers and datacenter net-
working, but quickly realized that we would need to
design the datacenters themselves. Up until that point
internet companies deployed computing machinery in
third-party colocation facilities (businesses that provi-
sioned space, power, cooling, and internet connectiv-
ity for large scale computing gear), and Google was no
exception. As the scale of our deployments grew, the
minimum footprint required for a Google cluster was
beginning to be larger than the total size of existing

co-location facilities, so we had to build our own facili-
ties in order to continue to grow our services.

At that point, it became evident to us how much
room for improvement there was in the design of
datacenters. As a third-party hosting business, data-
centers were put together by groups of disjoint
engineering crafts that knew little of each other’s dis-
ciplines; civil engineers built the building, mechanical
engineers provisioned cooling, electrical engineers dis-
tributed power, hardware designers built servers, soft-
ware engineers wrote internet services. The lack of
cross-disciplinary coordination resulted in facilities
that were both expensive and incredibly energy ineffi-
cient. Our team’s lack of experience in datacenter
design may have been an asset as we set out to ques-
tion nearly every aspect of how these facilities were
designed. Perhaps most importantly we had the
chance to look at the entire system design, from cool-
ing towers to compilers, and that perspective quickly
revealed significant opportunities for improvement.

Speed of deployment was also a critical factor in
those days as we were often running dangerously close
to exhausting our computing capacity as our traffic
grew, so our initial approach was to prefabricate ready-
to-deploy computer rooms inside forty foot shipping
containers. Containers gave us a datacenter floor
where we could isolate the hot (exhaust) plenum from
the cold aisle and shortened the total distance the air
needed to be moved; both were factors that improved
cooling efficiency. All that the container needed to
function was power, cold water and networking, and
we had a 1200-server machine room ready to deploy.

That original container-based deployment also
introduced other innovations that led to cost, perfor-
mance, and energy efficiency improvements. Here are
some of the most notable ones:

› Higher temperature air cooling: We determined
through field experiments that contrary to
common wisdom the electronic components
believed to be most affected by air temperature
were still quite reliable at reasonably high tem-
peratures (think 70F instead of 60F).8 This made
it possible to run many facilities using evapora-
tive cooling and improved cooling efficiency.

› Distributed uninterruptible power supplies (UPS):
Typical datacenters were built with a UPS room
(a room full of batteries) in order to store enough
energy to ride electrical grid glitches. As such ac
voltage was rectified to power the UPS and then
inverted to distribute to the machine room only
then to be rectified again by per-server power
supplies, incurring losses at each transformation

yMy Ph.D. and the earlier phase of my career had been in
computer architecture, particularly in microprocessor and
memory system design.
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step. We instead eliminated the UPS room and
introduced per tray (and later per rack) batteries.
That way power entering the building only
needed to be rectified once permachine.

› Single-voltage rail power supplies: Every server
used to be outfitted with a power supply that con-
verted ac voltage into a number of dc voltage rails
(�12 V, �5 V �3.3 V, etc.) based on old standards
for electronic components. By 2005, most elec-
tronic components did not use any of the standard
dc rails so yet another set of dc/dc conversions
needed to happen onboard. The allocation of
power among multiple rails also lowered power
supply efficiency sometimes below 70%. We intro-
duced a single-rail power supply that reached 90%
efficiency and created on-board only the voltages
actually used by components.

› 1000-port GigE Ethernet switch: Datacenter net-
working bandwidth was beginning to become a
bottleneck for many warehouse-scale applica-
tions, but enterprise-grade switches were not only
very expensive but also lacked offerings for large
numbers of high bandwidth endpoints. Using a col-
lection of inexpensive edge switches configured
as amultistage network, our teamcreated the first
of a family of distributed datacenter networking
products (codenamed Firehose) that could deliver

a gigabit of nonoversubscribed bandwidth to up
to a thousand servers.

Although our adventure with shipping containers
lasted only that one generation and soon after we
found ways to obtain the same efficiencies with more
traditional building shells, the innovations from that
first program have continued to evolve into industry-
leading solutions over generations of warehouse-scale
machines. Figure 1 shows a birds-eye view of a modern
Warehouse-scale computer.

