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Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics 

ranging from software design and computer graphics to Internet computing and security, from scientific 

applications and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

IEEE 3152: A Standard for 
Human and Machine  
Agency Identification

This article, featured in the 

November 2025 issue of Computer, 

introduces IEEE Standard 3152, 

a new standard for systematic 

disclosure of human, artificial 

intelligence (AI), and hybrid agency 

in digital interactions and media. 

The standard defines visual-, 

audio-, and metadata-based 

markers to differentiate between 

human and machine-generated 

content, addressing concerns 

about deception, misattribution, 

and AI-driven manipulation.

Electrostatic and 
Electromagnetic Particle-in-
Cell Solvers for Electron Beam 
Device Simulations

The authors of this July–September 

2025 Computing in Science & 

Engineering article present an 

open source implementation of 

an axisymmetric solver capable 

of analyzing a vacuum electron 

device called a multicavity klystron, 

which consists of three cavities. 

Additionally, they describe results 

of three types of simulations 

with sufficient details that allow 

re-creation of these results. 

Important assumptions and 

parameters are presented for 

a particular klystron cavity and 

compared with the literature as 

well as similar results obtained 

using another software package. 

 

Cambashi:  
A CAD Consultancy 

Cambashi is a Cambridge, U.K.-

based market information 

consultancy that spun out from 

the 1970s Cambridge Computer-

Aided Design (CAD) cluster. 

This article, featured in the 

July–September 2025 issue 

of IEEE Annals of the History 

of Computing, describes how 

Cambashi developed over 

40 years. Initially, Cambashi 

provided advice on CAD to 

users and suppliers but then 

widened its scope to include 

other software applications for 

industry. The article discusses 

how Cambashi adapted suc

cessfully to changes in the CAD 

industry structure. 

Do Language Model Agents 
Align With Humans in  
Rating Visualizations?  
An Empirical Study

Large language models (LLMs) 

show potential in understanding 

visualizations and may capture 

design knowledge. However, their 

ability to predict human feedback 

remains unclear. To explore this, 

the authors of this November/

December 2025 IEEE Computer 

Graphics and Applications article 

conduct three studies evaluating 

the alignment between LLM-

based agents and human ratings in 

visualization tasks. Their findings 

suggest that LLM-based agents 

can simulate human ratings 

when guided by high-confidence 

hypotheses from expert evaluators. 

UASDefMeta: A Meta-
Learning-Based Defense 
Approach for Detecting 
Unmanned Aerial Systems 
Eavesdropping in Mission-
Critical Applications 

Unmanned aerial systems (UASs) 

play a vital role in various 
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mission-critical applications. 

Ensuring secure communication 

channels for UASs is crucial to 

protecting sensitive information 

and maintaining operational 

integrity. Eavesdropping attacks 

pose a significant threat to 

data confidentiality and system 

security. To address these 

challenges, the authors of this 

article featured in the September/

October 2025 issue of IEEE 

Intelligent Systems propose an 

environment in Python that 

emulates eavesdropping attacks 

on UASs. Subsequently, they 

introduce UASDefMeta, a meta-

learning-based approach that 

combines model-agnostic meta-

learning and proximal policy 

optimization for detecting these 

attacks. 

Edge AI for Earth Observation 

Earth observation (EO), edge 

computing, and artificial 

intelligence (AI) are rapidly 

advancing technologies with 

diverse applications and benefits. 

Integrating edge computing and AI 

with EO enables the preprocessing 

and analysis of EO data near 

its source, supporting efficient 

decision-making and in-orbit 

information interpretation. In 

this context, this article from 

the May/June 2025 issue of IEEE 

Internet Computing provides a 

review of the current state of 

edge AI in EO applications and 

summarizes the key challenges, 

including data sample limitations, 

computing resource constraints, 

catastrophic forgetting, and 

difficulties with satellite-ground 

coordination. 

An Introduction to Life-
Cycle Emissions of Artificial 
Intelligence Hardware 

Specialized hardware accelerators 

aid the rapid advancement of 

artificial intelligence (AI), and 

their efficiency impacts AI’s 

environmental sustainability. This 

study, featured in the September/

October 2025 issue of IEEE Micro, 

presents the first publication of 

a comprehensive AI accelerator 

life-cycle assessment (LCA) 

of greenhouse gas emissions, 

including the first publication of 

manufacturing emissions of an AI 

accelerator. 

Advanced Defect Analysis 
With Self-Supervised 
Pretraining and  
Knowledge Distillation

Defect detection is vital for quality 

control in industrial production. 

The authors of this July–

September 2025 IEEE MultiMedia 

article present a method lev

eraging pretrained contrastive 

learning models to enhance defect 

detection. They investigate the 

SimCLR model with two training 

strategies: training from scratch 

and fine-tuning. Experiment 

results demonstrate that both 

training strategies outperform 

state-of-the-art methods with 

higher area under the receiver 

operating characteristic curve, 

highlighting the effectiveness of 

their method.

Biosensors for the IoT: 
Principles, Potentials,  
and Applications 

Biosensors for the Internet 

of Things (IoT) represent a 

transformative integration of 

biological sensing with digital 

communication over the Internet, 

enabling real-time monitoring of 

health, environment, and industrial 

processes. These devices con

vert biological responses into 

electrical signals, which are then 

transmitted via IoT networks for 

analysis and decision-making. 

This article, featured in the July–

September 2025 IEEE Pervasive 

Computing issue, discusses how 

biosensors for IoT hold immense 
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potential to transform healthcare, 

environmental monitoring, and 

industrial automation by providing 

timely, accurate, and actionable 

insights across various sectors.

Generative AI and the 
Threat to Thinking

Information security is concerned 

with maintaining the integrity 

of the information ecosystem. 

The proliferation of content 

created using generative artificial 

intelligence can overwhelm 

the ability of people to process 

information. In this article, featured 

in the September/October 2025 

issue of IEEE Security & Privacy, 

the authors explore how a model 

of human thinking can help unpack 

this threat. 

A Metamodel-Based 
Approach to Quantum 
Software Development 

This article from the November/

December 2025 issue of IEEE 

Software introduces a metamodel-

based approach that maps quantum 

concepts onto familiar software 

constructs. Through a multilevel 

framework, it connects abstract 

quantum ideas, represented as 

metaclasses, with their practical 

applications in model instances 

and implementations.

Detecting Software Defects 
With Hierarchical Multilabel 
Classification: Insights From 
an Industrial Case Study 

Managing software defects 

effectively is a major advantage 

for companies that rely on service-

based solutions, as it reduces risks 

and improves the way issues are 

tracked and resolved. Numerous 

methods have been proposed 

to enhance the identification, 

localization, and classification 

of software defects. When it 

comes to practice, the authors 

of this article featured in the 

September/October 2025 issue 

of IT Professional have found that 

defects are inherently organized 

in hierarchies based on class 

inclusion. Building on this idea, 

they report their experience of 

deploying a hierarchical multilabel 

defects classification approach, 

within a development team in a 

banking and finance software 

company. 

Join the IEEE 
Computer 
Society
computer.org/join
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Editor’s Note

Think Like a Human:  
Why AI Needs to Do More Than 
Pattern Recognition

P attern recognition is an

essential part of artificial 

intelligence (AI), underlying how it 

analyzes large datasets. But AI design 

may over rely on pattern recognition 

at the cost of disregarding what 

is still primarily a human ability—

reasoning. When AI improves in 

reasoning, it will be able to assess 

more complicated dilemmas and 

think more like a human. This 

issue of ComputingEdge discusses 

the abilities of AI to use pattern 

recognition and reasoning. The 

articles also highlight sustainable 

software engineering, the im­

portance of securing hybrid and 

multi cloud systems, and the ethical 

use of technology in healthcare. 

AI and deep learning models 

excel at pattern recognition and 

data-gathering, but they lack 

reasoning skills. Computer article 

“Beyond Pattern Recognition: 

Teaching AI to Think Critically 

Before It Learns,” argues for a 

transition in AI from mimicking 

human thought to pursuing rational 

reasoning. In “Dynamic Multimodal 

Process Knowledge Graphs: A 

Neurosymbolic Framework for 

Compositional Reasoning,” from 

IEEE Internet Computing, the 

authors introduce a neurosymbolic 

framework to bridge the gap 

between pattern recognition and 

reasoning in AI systems. The authors 

of “Machine Learning Approaches 

for Micromobility User Behavior 

Analysis,” from IEEE Intelligent 

Systems, discuss employing ad­

vanced machine learning (ML) 

to improve micromobility user 

behavior research.

Increasing AI use means 

increasing energy use and strain 

on the environment. IEEE Software 

article “Powering Down: An 

Interview With Federica Sarro on 

Tackling Energy Consumption in 

AI-Powered Software Systems” 

considers how software engineer­

ing can mitigate the effect of AI on 

the environment. In “Understanding 

Responsible Computing via Project 

Management for Sustainability,” 

from IEEE Internet Computing, the 

authors present a new framework 

for developing sustainable Internet 

applications.