MY JOURNEY
I knew I wanted to be an electrical engineer when I was
8 years old and got to help my grandfather work on his
HAM radio equipment. Putting aside the fact that eight-
year-olds should not be making career choices, I find it
difficult to question that decision to this date. Although
I had always been a good student, I struggled a bit dur-
ing my Ph.D. and graduated late. I did have a few things
going for me: an ability to focus, stamina for hard work,
and a lot of luck. As an example, after a 24-year drought
the Brazilian men’s national soccer team chose to win a
World Cup, during my hardest year in graduate school,
delivering a degree of joy that was badly needed to get
me to the finish line. Less than a year after that World
Cup I was working in my grad student office on a

FIGURE 1. A Google warehouse-scale computer in Belgium.
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When I arrived at Google, in 2001, I found a company
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on confidence as they had already committed to a
strategy of systems built from inexpensive desktop-
class components. Cheap might be a fairer characteri-
zation of those early systems than inexpensive. The
first generation of those computer racks, tenderly nick-
named “corkboards” consisted of desktop mother-
boards loosely resting on sheets of cork that isolated
the printed circuit boards from themetal tray, with disk
drives themselves loosely resting on top of DIMMs.

Despitemy hardware background,y I had joinedGoo-
gle to try to become a software engineer. In my early
years, I was not involved in building computers but
instead I worked developing our index searching soft-
ware and related software infrastructure components
such as load balancers and remote procedure call librar-
ies. Three years later, Urs H€olzle asked me to build a
hardware team capable not only of building sound
server-class systems but to invent new technologies in
the datacenter space. The years I had spent in software
development turned out to be extremely useful in this
new role since my first-hand understanding of Google’s
software stack was essential to architecting the
machinery needed to run it. We published some of those
early insights into the architectural requirements for
Google-class workloads in an IEEEMicro paper in 2003.6

OUR TEAM’S LACK OF EXPERIENCE IN
DATACENTER DESIGNMAY HAVE
BEEN AN ASSET ASWE SET OUT TO
QUESTION NEARLY EVERY ASPECT OF
HOW THESE FACILITIESWERE
DESIGNED

In our earliest days as a hardware team we focused
primarily on designing servers and datacenter net-
working, but quickly realized that we would need to
design the datacenters themselves. Up until that point
internet companies deployed computing machinery in
third-party colocation facilities (businesses that provi-
sioned space, power, cooling, and internet connectiv-
ity for large scale computing gear), and Google was no
exception. As the scale of our deployments grew, the
minimum footprint required for a Google cluster was
beginning to be larger than the total size of existing

co-location facilities, so we had to build our own facili-
ties in order to continue to grow our services.

At that point, it became evident to us how much
room for improvement there was in the design of
datacenters. As a third-party hosting business, data-
centers were put together by groups of disjoint
engineering crafts that knew little of each other’s dis-
ciplines; civil engineers built the building, mechanical
engineers provisioned cooling, electrical engineers dis-
tributed power, hardware designers built servers, soft-
ware engineers wrote internet services. The lack of
cross-disciplinary coordination resulted in facilities
that were both expensive and incredibly energy ineffi-
cient. Our team’s lack of experience in datacenter
design may have been an asset as we set out to ques-
tion nearly every aspect of how these facilities were
designed. Perhaps most importantly we had the
chance to look at the entire system design, from cool-
ing towers to compilers, and that perspective quickly
revealed significant opportunities for improvement.

Speed of deployment was also a critical factor in
those days as we were often running dangerously close
to exhausting our computing capacity as our traffic
grew, so our initial approach was to prefabricate ready-
to-deploy computer rooms inside forty foot shipping
containers. Containers gave us a datacenter floor
where we could isolate the hot (exhaust) plenum from
the cold aisle and shortened the total distance the air
needed to be moved; both were factors that improved
cooling efficiency. All that the container needed to
function was power, cold water and networking, and
we had a 1200-server machine room ready to deploy.