While hybrid and multi cloud 

systems can improve everyday life, 

they are also complex systems that 

need to be understood for safe 

usage. IEEE Internet Computing 

article “Human-Based Distributed 

Intelligence in Computing Con­

tinuum Systems” shows how 

distributed computing continuum 

systems operate by comparing 

their complex structures to the 

human body. Computer article “Life 

at Risk: Uncovering the Urgent 

Security Gaps in Internet of Things-

Integrated Cloud Infrastructures” 

reveals the life-threatening se­

curity risks that accompany the 

rapid adoption of IoT-integrated 

cloud infrastructures. 

Increased use of technology 

in healthcare creates ethical 

problems and solutions. In 

“Genomic Gold Rush or Ethical 

Minefield? Rethinking Data 

Practices in Health Tech Giants,” 

from Computer, the authors 

outline the ethical challenges 

underlying direct-to-consumer 

genomic testing. In IEEE Pervasive 

Computing article, “Justin Chan: 

Intelligent Mobile Systems for 

Equitable Healthcare,” Professor 

Chan explains his research on 

building intelligent mobile and 

embedded systems to create 

equitable healthcare. 



8	 February 2026	 Published by the IEEE Computer Society � 2469-7087/26 © 2026 IEEE

DEPARTMENT: NOTES FROM THE FIELD

Beyond Pattern Recognition: 
Teaching AI to Think Critically 
Before It Learns
Xihao Xie  and Jia Zhang , Southern Methodist University

Jeffrey Voas , IEEE Fellow

This article proposes “critical learning” artificial intelligence (AI) that actively evaluates 
data quality through a verification framework, comparing inputs against trusted 
knowledge to identify and reject unreliable patterns, which creates more robust and 
adaptable systems.

When a medical imaging artificial 
intelligence (AI) began misclassifying 
malignant tumors as benign after subtle 

adversarial perturbations, having been trained on data 
vulnerable to pixel-level manipulations invisible to 
human clinicians,1 it exposed a foundational weakness 
in modern machine learning (ML). Unlike radiologists 
who would cross-examine suspicious findings against 
patient history and multimodal evidence, current AI 
systems lack the capacity for such epistemic validation, 
revealing their dangerous reliance on passive pattern 
recognition rather than active knowledge verification.

This failure epitomizes the broader limitations of 
conventional ML paradigms. Much like an overtrusting 
student who never questions their textbook, today’s 
models achieve behavioral competence by passively 
ingesting supervisory signals without developing 
genuine understanding. The result is systems 
exquisitely sensitive to data quality issues, distribution 
shifts, labeling errors, or adversarial perturbations, 
that human experts would instinctively detect.2

The student–teacher analogy reveals the root 
cause: contemporary AI excels at pattern mimicry but 
lacks the metacognitive machinery to evaluate its own 
learning. Where human learners develop discernment 
through iterative feedback, neural networks remain 
trapped in their initial training distribution, unable to 

distinguish reliable signals from spurious correlations. 
This deficiency becomes catastrophic when models 
encounter real-world complexities, as demonstrated 
by medical AI’s failure.

In this article, we argue for a transition from 
mimicking human behavior and thought to pursuing 
rational reasoning, enabled by critical learning (CL). 
Our framework embeds verification directly into 
the learning process, combining rigorously vetted 
golden data sets with continuous alignment checks 
and integrated critical reasoning modules. Like 
expert clinicians validating hypotheses against 
domain constraints, CL systems actively interrogate 
their knowledge rather than passively absorbing it, 
transforming AI from statistical pattern matchers into 
discerning, adaptable learners.

The remainder of the article is organized as follows. 
First, we introduce preliminaries. Next, we introduce 
a framework for implementing CL across AI training 
stages. Finally, we synthesize these insights and offer 
concluding remarks.

Digital Object Identifier 10.1109/MC.2025.3599970 

Date of current version: 29 October 2025

This article originally  
appeared in 

 

vol. 58, no. 11, 2025

DISCLAIMER

The authors are completely responsible for the 
content of this article. The views expressed here 
are their own.
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PRELIMINARIES
ML methods can be categorized into three types: 
unsupervised learning, which discovers patterns in 
unlabeled data; supervised learning, which maps inputs 
to outputs using labeled examples; and reinforcement 
learning (RL), which learns through environmental 
interactions. Our focus is on supervised and RL 
approaches, both of which involve learning from 
data points containing supervisory signals, whether 
explicit labels or rewards. Low-quality data can lead 
to unreliable models, making systems vulnerable to 
manipulated or noisy data.

This mirrors the student-teacher dynamic: just as a 
student learns from correct input—output examples, 
an AI system derives its capabilities from training data 
patterns. But what happens when these materials, 
whether textbooks or data sets—are polluted, 
intentionally or unintentionally?

Data pollution corrupts either input features 
or output labels, disrupting their fundamental 
relationships. Feature pollution, such as noisy 
image inputs [Figure 1(a)], distorts data distributions 
and degrades model performance on previously 
recognizable samples. Label pollution creates more 
severe consequences, exemplified by the frozen lake 
environment3 where manipulated rewards [Figure 1(b)] 
cause agents to enter an undesired region of the state 
space. These corrupted mappings produce unreliable 

models when learned without critical evaluation. 
The common practice of using external or synthetic 
training data introduces additional vulnerabilities, 
including untrusted source pollution, synthetic bias 
leading to model collapse,4 and adversarial attacks like 
stop sign misclassification,5 collectively threatening 
model reliability and safety. Fundamentally, data 
pollution compromises AI systems by introducing 
invalid learning patterns that persist through training 
and deployment.

Data pollution affects all training stages (Figure 
2), corrupting supervised learning during initial 
training and fine-tuning and model-free RL throughout 
optimization. Since models cannot distinguish clean 
from polluted data, unreliable behaviors emerge 
regardless of initial data quality.

Technical countermeasures include alignment 
methods,6 security protocols,7 and machine 
unlearning8 to remove compromised knowledge. 
We argue AI’s lack of critical thinking undermines 

CONTEMPORARY AI EXCELS AT 
PATTERN MIMICRY BUT LACKS THE 
METACOGNITIVE MACHINERY TO 
EVALUATE ITS OWN LEARNING.

Environment Down

(a) (b)

Right

100
1

Training

Polluted
Feature

1

1

7

1

Fine-Tuning
Inferencing

Polluted
Reward

Goal

Trap

Trap

FIGURE 1. (a) Examples of feature pollution in the stage of fine-tuning. (b) Examples of reward (or label) pollution in RL.
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robustness in training and misguided inference. 
While inference resists pollution by not learning new 
data, training without evaluative reasoning leads to 
passive data-fitting and vulnerability. Our proposed 
CL integrates evaluative reasoning to address these 
limitations.

CL
Critical thinking9 serves as a fundamental mechanism 
for truth discernment in AI systems, but its 
operationalization requires careful consideration of 
how and when critical reasoning should emerge in 
the learning process. We distinguish two approaches 
for implementing this capability: critical thinking 
learning (CTL) and CL. CTL develops evaluative skills 
from training data (that is, learning the critical thinking 
skills), while CL actively applies critical evaluation 
during learning itself (that is, learning skills in a critical 
manner). We focus on CL as it directly addresses 

the core challenge of balancing 
adaptability and reliability during 
training, particularly with novel 
data distributions.

Our CL framework requires AI 
to apply evaluative reasoning when 
processing data, balancing new 
knowledge integration with reliable 
prior knowledge preservation. As 
shown in Figure 3, CL involves: 
(1) training on rigorously vetted 
golden data; (2) continuous 
learning with alignment checks; 
and (3) either learned or predefined 
critical thinking capabilities.

Golden standard
Returning to our student–
teacher analogy: if a teacher 
claimed “1 + 1 = 3,” CL requires 
establishing a golden standard of 
verifiable truths. This begins with 
reliable training data, mirroring 
how education systems provide 
accurate textbooks, societies 
establish ethical frameworks, and 
parents model proper behavior.

Specifically, each data point 
into AI models is a triple being comprised of not only 
input features and output signals but also a credibility 
score assessing the reliability of their mapping. The 
modified data point structure for supervised learning 
and RL would take the following form, respectively:

D) = x y{ }i i, , zi
i i

l
i
l

i
l1 1 1 f=D i

) x y, ,i i{ ,z x, , y z, }  

	 (1)
	 (2)

For RL, i i
t

i
t

i
t1 1 1x y, ,i i{ ,z x, , y z, }   denotes the state-action pair at time t of 

the i-th episode, i i
t

i
t

i
t1 1 1x y, ,i i{ ,z x, , y z, }   is the corresponding reward, and 

i i
t

i
t

i
t1 1 1x y, ,i i{ ,z x, , y z, }   depicts how reliable of rewarding the action that is 

taken under the state is.
This method assigns reliability scores to input—

output mappings, guiding AI learning weights. Like 
educational material review, golden standard data 
requires neutral evaluation—by expert institutions 
or algorithmic systems using societal norms. Unscored 
data becomes a special case with uniform default scores.

Data Points

Supervised Learning
Reinforcement Learning

Fine-Tuning Late Epochs

Early Epochs

Training Downstream
Applications

Data Points Al

FIGURE 2. Different stages polluted data can be introduced.