That original container-based deployment also
introduced other innovations that led to cost, perfor-
mance, and energy efficiency improvements. Here are
some of the most notable ones:

› Higher temperature air cooling: We determined
through field experiments that contrary to
common wisdom the electronic components
believed to be most affected by air temperature
were still quite reliable at reasonably high tem-
peratures (think 70F instead of 60F).8 This made
it possible to run many facilities using evapora-
tive cooling and improved cooling efficiency.

› Distributed uninterruptible power supplies (UPS):
Typical datacenters were built with a UPS room
(a room full of batteries) in order to store enough
energy to ride electrical grid glitches. As such ac
voltage was rectified to power the UPS and then
inverted to distribute to the machine room only
then to be rectified again by per-server power
supplies, incurring losses at each transformation

yMy Ph.D. and the earlier phase of my career had been in
computer architecture, particularly in microprocessor and
memory system design.
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Saturday afternoon when I got a call from Norm Jouppi
inviting me to interview for a research job at Digital
Equipment’s Western Research Lab (WRL). At the time
Norm was already one of the most highly respected
computer architects in the world and perhaps nothing
in my career since has compared to the feeling I had
that day—Norm Jouppi knew who I was!

I KNEW IWANTED TO BE AN
ELECTRICAL ENGINEERWHEN IWAS
8 YEARS OLD AND GOT TO HELPMY
GRANDFATHERWORK ON HIS HAM
RADIO EQUIPMENT. PUTTING ASIDE
THE FACT THAT EIGHT-YEAR- OLDS
SHOULD NOT BE MAKING CAREER
CHOICES, I FIND IT DIFFICULT TO
QUESTION THAT DECISION TO THIS
DATE.

I joined DECWRL and had the chance to learn from
top researchers like Kourosh Gharachorloo and collab-
orate with leading computer architects such as Sarita
Adve, Susan Eggers, Mateo Valero, and Josep Lariba-
Pey. During that time, I also met Mark Hill who would
become a friend and a mentor. Later, at Google I
would also have the chance to coauthor papers with
other leading figures in our field such as Tom Wenisch,
Wolf Weber, David Patterson, and Christos Kozyrakis.

Perhaps nothing summarizes the impact that friends
and luck can have in your lifemore than the story of how
I came to join Google. As I was trying to make a decision
between two options, Jeff Dean asked me whether the
other company I was considering had also served me
cr�eme brûl�ee during my interviews. I thanked Jeff and
accepted theGoogle offer the very nextmorning.

The brilliance and generosity of countless people at
Google have been essential to the work that led to this
award, but I must highlight three here: Urs H€olzle who
has been a close collaborator and possibly the single
person most to blame for Google’s overall systems
infrastructure successes; Bart Sano who managed the
Platforms team that built out the infrastructure we
have today (I was the technical lead for for Bart’s team
for many years); and Partha Ranganathan who is our
computing technical lead today and is taking Google’s
architectural innovation into the future.

One part of my career I have no hesitation to brag
about is the quality of the students I have had a
chance to host as interns at DEC and Google. They
were (to date) Partha Rahganathan, Rob Stets, Jack

Lo, Sujay Parekh, Ed Bugnion, Alex Ramirez, Gautham
Thambidorai, Karthik Sankaranarayanan, David Meis-
ner, and David Lo. We worked together on many fun
projects and I hope for more in the future. Although
my dad is no longer with us, I am also fortunate to
count on the love and support of my family. My mom
Cecilia, my godmother Margarida, my siblings Paula,
Tina, and Carlos and their families, and my wife
Catherine Warner who is the award life gives me every
single day.

PERHAPS NOTHING SUMMARIZES
THE IMPACT THAT FRIENDS AND
LUCK CAN HAVE IN YOUR LIFE MORE
THAN THE STORY OF HOW I CAME TO
JOIN GOOGLE. AS I WAS TRYING TO
MAKE A DECISION BETWEEN TWO
OPTIONS, JEFF DEAN ASKEDME
WHETHER THE OTHER COMPANY I
WAS CONSIDERING HAD ALSO
SERVEDME CR�EME BRÛL�EE DURING
MY INTERVIEWS. I THANKED JEFF
AND ACCEPTED THE GOOGLE OFFER
THE VERY NEXT MORNING.