Data Points Data Points

Evaluator

Supervised Learning
RL

Continual Training/Fine-Tuning
Late Epochs

Early Epochs
Base Training

Downstream
Applications

Golden Standard Al

FIGURE 3. High-level flowchart of CL.
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The evaluator, whether organ
izational or algorithmic, must 
provide consistent, credible 
assessments. Scores should pro
portionally reflect data quality, 
maintaining logical coherence 
across evaluations. For instance, 
polluted data [Figure 1(a)] receives 
lower scores than clean samples, 
while identical rewards [Figure 
1(b)] score differently based on 
context (for example, “Right” 
versus “Down” actions), ensuring 
system-wide consistency.

Stages
Skill development always progresses from basics to 
advanced levels, whether in mathematics, music, or 
driving. Similarly, AI systems require base training 
(or early epochs training for RL) using verified golden 
standards to establish reliable foundational knowledge.

After golden standard training, AI advances to 
continual training or fine-tuning (late epochs training 
for RL) to adapt to new data. This new data may 
contain verified mappings (like the golden standard) or 
unverified pairs, potentially including polluted samples 
requiring critical evaluation, much like a student 
verifying whether “2 + 2 = 5” after learning “1 + 1 = 2.”

Validated data from continual training can expand 
the golden standard, enhancing adaptability while 
maintaining consistency. For unassessed input—
output pairs, reliability scoring is required before 
inclusion. All additions must preserve the standard’s 
core properties: consistency, comparability, and 
conflict-free relationships.

Learning critically
Standard learning adjusts parameters to fit data 
regardless of quality. With a nonzero learning rate, 
models blindly update to match labels/rewards 
without assessing credibility. This poses risks with 
noisy or adversarial data. A trustworthy AI should 
instead critically evaluate inputs like a diligent student, 
validating reliability before integration.

A straightforward approach is to frame golden 
standard adherence as a value alignment problem.10 
Raw data 

a value alignment problem.10 Raw 
data ,x y  becomes ,x yt ,  where ty  
reflects value-corrected expectations. 

 becomes 
a value alignment problem.10 Raw 
data ,x y  becomes ,x yt ,  where ty  
reflects value-corrected expectations. 

, where 
a value alignment problem.10 Raw 
data ,x y  becomes ,x yt ,  where ty  
reflects value-corrected expectations. 

 reflects 

value-corrected expectations. Human or algorithmic 
aligners perform this transformation, ensuring AI 
learns only from trustworthy, aligned examples to 
enhance robustness.

An alternative approach modifies the optimization 
objective itself, balancing data fitting with reliability 
assessment. This dual-criterion framework considers 
both data fidelity and trustworthiness, maintaining 
alignment with the golden standard:

!i i - adi fi - bL Ldt ri el 	 (3)

Here, !i i - adi fi - bL Ldt ri el is the learning rate regarding golden 
standard adherence. By incorporating data reliability 
into the optimization objective, the model can enhance 
its ability to critically assess and selectively learn from 
new data, improving robustness and maintaining 
alignment with established standard. 

alignment with established standard. 
Lrel = h Dt( )  is the reliability loss where 
t =D D)  in base training. During con-

tinual training or fine-tuning with 

 is the 
reliability loss where 

alignment with established standard. 
Lrel = h Dt( )  is the reliability loss where 
t =D D)  in base training. During con-

tinual training or fine-tuning with 
 in base training. During 

continual training or fine-tuning with newly coming 
data. 

t =D D)  in base training. During con-
tinual training or fine-tuning with 
newly coming data D+,  Dt =D) ,D+.
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.
Another approach dynamically adjusts the 

learning rate per data point instead of using a fixed 
value, allowing the model to adapt updates based on 
each sample’s reliability. Formally:

!i i - e Dt( )diL fit 	 (4)

Traditional ML represents the special case where Traditional ML represents the special 
case where e Dt( )  is constant. Using the 
classic hill-climbing analogy: when de-
scending toward an optimum, step sizes

 is constant. Using the classic hill-climbing 
analogy: when descending toward an optimum, step 
sizes should account for reliability loss. Significant 
potential loss warrants slower progress, allowing risk 
assessment before proceeding.

Environment
New Data

Evaluator
Judge Model

Dynamic Model

Initial Dataset Golden Data
Baseline Model

FIGURE 4. A tri-model CL prototype with value alignment.
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While all three methods evaluate reliability per 
data point (for both SL and RL), RL offers an additional 
refinement: maximizing cumulative evaluated rewards 
rather than raw rewards, critically assessing each 
reward’s validity before optimization:

t D=c tr t t, ,a rtsmaxE maxE
t

t

t0 0

∞ ∞

r
r

r
r

= =
:| fct:| ^ hD 	 (5)

Here, ε(⋅) is an evaluation function assessing the 
reliability of rewarding the action taking of at under 
state st. Data provenance and evaluation based on 
past experiences13 may serve as effective means to 
achieve this revised objective.

Evaluation metrics
While traditional learning evaluates effectiveness 
(predictive performance) and efficiency (convergence 
speed), CL adds a third dimension: fitting reliability. 
This requires new metrics assessing training-stage 
reliability (confidence calibration, robustness) and 

balanced performance (accuracy + pattern validity), 
enabling holistic evaluation of both results and critical 
discernment.

Epistemic vigilance measures an AI’s ability 
to discern data reliability during training without 
explicit labels. Higher scores indicate better pollution 
detection, adversarial robustness, and distribution 
shift stability. Optimizing this metric develops AI into 
discerning learners, not just pattern recognizers, 
capable of handling real-world data complexities.

Fidelity to the golden standard measures an AI’s 
adherence to verified knowledge benchmarks. Higher 
scores indicate greater pollution resistance and 
more reliable outputs with uncertain data, ensuring 
trustworthy performance despite imperfect inputs 
while maintaining epistemological integrity.

The temporal decay metric tracks declining 
epistemic vigilance and golden standard fidelity during 
continual learning.11 Like students losing critical 

thinking, models may show eroding discernment 
over time. Slower decay indicates stronger pollution 
resistance and long-term reliability.

PROTOTYPE
Figure 4 shows a prototype following our CL 
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 expands with 

verified knowledge. This creates a self-reinforcing loop 
maintaining standard adherence.
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We evaluate our CL prototype on MNIST12 using: (1) 
50,000 clean training samples, (2) 10,000 test samples, 
and (3) 10,000 polluted samples. After initial training 
on clean data, we gradually introduce polluted batches 
(10% intervals), monitoring test performance (Figure 5).

Our experimental results reveal three key findings. 
First, the baseline model achieves 98.97% recognition 
accuracy when trained exclusively on clean data. Second, 
this performance degrades significantly as increasing 
amounts of polluted data. Third, when CL mechanisms 
are activated, the model demonstrates remarkable 
resilience, despite identical pollution exposure.
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EPISTEMIC VIGILANCE MEASURES 
AN AI’S ABILITY TO DISCERN DATA 
RELIABILITY DURING TRAINING 
WITHOUT EXPLICIT LABELS.
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DISCUSSIONS

Limits and promise of CL
CL mitigates key AI vulnerabilities 
but isn’t a complete solution. While 
it improves robustness through 
noise-resistant consistency, relia
bility assessments, and standards 
alignment (like critical thinkers 
resisting misinformation), limita
tions persist: theoretical gaps 
in Equations (3)–(5), imperfect 
pollution filtering, and potential 
assessor biases (Figure 3). 
Complementary approaches like 
machine unlearning may help. 
Though current implementations 
can’t catch all corrupted data, 
the framework establishes vital 
safeguards through verifiable 
quality control, representing a crucial step toward 
trustworthy AI in polluted data environments.

Value proposition of CL
Implementing critical thinking in AI faces three 
hurdles: substantial research needs, increased 
compute demands, and possible slower performance 
improvements. However, the costs are justified by 
AI’s fundamental goal of developing trustworthy 
systems. Just as critical thinking protects against 
misinformation, these safeguards defend against 
data pollution. The long-term advantages—greater 
robustness, transparency, and attack resistance, 
prove indispensable for real-world applications where 
reliability is as crucial as accuracy.

Overfitting
Traditional ML uniformly prevents overfitting to avoid 
artifacts, while CL differentiates harmful overfitting 
from beneficial alignment with verified standards—
necessitating revised optimization principles. It 
reframes overfitting as principled adherence to 
vetted knowledge, requiring new alignment metrics 
and architectures that embed verification. Similar 
to human expertise, the key consideration shifts 
from whether a system overfits to what reference 
standards it follows.

Rethinking the learning mechanism
While current ML treats all knowledge as mutable 
through parameter updates, fundamental truths like “2 
+ 2 = 4” remain immutable—unlike subjective domains 
that should evolve. No amount of contradictory claims 
(“2 + 2 = 5”) alters such truths. This reveals AI’s critical 
limitation: inability to distinguish knowledge requiring 
fixed versus flexible representation. Robust systems 
must dynamically preserve core facts while allowing 
appropriate adaptation.

We introduce CL to address limitations in 
traditional AI training. Our framework 

contributes (1) golden standard alignment balancing 
adaptability and reliability, (2) selective knowledge 
assimilation for robustness against adversarial inputs, 
and (3) pathways to more interpretable, responsible 
AI. Future work should refine theoretical foundations, 
improve efficiency, and extend applications. 
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Compositional reasoning, the cognitive process of breaking complex problems 
into manageable subproblems and recomposing them to generate new ideas, is 
fundamental to human problem solving and critical thinking. While deep learning 
models excel at pattern recognition, their capacity for true understanding 
and reasoning remains a topic of debate. Although the growth of the Internet 
has provided the necessary scale of data for model training, the way data is 
represented plays a pivotal role in enabling reasoning capabilities. This article 
introduces dynamic multimodal process knowledge graphs (DMPKGs), a novel 
neurosymbolic framework for data and knowledge representation that supports 
cognitive tasks such as compositional reasoning, high-level abstraction, 
explainability, and causal inference along with representation learning. The 
framework integrates data and knowledge into a unified, structured format 
enriched with semantics from multiple contexts. By prioritizing contextualized and 
semantically rich representations, DMPKGs aim to bridge the gap between pattern 
recognition and reasoning in artificial intelligence systems. 

Compositional reasoning refers to the cognitive 
ability to understand complex problems or con-
cepts by decomposing them into simpler parts 

and composing parts to form new complex ideas with a 
coherent understanding.10 This critical problem-solving 
skill is essential for informed decision-making and is of-
ten required in real-world scenarios. As artificial intelli-
gence (AI) models become increasingly integrated into 
our daily lives, they must also demonstrate advanced 
reasoning capabilities. For instance, in diet management, 
tasks such as recipe analysis or modification depend on 
compositional reasoning, where a recipe needs to be 
decomposed into ingredients and cooking methods, to 
evaluate under necessary contexts. In manufacturing, 

assembling each component or machine is treated as 
an individual task, which is put together to form a se-
quential assembly line. Any modification to the compo-
nents might require calibration of the entire assembly 
line. A noteworthy example of compositional reasoning 
is solving a jigsaw puzzle, where individual pieces are put 
together to create a complete picture. This highlights 
the significance of compositional reasoning in prob-
lem-solving in real-world applications. AI researchers 
have been actively exploring ways to incorporate com-
positional reasoning into machine learning models to 
improve their ability to generalize and handle complex 
tasks.1 Several datasets have been introduced to bench-
mark and evaluate neural networks’ ability to perform 
complex reasoning tasks.1 Similarly, the compositional 
attention network2 was developed to address complex 
reasoning challenges. However, the ability of neural net-
works, including large language models (LLMs), to solve 
and reason over complex tasks remains debatable.3

1089-7801 © 2025 IEEE. All rights reserved, including rights for 
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In this article, we introduce dynamic multimodal 
process knowledge graphs (DMPKGs), a neurosym-
bolic data and knowledge representation framework 
designed to support cognitive tasks such as com-
positional reasoning, high-level abstraction, explain-
ability, causal inference, and representation learning 
(See “Compositional Reasoning: The Core of Prob-
lem Solving”). The core idea is to represent data and 
knowledge in an integrated, structured format en-
riched with semantics from multiple contexts rather 
than relying on big data such as lengthy text data or 
extensive sensor data matrices. This modular repre-
sentation is well suited for procedural tasks, which 
inherently involve complexity as components change 
with time. DMPKG structures process into modular 
components with a workflow, enabling models to un-
derstand entities semantically and analyze their in-
teractions and impact on a process and its outcome. 
Modularity ensures compliance with problem con-
straints, while DMPKG supports multimodal data for 
reasoning on visuals.11 Its dynamic nature captures 
ever-evolving environments and allows semantic or 
process modifications.

USE CASES FOR COMPOSITIONAL 
REASONING IN AI

Many real-world applications involve complex, multi-
faceted problems that require more than memoriza-
tion and pattern recognition that current generative 
AI (GenAI) has excelled at. They demand deep con-
textual understanding (https://bit.ly/NLPNLU) and 
logical reasoning. Currently, most information exists 

as unstructured text or raw sensor data, lacking se-
mantic enrichment. While GenAI models excel at pat-
tern extraction and mapping inputs to outputs, they 
often fail at tasks requiring higher-order reasoning 
that require multistep logic or modular adaptabil-
ity due to their heavy reliance on pattern matching. 
AI models must enable compositional reasoning 
to break down complex real-world problems into 
manageable components, solving them systemat-
ically. We illustrate this with two use cases, namely, 
diet management and smart manufacturing, both of 
which are procedural tasks highlighting the need for 
advanced reasoning.

Diet Management
Analyzing a recipe involves breaking it down into in-
gredients and cooking methods to evaluate their suit-
ability based on the user’s health conditions and food 
preferences. For example, say a user wants to modify 
a recipe of fried shrimp taco to be suitable for diabe-
tes and a vegetarian diet. This involves understanding 
that the given recipe must be analyzed for 1) diabetes, 
a health condition with a medical guideline with an ac-
ceptable list of ingredients and cooking methods, and 
2) dietary restriction, vegetarian, which includes only 
plant and dairy products. Now the AI model should be 
able to infer the following:

 ❯ Shrimp, classified as a seafood and an animal-de-
rived product, is incompatible with vegetarian di-
etary restrictions.

 ❯ The high cholesterol content of shrimp renders it 
unsuitable for diabetes management.

COMPOSITIONAL REASONING: THE CORE OF  
PROBLEM SOLVING

Compositional reasoning involves deconstruct-
ing complex problems into simpler, interrelated 

components, allowing for systematic analysis and 
solution synthesis. The concept originates from studies 
on symbolic logic and linguistics, where language and 
thought processes demonstrate humans’ ability to 
create meaning from smaller building blocks, like words 
forming sentences. It is critical for humans as it under-
pins our capacity to learn, adapt, and innovate. It allows 
us to generalize knowledge from known scenarios to 
new ones, solve novel problems, and make decisions in 
complex, changing environments.

Compositional learning and reasoning are crucial 
in problem solving as they enable individuals to tackle 
intricate issues by addressing manageable subproblems, 
ensuring a thorough understanding of each element 
and their interconnections. For instance, solving a math 
problem often involves breaking it down into simpler 
equations, solving each, and then combining results to 
reach the answer. For AI, compositional learning and 
reasoning are essential to solving complex real-world 
tasks with adaptability and scalability. By mimicking 
human reasoning, AI can break down problems into sub-
tasks, solve each, and integrate solutions effectively.
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cepts by decomposing them into simpler parts 

and composing parts to form new complex ideas with a 
coherent understanding.10 This critical problem-solving 
skill is essential for informed decision-making and is of-
ten required in real-world scenarios. As artificial intelli-
gence (AI) models become increasingly integrated into 
our daily lives, they must also demonstrate advanced 
reasoning capabilities. For instance, in diet management, 
tasks such as recipe analysis or modification depend on 
compositional reasoning, where a recipe needs to be 
decomposed into ingredients and cooking methods, to 
evaluate under necessary contexts. In manufacturing, 

assembling each component or machine is treated as 
an individual task, which is put together to form a se-
quential assembly line. Any modification to the compo-
nents might require calibration of the entire assembly 
line. A noteworthy example of compositional reasoning 
is solving a jigsaw puzzle, where individual pieces are put 
together to create a complete picture. This highlights 
the significance of compositional reasoning in prob-
lem-solving in real-world applications. AI researchers 
have been actively exploring ways to incorporate com-
positional reasoning into machine learning models to 
improve their ability to generalize and handle complex 
tasks.1 Several datasets have been introduced to bench-
mark and evaluate neural networks’ ability to perform 
complex reasoning tasks.1 Similarly, the compositional 
attention network2 was developed to address complex 
reasoning challenges. However, the ability of neural net-
works, including large language models (LLMs), to solve 
and reason over complex tasks remains debatable.3
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 ❯ Frying as a preparation method contributes to 
the formation of trans fats, which are discour-
aged for diabetic individuals.

 ❯ Subsequent to this, plant-based alternatives to 
shrimp and a healthier cooking method need 
to be identified to meet vegetarian and diabe-
tes-friendly dietary standards.

Relying solely on natural language descriptions of 
recipes may pose significant challenges in accurately 
capturing these nuances and solving them. Achieving 
such multicontextual understanding necessitates de-
composing and analyzing individual components of a 
recipe grounded with layers of semantics to derive ac-
tionable insights.

Smart Manufacturing
Consider a rocket prototype assembly pipeline involving 
four robots assembling four rocket body parts. The as-
sembly is divided into 21 cycle states based on robot func-
tions, in which four robots perform 21 actions in total. An 
anomaly is detected in the process due to the absence of 
a certain part. Now, the expert needs further insight into 
the anomaly to determine if a sensor malfunctioned or if 
a part is missing. A model in this scenario should map the 
sensor values to a higher-level abstractive process with 
semantic inference to derive the following insights:

 ❯ Which sensor produced anomalous value and to 
which robot the sensor is attached to.

 ❯ Determine what was the function of this robot 
and at which point (cycle state) in the assembly 
process this anomaly happened.

 ❯ Retrieve the image or video stream at this point 
to determine if there is a missing part.

 ❯ Based on the above inferences, the system needs 
to recommend corrective actions, either pausing 
the assembly line to replenish the missing part or 
reassigning another robot to finish the job.

Gathering such detailed insights to determine the 
next course of action would require capturing multi-
ple data modalities such as sensors and images along 
with the interaction of sensors, robots, and their re-
spective functions in a structured procedural format.