THREE LESSONS
I will finish this essay by sharing with you three lessons
I have learned in this first half of my career, in the hope
that they may be useful to engineers who are at an
earlier stage in their journey.

Consider theWinding Road
As an engineer you stand on a foundation of knowl-
edge that enables you to branch into many different
kinds of work. Although there is always risk when you
take on something new, the upside of being adventur-
ous with your career can be amazingly rewarding. I for
one never let my complete ignorance about a new
field stop me from giving it a go.

As a result, I have worked in areas ranging from
chip design to datacenter design; from writing soft-
ware for web search to witnessing my team launch
satellites into space; from writing software for Google
Scholar to using ML to automatically update Google
Maps; from research in compiler optimizations to
deploying exposure notification technology to curb
the spread of Covid-19.8

It seems a bit crazy, but not going in a straight line
has worked out really well for me and resulted in a rich
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set of professional experiences. Whatever the out-
come, you will be inoculated from boredom.

Develop Respect for the Obvious
The surest way to waste a career is to work on unim-
portant things. I have found that big, important prob-
lems have one feature in common: they tend to be
straightforward to grasp even if they are hard to solve.
Those problems stare you right in the face. They are
obvious and they deserve your attention.

Let me give you some examples by listing some of
my more well-cited papers next to the formulation of
the problems address:

Publication Problem addressed

ISCA'98: “Memory
System Characterization
of Commercial
Workloads”10

with Kourosh
Gharachorloo and
Edouard Bugnion

“High-end
microprocessors are
being sold to run
commercial workloads, so
why are we designing
them for number
crunching?”

ISCA'00: “Piranha: A
Scalable Architecture
Based on Single-Chip
Multiprocessing”5

with Kourosh
Gharachorloo, Robert
McNamara, Andreas
Nowatzyk,
Shaz Qadeer, Barton
Sano, Scott Smith, Robert
Stets, and Ben Verghese

“Thread-level parallelism
is easy. Instruction level
parallelism is hard. Should
we bet on thread-level
parallelism then?”

CACM '17: “The Attack of
the Killer Microsecond”11

with Mike Marty, Dave
Patterson, and Partha
Ranganathan

“If datacenter-wide events
run at microsecond
speeds, why do we only
optimize for millisecond
and nanosecond
latencies?”

CACM '13: “The Tail at
Scale”12

with Jeff Dean

“Large scale services
should be resilient to
performance hiccups in
any of their
subcomponents”

IEEE Computer '07: “A
Case for Energy-
proportional
Computing”13

with Urs H€olzle

“Shouldn’t servers use
little energy when they
are doing little work?”

If it takes you much more than a couple of sentences
to explain the problem you are trying to solve, you
should seriously consider the possibility of it not being
that important to be solved.

Even Successes Have a “Sell-By”Date
Some of the most intellectually stimulating moments
in my career have come about when I was forced to

revisit my position on technical matters that I had
invested significant time and effort on, especially
when the original position had a track record of suc-
cess. I will present just one illustrative example.

I JOINED GOOGLE AFTER A FAILED
MULTIYEAR CHIP DESIGN PROJECT
AND AS SUCH I IMMEDIATELY
EMBRACED GOOGLE’S DESIGN
PHILOSOPHY OF STAYING AWAY
FROM SILICON DESIGN OURSELVES.

I joined Google after a failed multiyear chip design
project and as such I immediately embraced Google’s
design philosophy of staying away from silicon design
ourselves. Later as the technical lead of Google’s data-
center infrastructure, I consistently avoided using
exotic or specialized silicon even when they could
demonstrate performance of efficiency improvements
for some workloads, since betting on the low cost
base of general purpose components consistently
proved to be the winning choice. Year after year, bet-
ting on general purpose solutions proved successful.

Then, deep learning acceleration for large ML mod-
els arose as the first opportunity in my career to build
specialized components that would have both broad
applicability and dramatic efficiency advantages when
compared to general purpose designs. Our estimates
indicated that large fractions of Google’s emerging AI
workloads could be executed in these specialized
accelerators with as much as a 40� cost/efficiency
advantage over general purpose computing.