Reciting Versus Reasoning in LLMs
Several studies have debated the ability of LLMs, the 
text-generating kind of GenAI, to perform composi-
tional reasoning.3,4 However, looking under the hood, 
transformers seem to solve compositional tasks by 
reducing multistep reasoning into pattern matching 
or reciting responses from memory. Despite appearing 

complex, some tasks may lack inherent composition-
ality as their solutions can be easily extracted from the 
input–output sequences in the training data. Second, 
transformers may have inherent limitations in solving 
high-complexity compositional tasks due to error prop-
agation.3 Complex tasks require modular representa-
tions of real-world data, enabling models to understand 
how entities fit into a process. LLMs, trained on diverse 
textual data, often suffer from diluted contextual rep-
resentation within expansive embedding spaces. This 
limitation poses challenges in specialized tasks like 
diet management, smart manufacturing, or health care, 
where analyzing, modifying, or generating new work-
flows requires integrating and reasoning across multi-
ple contexts. Navigating these vast embedding spaces 
to retrieve and apply targeted contexts effectively re-
mains a significant challenge for LLMs.12 The issue of 
compositionality extends to image-to-text generation 
models as well (https://tinyurl.com/2p8xhh35).

DMPKGs
We use DMPKGs to represent procedural workflows 
at the entity level grounded by multicontextual se-
mantics supporting multimodal data to enable com-
positional reasoning, interpretability, and high-level 
abstraction as shown in Figures 1 and 2. This neurosym-
bolic framework supports models to perform embed-
ding-based similarities to process unstructured data 
such as text or image while incorporating knowledge 
graphs for higher-order reasoning. Knowledge graphs 
are well-suited for capturing relationships between en-
tities and encoding semantic meaning, making them 
effective tools for reasoning and decision-making. Pri-
or works have represented procedural workflows as 
ontologies, but these efforts did not gain widespread 
adoption due to their complexity and limited scalabili-
ty in dynamic environments.5 This can be overcome by 
representing graphs in labeled property graph format 
instead of Resource Description Formation which is 
less flexible compared to labeled property graphs.

Procedural tasks involve several entities tied in a 
temporal manner which might evolve with changes. 
DMPKG’s two key features are capturing temporal attri-
butes and dynamically modifying graphs. For instance, 
modifying a recipe to meet dietary constraints requires 
updating ingredient entities in the recipe process graph. 
In manufacturing, sensor ranges can be adjusted based 
on equipment calibration to detect anomalies without 
changing the entire schema. These changes require min-
imal manual intervention. While conventional knowledge 
graphs capture relationships among concepts or enti-
ties, process knowledge graphs capture semantics of the 
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entities in the context of the process. A recipe process 
graph for French fries and oven-roasted has overlap-
ping entities such as potatoes with different contextual 
compatibility. French fries involve deep frying, making 
potatoes unsuitable for diabetes while oven-roasting is 
suitable. DMPKG also allows for storing multimodal data 
such as images, text, and sensor data. The images can 
be stored as embeddings to enable approximate search. 
See “DMPKG and Neurosymbolic AI”.

HOW DMPKGs FACILITATE  
COMPOSITIONAL REASONING

Diet Management
DMPKG representation of a recipe shown in Figure 1 
enables modifications to fried shrimp tacos to make it 
suitable for diabetes or a vegetarian diet. A neurosym-
bolic model will identify the closest recipe for a given 
recipe using embeddings of the recipe image, title, or 

FIGURE 2. DMPKG representation for smart manufacturing assembly maps sensor data to a high-level ontology with multimod-

al data. By linking sensor readings, workflow semantics, and images, the system identifies issues and recommends corrective 

actions, ensuring seamless operations and preventing defects. This approach enables an explainable AI model to assist experts 

in real-time decision-making and streamline planning (https://bit.ly/SmPilot).

FIGURE 1. DMPKG representation for the recipe “Fried Shrimp Taco” constructed by processing recipe text and corresponding 

images. To satisfy dietary constraints, symbolic reasoning can be applied using multiple knowledge graphs to identify suitable 

ingredients and cooking methods and dynamically modify the recipe process graph to create a new recipe. Knowledge can exist 

in different formats—taxonomy, rules, triples, or decisions. A neurosymbolic model will process unstructured text or image data 

to extract recipe contents and perform compositional reasoning.
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 ❯ Frying as a preparation method contributes to 
the formation of trans fats, which are discour-
aged for diabetic individuals.

 ❯ Subsequent to this, plant-based alternatives to 
shrimp and a healthier cooking method need 
to be identified to meet vegetarian and diabe-
tes-friendly dietary standards.

Relying solely on natural language descriptions of 
recipes may pose significant challenges in accurately 
capturing these nuances and solving them. Achieving 
such multicontextual understanding necessitates de-
composing and analyzing individual components of a 
recipe grounded with layers of semantics to derive ac-
tionable insights.

Smart Manufacturing
Consider a rocket prototype assembly pipeline involving 
four robots assembling four rocket body parts. The as-
sembly is divided into 21 cycle states based on robot func-
tions, in which four robots perform 21 actions in total. An 
anomaly is detected in the process due to the absence of 
a certain part. Now, the expert needs further insight into 
the anomaly to determine if a sensor malfunctioned or if 
a part is missing. A model in this scenario should map the 
sensor values to a higher-level abstractive process with 
semantic inference to derive the following insights:

 ❯ Which sensor produced anomalous value and to 
which robot the sensor is attached to.

 ❯ Determine what was the function of this robot 
and at which point (cycle state) in the assembly 
process this anomaly happened.

 ❯ Retrieve the image or video stream at this point 
to determine if there is a missing part.

 ❯ Based on the above inferences, the system needs 
to recommend corrective actions, either pausing 
the assembly line to replenish the missing part or 
reassigning another robot to finish the job.

Gathering such detailed insights to determine the 
next course of action would require capturing multi-
ple data modalities such as sensors and images along 
with the interaction of sensors, robots, and their re-
spective functions in a structured procedural format.

Reciting Versus Reasoning in LLMs
Several studies have debated the ability of LLMs, the 
text-generating kind of GenAI, to perform composi-
tional reasoning.3,4 However, looking under the hood, 
transformers seem to solve compositional tasks by 
reducing multistep reasoning into pattern matching 
or reciting responses from memory. Despite appearing 

complex, some tasks may lack inherent composition-
ality as their solutions can be easily extracted from the 
input–output sequences in the training data. Second, 
transformers may have inherent limitations in solving 
high-complexity compositional tasks due to error prop-
agation.3 Complex tasks require modular representa-
tions of real-world data, enabling models to understand 
how entities fit into a process. LLMs, trained on diverse 
textual data, often suffer from diluted contextual rep-
resentation within expansive embedding spaces. This 
limitation poses challenges in specialized tasks like 
diet management, smart manufacturing, or health care, 
where analyzing, modifying, or generating new work-
flows requires integrating and reasoning across multi-
ple contexts. Navigating these vast embedding spaces 
to retrieve and apply targeted contexts effectively re-
mains a significant challenge for LLMs.12 The issue of 
compositionality extends to image-to-text generation 
models as well (https://tinyurl.com/2p8xhh35).

DMPKGs
We use DMPKGs to represent procedural workflows 
at the entity level grounded by multicontextual se-
mantics supporting multimodal data to enable com-
positional reasoning, interpretability, and high-level 
abstraction as shown in Figures 1 and 2. This neurosym-
bolic framework supports models to perform embed-
ding-based similarities to process unstructured data 
such as text or image while incorporating knowledge 
graphs for higher-order reasoning. Knowledge graphs 
are well-suited for capturing relationships between en-
tities and encoding semantic meaning, making them 
effective tools for reasoning and decision-making. Pri-
or works have represented procedural workflows as 
ontologies, but these efforts did not gain widespread 
adoption due to their complexity and limited scalabili-
ty in dynamic environments.5 This can be overcome by 
representing graphs in labeled property graph format 
instead of Resource Description Formation which is 
less flexible compared to labeled property graphs.

Procedural tasks involve several entities tied in a 
temporal manner which might evolve with changes. 
DMPKG’s two key features are capturing temporal attri-
butes and dynamically modifying graphs. For instance, 
modifying a recipe to meet dietary constraints requires 
updating ingredient entities in the recipe process graph. 
In manufacturing, sensor ranges can be adjusted based 
on equipment calibration to detect anomalies without 
changing the entire schema. These changes require min-
imal manual intervention. While conventional knowledge 
graphs capture relationships among concepts or enti-
ties, process knowledge graphs capture semantics of the 
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instructions. If no match exists, a pipeline proposed 
constructs a DMPKG for the recipe from text or image 
(https://tinyurl.com/58x8mnfj). Leveraging this struc-
tured, semantically enriched representation, a neu-
rosymbolic AI model can transform fried shrimp tacos 
into pan-fried cauliflower tacos through the following 
steps:

1) Decomposition and semantic understanding: 
Decomposing a recipe to capture nuanced re-
lationships between ingredients, cooking meth-
ods, domain-specific knowledge, and dietary 
guidelines can enable the following inferences:
 ❯ Shrimp is tagged as seafood, an animal-de-

rived product incompatible with vegetarian 
guidelines from the ingredient (substitution) 
knowledge graph.

 ❯ From the disease-specific knowledge graph, it 
can be inferred that shrimp is high in cholesterol 
content and is flagged as unsuitable for diabetes.

 ❯ From the rules, we can infer frying is identi-
fied as a cooking method that contributes to 
trans fats, which are discouraged for diabetic 
individuals.

2) Constraint satisfaction through symbolic rea-
soning: The neurosymbolic AI model will perform 
symbolic reasoning by leveraging the DMPKG 
framework enriched with multiple knowledge 
graphs to apply dietary and health constraints 
systematically to modify a recipe as follows:
 ❯ To ensure vegetarian compliance, the system 

queries the ingredient substitution knowledge 
graph for plant-based alternatives to shrimp, 
like cauliflower, a healthy carbohydrate, fiber- 
rich, and low-glycemic option confirmed by 
disease-specific knowledge graphs. While al-
ternatives like tempeh or seitan exist, they are 
processed foods unsuitable for diabetes. This 
multicontextual understanding helps narrow 
down meaningful choices.

 ❯ Sour cream is also high in fat and not suitable 
for diabetes, which can be replaced with low-
fat seasoned yogurt.

 ❯ Deep frying, which introduces trans-fat un-
suitable for diabetes, can be replaced with pan 
frying, a healthier fat-based cooking method. 
While steaming is healthier, it is not suggested 
as it is water-based and differs from fat-based 
cooking methods.

As a result, DMPKG ensures explainable results by 
integrating trusted medical sources into its reasoning. 
Its graph-based structure decomposes recipes into 

core entities, applies step-by-step problem-solving, 
and reconstructs modified recipes. Irrespective of the 
recipe, the model knows the presence of shrimp is not 
suitable for a vegetarian diet, enabling generalization. 
It also guarantees compliance with dietary constraints 
while retaining the essence of the original recipe, such 
as transforming fried shrimp tacos into pan-fried cau-
liflower tacos.

Smart Manufacturing
By mapping the sensor data to high-level process on-
tology (https://tinyurl.com/4vyuuvmm), DMPKG can 
be constructed for each assembly run grounded by the 
semantics of the sensors and assembly procedure as 
shown in Figure 2 to infer the following:

 ❯ Load cell, a sensor that produced anomalous val-
ue is attached to robot-2.

 ❯ The robot was performing the function of  
“Robot-2 picks rocket body part-1 from the 
conveyor.”

 ❯ The corresponding image at the timestamp did 
not have “Rocket Body Part-1.” Therefore, it is a 
missing body part that caused the anomaly and 
not the sensor malfunctioning. Through planning 
strategies, another robot can be used to add the 
missing body part.

 ❯ If it was a sensor malfunction, the sensor manual 
knowledge graph can be used to list the steps to 
the user to calibrate the sensor values.

Similar to the diet use case, the insights of anoma-
ly detection can be explained by the model to ensure 
the trustworthiness of the domain experts. DMPKG 
facilitates high-order reasoning in any manufacturing 
task through its rich modular representation. A similar 
use case demonstrated that representing AI pipeline 
metadata as process has benefited recommendation 
compared to lengthy textual data.15

SUPPORTING CAPABILITIES: 
REPRESENTATION LEARNING, 
ABSTRACTION, EXPLAINABILITY, 
AND CAUSAL INFERENCE

Representation Learning
As a neurosymbolic framework, DMPKG supports 
embedding-based feature extraction and similarity 
searches across multiple data modalities, enabling ef-
ficient processing of unstructured data like images or 
text. For example, users can request shrimp-contain-
ing recipes by providing an image, which is converted 
to an embedding to find matches. Similarly, users can 
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query recipes using natural language, where an LLM 
can extract entities or identify relevant results by gen-
erating embeddings.

Abstraction and Generalization
DMPKGs support high-level abstraction by categoriz-
ing entities through common semantics. For exam-
ple, in diet management, ingredients can be grouped 
by nutritional properties like “red meat,” “high-fiber,” 
or “seafood.” This structure allows the system to gen-
eralize that any ingredient under seafood isn’t veg-
etarian, helping to identify meaningful substitutes. 
It can also generalized that irrespective of the reci-
pe, shrimp is not suitable for diabetes due to high 
cholesterol

Explainability and Traceability
DMPKGs enhance interpretability in compositional 
reasoning by tracing decision paths for substitutions 
and modifications. For example, shrimp is replaced 
with cauliflower to align with vegetarian and diabe-
tes-friendly requirements, while processed alterna-
tives like tempeh and seitan are avoided. Pan frying is 

preferred over deep frying due to its classification as a 
healthier fat-based method. All modifications are sup-
ported by trusted medical sources like the Mayo Clin-
ic, Center for Disease Control and Prevention, and the 
United States Food and Drug Administration.

Causal Inference
DMPKGs help understand causal relationships and 
enhance compositional reasoning with “what-if” 
scenarios. Replacing shrimp with seitan makes the 
recipe vegetarian but unsuitable for diabetes while 
replacing it with cauliflower makes it vegetarian and 
diabetes-friendly. DMPKG can deduce the effects of 
ingredient changes and generate modified diet plans 
with causal justifications from trusted medical sourc-
es. Similarly, it can identify the cause of anomalies in 
smart manufacturing.13

FUTURE DIRECTIONS AND  
RESEARCH OPPORTUNITIES

Several opportunities for advancing the capabilities 
of DMPKGs merit exploration. One promising direc-
tion is automating the development of DMPKGs using 

DMPKG AND NEUROSYMBOLIC AI

Neurosymbolic AI is a framework that combines 
deep learning models with knowledge graphs, 

enabling generalization and higher-order reasoning.1 
Neural networks excel at extracting relevant features 
by mining patterns from unstructured noisy data and 
reducing it to embedding vectors, an efficient repre-
sentation of data approximation. To perform high-level 
symbolic reasoning tasks such as logical inference, 
abstraction, and causal inference, these data must be 
elevated to multiple contexts using knowledge graphs.S1 
DMPKGs support neurosymbolic models and frame-
works. For instance, users can search for recipes using 
ingredient images while applying constraints, such 
as finding vegan alternatives. The neural component 
utilizes image embedding similarity to match relevant 
recipes enabling the system to process unstructured 
data efficiently. Constraints are then applied using sym-
bolic reasoning, such as identifying vegan substitutions 
via an ingredient substitution knowledge graph, which 
requires abstraction and domain-specific understand-
ing. This combination allows for contextualized reason-
ing essential for tasks like recipe personalization and 

dietary adjustments. Further, LLMs can be augmented 
to process natural language queries given by the users.

For recipes without matches in the database, a scal-
able pipeline has been proposed to extract entities like 
ingredients and cooking actions to construct a recipe 
graph.2 Image-to-text models can generate instructions 
from images,3 ensuring visual queries are processed 
effectively. However, limitations exist. While models can 
identify general categories, such as tacos or burg-
ers, they may struggle with finer distinctions such as 
chicken versus beef tacos, necessitating user input. This 
limitation reflects a broader challenge, as even humans 
cannot always infer specific details from images. User 
intervention ensures accuracy and meaningful personal-
ization for tasks requiring nuanced understanding.
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instructions. If no match exists, a pipeline proposed 
constructs a DMPKG for the recipe from text or image 
(https://tinyurl.com/58x8mnfj). Leveraging this struc-
tured, semantically enriched representation, a neu-
rosymbolic AI model can transform fried shrimp tacos 
into pan-fried cauliflower tacos through the following 
steps:

1) Decomposition and semantic understanding: 
Decomposing a recipe to capture nuanced re-
lationships between ingredients, cooking meth-
ods, domain-specific knowledge, and dietary 
guidelines can enable the following inferences:
 ❯ Shrimp is tagged as seafood, an animal-de-

rived product incompatible with vegetarian 
guidelines from the ingredient (substitution) 
knowledge graph.

 ❯ From the disease-specific knowledge graph, it 
can be inferred that shrimp is high in cholesterol 
content and is flagged as unsuitable for diabetes.

 ❯ From the rules, we can infer frying is identi-
fied as a cooking method that contributes to 
trans fats, which are discouraged for diabetic 
individuals.

2) Constraint satisfaction through symbolic rea-
soning: The neurosymbolic AI model will perform 
symbolic reasoning by leveraging the DMPKG 
framework enriched with multiple knowledge 
graphs to apply dietary and health constraints 
systematically to modify a recipe as follows:
 ❯ To ensure vegetarian compliance, the system 

queries the ingredient substitution knowledge 
graph for plant-based alternatives to shrimp, 
like cauliflower, a healthy carbohydrate, fiber- 
rich, and low-glycemic option confirmed by 
disease-specific knowledge graphs. While al-
ternatives like tempeh or seitan exist, they are 
processed foods unsuitable for diabetes. This 
multicontextual understanding helps narrow 
down meaningful choices.

 ❯ Sour cream is also high in fat and not suitable 
for diabetes, which can be replaced with low-
fat seasoned yogurt.