That was a time to ignore the past successes of bet-
ting on general purpose off-the-shelf components and
invest heavily on the design and deployment of our own
silicon to accelerate ML workloads. Coming full circle,
this meant that it was now my time to call Norm Jouppi
and ask him to join us to become the lead architect for
what was to become our TPU accelerators program.

CONCLUDING
Before the onset of the current pandemic, some of us
may have underappreciated how important computing
technology and cloud-based services have become to
our society. In this last year, these technologies have
allowed many of us to continue to work, to connect
with loved ones, and to support each other. I am grate-
ful to all of those at Google and everywhere in our
industry who have built such essential technologies,
and I am inspired to be working in a field with still so
much potential to improve people’s lives.
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become a friend and a mentor. Later, at Google I
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other leading figures in our field such as Tom Wenisch,
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Perhaps nothing summarizes the impact that friends
and luck can have in your lifemore than the story of how
I came to join Google. As I was trying to make a decision
between two options, Jeff Dean asked me whether the
other company I was considering had also served me
cr�eme brûl�ee during my interviews. I thanked Jeff and
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The brilliance and generosity of countless people at
Google have been essential to the work that led to this
award, but I must highlight three here: Urs H€olzle who
has been a close collaborator and possibly the single
person most to blame for Google’s overall systems
infrastructure successes; Bart Sano who managed the
Platforms team that built out the infrastructure we
have today (I was the technical lead for for Bart’s team
for many years); and Partha Ranganathan who is our
computing technical lead today and is taking Google’s
architectural innovation into the future.

One part of my career I have no hesitation to brag
about is the quality of the students I have had a
chance to host as interns at DEC and Google. They
were (to date) Partha Rahganathan, Rob Stets, Jack

Lo, Sujay Parekh, Ed Bugnion, Alex Ramirez, Gautham
Thambidorai, Karthik Sankaranarayanan, David Meis-
ner, and David Lo. We worked together on many fun
projects and I hope for more in the future. Although
my dad is no longer with us, I am also fortunate to
count on the love and support of my family. My mom
Cecilia, my godmother Margarida, my siblings Paula,
Tina, and Carlos and their families, and my wife
Catherine Warner who is the award life gives me every
single day.

PERHAPS NOTHING SUMMARIZES
THE IMPACT THAT FRIENDS AND
LUCK CAN HAVE IN YOUR LIFE MORE
THAN THE STORY OF HOW I CAME TO
JOIN GOOGLE. AS I WAS TRYING TO
MAKE A DECISION BETWEEN TWO
OPTIONS, JEFF DEAN ASKEDME
WHETHER THE OTHER COMPANY I
WAS CONSIDERING HAD ALSO
SERVEDME CR�EME BRÛL�EE DURING
MY INTERVIEWS. I THANKED JEFF
AND ACCEPTED THE GOOGLE OFFER
THE VERY NEXT MORNING.

THREE LESSONS
I will finish this essay by sharing with you three lessons
I have learned in this first half of my career, in the hope
that they may be useful to engineers who are at an
earlier stage in their journey.

Consider theWinding Road
As an engineer you stand on a foundation of knowl-
edge that enables you to branch into many different
kinds of work. Although there is always risk when you
take on something new, the upside of being adventur-
ous with your career can be amazingly rewarding. I for
one never let my complete ignorance about a new
field stop me from giving it a go.

As a result, I have worked in areas ranging from
chip design to datacenter design; from writing soft-
ware for web search to witnessing my team launch
satellites into space; from writing software for Google
Scholar to using ML to automatically update Google
Maps; from research in compiler optimizations to
deploying exposure notification technology to curb
the spread of Covid-19.8

It seems a bit crazy, but not going in a straight line
has worked out really well for me and resulted in a rich
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Software Engineering:  
A Profession in Waiting
David Lorge Parnas , Middle Road Software, Inc.

Ongoing efforts to make software development an engineering discipline will fail until 
we have legislation requiring that creators of certain types of software be licensed, 
establishing a licensing authority, and detailing the capabilities that a licensed developer 
must possess.

For more than 50 years, people concerned 
about software development have tried to 
make it a profession like medicine or civil 

engineering.1 Those who started discussing “soft-
ware engineering” in the 1960s had been trained in 
other fields; their work required computation and 
that led them to writing programs—often for their 
own use. A few were writing programs that would 
be used by others; such programs became known 
as software. Some of them observed that they were 
doing something very different from what they had 
been taught to do. They had been educated as math-
ematicians or scientists. Software development 
was more like engineering. They had been trained to 
extend knowledge but were now applying that knowl-
edge to build products. That thought suggested the 
term software engineering. Those who introduced 
that term hoped that properly educated software 
developers would produce trustworthy products and 
thereby earn the good reputation enjoyed by profes-
sional engineers. Most of them would agree that we 
have not succeeded.

Traditional professions, such as engineering, law, 
and medicine, have

›› a licensing authority, which identifies and certi-
fies individuals who are competent to practice 
the profession and takes action against practi-
tioners who either lack the required capabilities 
or do not practice properly

›› demand-side legislation, which states that cer-
tain services and products can only be provided 
by licensed professionals

›› an accreditation authority, which reviews 
educational programs and approves those that 
teach the capabilities required for licensing.

Licensed professionals usually display a certificate 
showing that they are licensed; they may also display 
their diploma(s) from accredited higher education 
institutions.

PROFESSIONAL ENGINEERING:  
AN ABBREVIATED HISTORY

Licensing authorities were introduced when it became 
clear that people or organizations that need engineer-
ing services might not be able to distinguish individu-
als who were qualified to do the job from others offer-
ing to perform that service.

Demand-side legislation was introduced because 
legislators became aware that the public could be 
endangered when a service provider or product 
designer was not qualified to do the job.

Accreditation authorities were created because 
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the licensing authorities, realizing that the education 
of an applicant for a license is a key determinant of 
the applicant’s capabilities, found it more efficient to 
evaluate programs than to evaluate the education of 
each applicant. Accreditation also helps prospective 
students to pick a program that is likely to bring them 
closer to their career goals.

BODY OF KNOWLEDGE OR BODY 
OF CAPABILITIES?

Many of the efforts to establish a software engineer-
ing profession have proposed a “body of knowledge” 
(BoK) for that field. A BoK is useful for characteriz-
ing a science because a science is an organized body 
of knowledge. Engineering is different. As Theodore 
von Kármán, a famous Hungarian-American mathe-
matician and aerospace engineer, said, “Scientists 

discover the world that exists; engineers create the 
world that never was.” Engineering requires knowl-
edge, but it also requires the ability to apply that 
knowledge when designing. Engineering and other 
professions are better characterized by the capa-
bilities required of their practitioners than by the 
required knowledge.

Efforts to identify a BoK for software engineering 
seem doomed to fail for several reasons.

›› The set of concepts and facts known to soft-
ware developers is huge; there is little agree-
ment on the importance and usefulness of even 

the most popular concepts. The size of the BoK 
has caused some developers to try to prioritize 
the knowledge and identify a required subset, 
but that is very difficult. What seems important 
to some seems useless to others.

›› The software BoK is always rapidly growing; 
further, much of it becomes irrelevant just a few 
years after it has been added.

›› Much of that knowledge is tied to specific tools. 
The characteristics of those tools are the result 
of many arbitrary design decisions, and the tools 
may evolve or become out of date; consequently, 
some of the knowledge about those tools will 
not be of lasting value.

To make sure that the graduates can have lengthy 
productive careers, the capabilities taught must be 
fundamental and of lasting value. There is a small set 
of basic principles and concepts that can be applied by 
software developers, but they are abstract and often 
hard to apply. The ability to use those principles must 
be taught; that is why the field is better defined by a 
body of capabilities rather than by a BoK. An attempt 
to identify the capabilities required of software engi-
neers can be found in the article by Landwehr et al.3 
These capabilities include much more than the ability 
to write programs well.2

SOFTWARE DEVELOPMENT IS 
NOT NOW AN ENGINEERING 
PROFESSION

Failure to agree on a suitable list of required capa-
bilities has made it impossible for accreditation 
and licensing authorities to do their jobs. A lack of 
demand-side legislation makes any progress on licens-
ing software developers almost inconsequential. Usu-
ally, the competence of a software developer is judged 
by an employer or customer with no help from a licens-
ing authority.