 ❯ Deep frying, which introduces trans-fat un-
suitable for diabetes, can be replaced with pan 
frying, a healthier fat-based cooking method. 
While steaming is healthier, it is not suggested 
as it is water-based and differs from fat-based 
cooking methods.

As a result, DMPKG ensures explainable results by 
integrating trusted medical sources into its reasoning. 
Its graph-based structure decomposes recipes into 

core entities, applies step-by-step problem-solving, 
and reconstructs modified recipes. Irrespective of the 
recipe, the model knows the presence of shrimp is not 
suitable for a vegetarian diet, enabling generalization. 
It also guarantees compliance with dietary constraints 
while retaining the essence of the original recipe, such 
as transforming fried shrimp tacos into pan-fried cau-
liflower tacos.

Smart Manufacturing
By mapping the sensor data to high-level process on-
tology (https://tinyurl.com/4vyuuvmm), DMPKG can 
be constructed for each assembly run grounded by the 
semantics of the sensors and assembly procedure as 
shown in Figure 2 to infer the following:

 ❯ Load cell, a sensor that produced anomalous val-
ue is attached to robot-2.

 ❯ The robot was performing the function of  
“Robot-2 picks rocket body part-1 from the 
conveyor.”

 ❯ The corresponding image at the timestamp did 
not have “Rocket Body Part-1.” Therefore, it is a 
missing body part that caused the anomaly and 
not the sensor malfunctioning. Through planning 
strategies, another robot can be used to add the 
missing body part.

 ❯ If it was a sensor malfunction, the sensor manual 
knowledge graph can be used to list the steps to 
the user to calibrate the sensor values.

Similar to the diet use case, the insights of anoma-
ly detection can be explained by the model to ensure 
the trustworthiness of the domain experts. DMPKG 
facilitates high-order reasoning in any manufacturing 
task through its rich modular representation. A similar 
use case demonstrated that representing AI pipeline 
metadata as process has benefited recommendation 
compared to lengthy textual data.15

SUPPORTING CAPABILITIES: 
REPRESENTATION LEARNING, 
ABSTRACTION, EXPLAINABILITY, 
AND CAUSAL INFERENCE

Representation Learning
As a neurosymbolic framework, DMPKG supports 
embedding-based feature extraction and similarity 
searches across multiple data modalities, enabling ef-
ficient processing of unstructured data like images or 
text. For example, users can request shrimp-contain-
ing recipes by providing an image, which is converted 
to an embedding to find matches. Similarly, users can 
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knowledge graph construction frameworks such as 
Empower.9 Another is the development of algorithms 
capable of leveraging DMPKGs for real-time reasoning 
and decision-making. With the rise of vector databases, 
embedding-based searchers using GPUs and hosting 
large-scale in-memory graphs have become possible.14 
Expanding DMPKGs to incorporate richer multimodal 
data sources, such as video and other emerging data 
formats, presents additional potential for enhancing 
their utility. Further research into modeling neural net-
work architectures, such as compositional attention 
networks, could further integrate neural and symbol-
ic components seamlessly. Finally, there is a need to 
rethink the evaluation of LLMs on compositional rea-
soning, as current benchmarks often fail to capture 
deeper reasoning abilities, particularly when superfi-
cial changes, such as renaming variables in math rea-
soning benchmarks, can influence results.7,8
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With widespread adoption globally, micromobility like bikes, e-scooters, and 
e-bikes has attracted increasing attention due to its ability to complement existing 
transportation modes and promote sustainable transportation. Understanding 
micromobility user behaviors in urban areas is essential for improving safety and 
comfort, as well as for informing infrastructure development and policy. Prior 
investigations on micromobility user behaviors primarily relied on statistical and 
kinematic modeling approaches. Although these methods have proven effective 
in characterizing user behaviors at both macroscopic and microscopic levels, 
the advent of artificial intelligence (AI)-powered data analytics and behavioral 
modeling is revolutionizing the field. Recently, advanced machine learning models, 
such as gradient boosting decision tree, graph convolutional network, and inverse 
reinforcement learning, has introduced new momentum into micromobility user 
behavior research. This article explores recent developments, research opportunities, 
and future directions in this field, leveraging the power of more generic AI approaches.

Micromobility has gained increasing prevalence 
as a sustainable and convenient transpor-
tation option, powered by human or electric 

energy. It is particularly suitable for short-distance or 
leisure-related first- and last-mile trips in urban areas. 
The emergence of micromobility presents a significant 
opportunity to enhance transportation accessibility, 
alleviate traffic congestion, and reduce pollution and 
carbon emissions. The most popular and widely ad-
opted micromobility devices are traditional bicycles 
(bikes), electric scooters (e-scooters), and electric bi-
cycles (e-bikes). For example, statistics indicate that 
12.7 million bikes were produced in the Europe in 2022, 
dockless e-scooter ridership reached approximately 
56.5 million in the United States in 2022, and e-bike 
ownership in China reached 350 million by 2025.

The rapid growth in private ownership of micro-
mobility devices and the expansion of shared-mobility 

services have attracted considerable academic atten-
tion toward micromobility user behavior analysis.1 Mi-
cromobility user behavior analysis focuses on under-
standing how individuals navigate roads, choose modes, 
plan trips, and interact with other road users and their 
surroundings. However, capturing nonlinear and com-
plex patterns in large-scale behavioral data and iden-
tifying factors influencing micromobility utilization 
remain challenging problems. These issues are closely 
related to user safety and comfort, as well as micromo-
bility management and operations. Machine learning 
(ML), an artificial intelligence (AI) technique that learns 
from data (or experience), has been widely adopted in 
transport planning and engineering, including mobility 
data extraction, traffic flow modeling, and road safety 
assessment. In recent years, A variety of ML approach-
es have gained increasing prominence in micromobility 
user behavior research. The goal is to support the de-
sign of safe and efficient transportation networks while 
optimizing traffic management and control systems.

This article reviews the research trends of micro-
mobility user behavior analysis based on ML  methods. 
Specifically, we examine how ML approaches en-
hance our understanding of variable relationships and 
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demonstrate their potential for achieving higher pre-
diction accuracy. Furthermore, we identify key future 
research directions for further analyzing the mecha-
nisms of micromobility usage patterns in various road 
environments, which could ultimately improve riding 
experiences and user satisfaction.

EXISTING STUDIES
Figure 1 illustrates four primary application scenarios 
of ML approaches in micromobility user behavior anal-
ysis: 1) user choice patterns, 2) spatiotemporal trip pat-
terns, 3) crash and injury analysis, and 4) riding behavior 
analysis. The first two scenarios focus on macro-level 
aspects, examining why users adopt micromobility and 
how they navigate complex road networks. The latter 
two investigate micro-level factors, including safety 
risks, riding perceptions, movement dynamics, and traf-
fic conflicts during micromobility usage.

User Choice Patterns
User choices on different types of transport modes and 
different devices for daily travel are changeable and 
affected by multifaceted factors. Understanding their 
attitudes and preferences toward micromobility op-
tions is crucial for promoting the market penetration 
of micromobility and reshaping the existing transpor-
tation systems. Traditionally, parametric approaches, 
such as logit models, were commonly used in choice 
behavior studies and have been proven to be effective. 
However, these approaches are limited to  dealing with 
complex data structures and nonlinear relationships 

among variables.2 ML classification models have 
emerged as an exploratory tool to investigate the dis-
crete travel choice behaviors. For instance, the gradi-
ent boosting decision tree (GBDT) model was found 
to be useful to analyze user preferences for dockless 
shared e-bikes affected by travel characteristics, built 
environment, and shared infrastructure systems. In 
GBDT, correlated variables could be retained since it 
inherently considers interaction effects among inde-
pendent variables. By applying partial dependence 
plots (PDPs), the nonlinear relationships between in-
dependent variables and user preference types could 
be illustrated. The results showed that the GBDT mod-
el outperformed the traditional multinomial logit mod-
el with better generalization capability and improved 
robustness.2 Another study quantified user preference 
uncertainty in e-scooter selection based on its usage 
history and current device status. A robust adversar-
ial reinforcement learning framework was designed 
to enhance the model’s predictive ability. The findings 
suggest that analyzing user device selection behavior 
could benefit rebalancing and charging strategies in 
shared e-scooter systems.3

Spatial–Temporal Trip Pattern
Investigations on the spatial–temporal trip pattern 
focuses on usage pattern (e.g., trip frequency and ac-
tivity pattern) of micromobility over space and time, 
and the impact of built environment variables (e.g., 
transport facilities and land use). Exploring the daily 
travel activity of micromobility users is beneficial for 

FIGURE 1. Application scenarios of ML-based micromobility user behavior analysis.
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planning agencies and shared micromobility operators 
to implement appropriate transport policies and design 
safe and efficient operation strategies.4 ML regression 
and clustering models are emerging data mining tech-
nologies to analyze the spatiotemporal distribution of 
micromobility ridership. For example, the GBDT model 
can be employed to identify the spatial pattern differ-
ences between the shared e-bike and shared e-scooter 
link flows, and evaluate the relative importance of inde-
pendent variables. The results indicate that e-scooter 
link flows appear to be more spatially concentrated 
and more sensitive to distance to the city center than 
that of e-bikes.4 Additionally, a deep multiview spatial– 
temporal network framework was developed to analyze 
the hourly demand for shared bike travel patterns. They 
divided the Beijing urban area into square-mesh grids to 
link the shared bike trips with multiple urban features, 
including geography and land use, transport, public 
vitality, and meteorology. The framework was able to 
 conduct the large-scale real-time prediction of the vari-
ation in shared bike demand patterns, like spatial and 
temporal distribution among nearby regions.5