FOR MORE THAN 50 YEARS, PEOPLE 
CONCERNED ABOUT SOFTWARE 
DEVELOPMENT HAVE TRIED TO MAKE 
IT A PROFESSION LIKE MEDICINE OR 
CIVIL ENGINEERING.



www.computer.org/computingedge� 53

SOFTWARE ENGINEERING

THE NEED FOR CHANGE  
IS URGENT

The world needs a revolution in software develop-
ment. The quality of most software produced today 
is simply terrible. Our phone systems and computer 
networks are easily compromised. One of the world’s 
richest men had his phone hacked although he is a 
computer expert. Data that are supposed to be con-
fidential are frequently stolen. Bad software design in 
the Boeing 737 MAX is blamed for two crashes with 
hundreds of deaths; a huge number of these new 
planes were out of service for about two years as a 
result. Financial and other government system proj-
ects frequently fail; some are put into service, with 
known flaws, long past their due date. Although we 
hear of software issues every week, many more are 
not reported to the public.

Many software developers are graduates of educa-
tional programs that did not give them the necessary 
capabilities. On-the-job training often teaches them 
the bad habits of older developers. Those habits are 
hard to break.

ACADEMIC FREEDOM AND 
PROFESSIONAL EDUCATION

One of the most valuable characteristics of our edu-
cational system is the right of academics to express 
ideas without risk of official interference or profes-
sional disadvantage. However, many academics have 
interpreted this “academic freedom” to mean that 
they can teach whatever they want. Those who hold 
this opinion sometimes oppose the basic tenet of pro-
fessional education, namely that an accredited curric-
ulum must give its graduates specified capabilities. 
Basing professional accreditation on capabilities is 
a compromise. It allows academics to choose which 
facts, models, and methods they teach and how they 
teach those methods, provided that the graduates will 
have the required capabilities.

LICENSING AND CIVIL LIBERTIES
Some believe that requiring those who want to prac-
tice a specific trade or profession to be licensed is 
a violation of their civil rights. They may even give 
an example, such as, “If I want to rewire a house for 
someone else, it is my right to do so.” In fact, in many 
jurisdictions it is not legal to do so unless you are a 

licensed electrician. Our lawmakers, in their wisdom, 
have recognized that improper wiring can cause fires, 
expose the owners to risk of shock, and even dam-
age power supplies. Requiring that people working 
as electricians be licensed does not violate our civil 
rights; it protects us. The same would be true if soft-
ware developers required a license.

WHAT MUST BE DONE?
Changing software development into an engineering 
profession requires

›› an agreed list of required capabilities such as 
that proposed in the article by Landwehr et al.3

›› legally binding demand-side legislation
›› a licensing authority with the legal power to 

enforce the demand-side legislation, license 
qualified developers, and discipline developers 
who do not practice properly

›› an accreditation authority that reviews 
proposed professional software engineering 
programs to make sure that the graduates 
have the capabilities required for practicing the 
profession.

Those who want to establish capability-based 
licensing of software engineers must be prepared 

to face both inertia and bitter opposition.
The path to higher quality software requires 

improving the education and training of almost every 
software developer. Change will be strongly opposed 
because many people are doing very well with “busi-
ness as usual” and will resent being told that they 
need to be reeducated. They will point to new require-
ments and techniques and proclaim, “Nobody does it 
that way.”

CHANGE WILL BE STRONGLY 
OPPOSED BECAUSE MANY PEOPLE 
ARE DOING VERY WELL WITH 
“BUSINESS AS USUAL” AND WILL 
RESENT BEING TOLD THAT THEY NEED 
TO BE REEDUCATED.
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Most of those who are teaching computer sci-
ence today were educated in programs that were not 
designed to prepare students for licensing. Many will 
not see the need for the changes and will resent any 
move that might prevent them from teaching their 
favorite topics.

Some employers will not like the fact that licensed 
professional engineers are supposed to put public 
safety before employer profit. It is far easier to man-
age people who believe that their job is solely to please 
their employers.

However, our society is far too dependent on 
software being trustworthy to allow the present “Wild 
West” of software development to continue. 
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