Crash and Injury Analysis
Statistical modeling has been widely utilized in crash 
and injury analysis, considering its capability to provide 
reliable arguments for crash severity and frequency 
with clearly interpretable results. Without the restric-
tions of preassumed relationships between variables, 
ML-based approaches become more powerful tools 
for a multidimensional safety assessment of different 
types of road users, such as identifying significant vari-
ables associated with injury severity categories and 
predicting the safety risks of different intersections or 
road segments.6,7 Currently, two ML-assisted research 
focuses regarding micromobility users are crash ki-
nematics and injury severity analysis under the influ-
ence of different riding behaviors. E-bike riders’ injury 
outcomes caused by front-end collisions with vehi-
cles were analyzed with various rider stature, velocity, 
and front-end shape settings in the simulation exper-
iments. By applying decision tree models, both the 
riders’ injury outcomes affected by front-end shape 
parameters and the interaction mechanism between 
the investigated variables could be interpreted.6 Addi-
tionally, the random forest methodology was applied 
to analyze the single micromobility (mainly e-scooter 
and bicycle) crashes by predicting the injury severity 
and identifying the impacting factors. The research 
findings suggest that multiple e-scooter riders’ behav-
iors have the potential to increase their injury severity, 

including without wearing helmet, trip with leisure 
purpose, and involvement in excessive speed.7

Riding Behavior Analysis
Riding behavior research is an effective way to ex-
plore various types of detailed riding scenarios, such 
as speed changes, swerving behaviors, helmet use, 
and distraction behaviors.1 Such riding scenarios are 
recognized as crucial components in affecting micro-
mobility user actual and perceived safety and comfort 
levels. ML applications in micromobility riding behav-
ior analysis mainly include risky behavior detection 
and interactive behavior modeling. For instance, a 
computer vision-based framework was trained to au-
tomate cycling stress assessments for urban road net-
works with the aid of street-view images. The results 
indicate that a contrastive learning approach could be 
a useful tool to learn image embedding space and pre-
dict the stress levels of cyclists based on image data 
with a high detection accuracy.8 Mobility scooter user 
identification could be realized by capturing the subtle 
patterns in upper-body movements during the riding 
through developing a deep learning-based model with 
a spatiotemporal graph convolutional network. This 
framework was proved to be effective in reaching high 
levels of authentication accuracy and uncovering the 
long-term variability behind rider behaviors.9 In addi-
tion, a deep maximum entropy inverse reinforcement 
learning (MEIRL) model was adopted to reproduce the 
crossing behaviors of e-bikes at an intersection. Tra-
jectories of e-bikes and other road users were extract-
ed by an automated algorithm from the drone-based 
video dataset. The proposed deep MEIRL model was 
able to predict the e-bike crossing trajectory accurate-
ly, especially for the microscopic behaviors of riders.10

Overall, as highlighted in previous research, ML meth-
ods have emerged as strong techniques for micromo-
bility user behavior analysis. ML models are robust and 
flexible in capturing nonlinear relationships and complex 
patterns in the data and evaluating data for prediction 
or decision making on a large scale. To overcome ML 
models’ difficulties in directly interpreting the modeling 
results, techniques like the Shapley additive explanation 
(SHAP) and PDPs have been proposed to quantify each 
feature’s contributions to final predictions.4

FUTURE RESEARCH DIRECTIONS
Extensive studies have been conducted on applying 
ML techniques to analyze micromobility user behav-
ior from various perspectives. However, significant 
gaps remain in promoting micromobility adoption 
and user satisfaction. Below, we envision several 
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recommendations for future research to better lever-
age ML approaches in this field.

 ❯ Evolution of micromobility systems: As an 
emerging transportation mode, micromobility 
has gained substantial popularity with rapidly 
increasing ridership, presenting significant chal-
lenges for transport infrastructure planning and 
policy design. Future research should employ ML 
approaches to assess the temporal dynamics of 
micromobility systems and evaluate their long-
term impacts on urban transport networks and 
user behavior patterns.

 ❯ Multimodal transportation services: The integra-
tion of shared micromobility with public transit 
presents great opportunities to establish flexible 
transit networks and mitigate the transportation 
inequality issues. However, how users trans-
fer between shared micromobility services and 
public transport modes, and how different mode 
attributes affect the mode choices has received 
limited attention, deserving further investigation.

 ❯ Spatiotemporal transferability of ML models: 
Transferability is indispensable for validating the 
generalizability of ML models and understanding 
 micromobility user behavior at macroscopic scales. 
Spatiotemporal transferability of ML models for 
micromobility users is still underexplored, proba-
bly due to data scarcity and inconsistent formats 
across jurisdictions. More research is required to 
transcend the spatial limitation of existing studies 
to seek the potentials of cross-regional dialogue.

 ❯ Multisource data-based crash analysis: Current 
studies primarily rely on police-reported crash 
data or media-reported accident information 
for micromobility safety assessments. Future re-
search should incorporate multisource datasets 
(e.g., mobile signaling and social media data) to 
better understand the interrelationships among 
user travel behavior patterns, riding experiences 
and perceptions, and road safety outcomes.

 ❯ Physics-informed ML approaches: Incorporating 
physics-based principles and empirical data with 
ML models has emerged as an effective way to 
enhance model performance by improving model 
generalizability and physical plausibility of  results. 
Consequently, physics-informed ML techniques 
show significant potential for modeling and sim-
ulating micromobility user interactions across  
diverse traffic conditions.

 ❯ AI-assisted micromobility riding systems: The 
significant advancements in AI and autonomous 

vehicle technologies exalt new opportunities for 
developing AI-assisted micromobility systems 
to improve rider safety and comfort. A key ap-
plication is designing real-time rider monitoring 
systems for detecting body vibration, alerting for 
inattentive behaviors, and predicting potential 
traffic conflicts and accidents.

Despite ML techniques excelling at processing 
large datasets and modeling complex scenarios, they 
face significant challenges in interpretability. Although 
feature importance analysis from ML models helps 
identify variables’ contributions, and interpretable ML 
methods (e.g., SHAP and PDPs) provide viable solu-
tions, many limitations remain. Key hurdles in practice 
include the computational intensity of SHAP value cal-
culations and the inability of PDPs to reveal potential 
interactions between features. These limitations war-
rant careful consideration in future applications.

CONCLUSION
The advancement of ML approaches has significantly 
accelerated digital transformation in the transporta-
tion sector. This article highlights the pivotal role of ML 
approaches in micromobility user behavior analysis, 
particularly in user choice patterns, spatiotemporal trip 
patterns, crash and injury analysis, and riding behavior 
analysis. ML techniques have demonstrated excep-
tional capability in uncovering complex variable rela-
tionships, establishing efficient assessment systems, 
and delivering superior prediction accuracy. Further re-
search should focus more on evolution of micromobility 
systems, integration into multimodal transportation ser-
vices, spatiotemporal transferability of ML models, mul-
tisource data-based crash analysis, physics-informed 
ML approaches, as well as AI-assisted micromobility 
riding systems. These advancements are expected to 
foster greater micromobility adoption and contribute to 
more human-centric urban mobility ecosystems.
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The energy needs for modern information and 
communication technology is increasing, 
dramatically. Roy Schwartz and colleagues tell 

us that new AI algorithms have resulted in a massive 
increase in the computational costs of state-of-the-art 
AI research: as much as 3,000,000 times between 2012 
and 2018, and the trend keeps increasing.1

Do we need to spend all that energy? Are there 
ways to reduce it? What is the role of software 
engineering in that reduction? To get answers to these 
questions, IEEE Software spoke to Prof. Federica Sarro, 
University College London.

Your research explores many aspects of software 
engineering including “Green Software Engineering.”2 
What is that exactly?
I like to define green software engineering as the 
discipline that aims at realizing sustainable software 
sustainably. It involves using green practices and 
technologies throughout the software lifecycle in 

order to diminish the amount of carbon emissions 
associated with the software production, usage, and 
maintenance.

What motivates you to work on Green SE?
To realize responsible software systems, we need to go 
beyond providing the user with the right functionalities; 
we need to design, implement, and deploy software 
in a way that considers its impact on the users, the 
society, and the environment. Equipping software 
with attractive functionalities and minimizing faults 
isn’t enough if emerging nonfunctional properties of 
modern software systems, such as fairness, safety, 
and sustainability, are neglected.3,4,5 The challenges 
associated with energy consumption by deep 
learning models, especially large language models 
(LLMs), have recently brought more attention to the 
energy demands of these technologies. AI’s energy 
requirements are immense—a single training run of a 
large model can consume the equivalent of a typical 
household’s energy consumption over 291 years. This 
has spurred efforts to make AI-powered systems 
more energy-efficient and to develop sustainable 
computing practices.
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Can you give us an example of how that might work?
Well, just to look at our latest article on this topic, at 
the SSBSE’24 conference we showed that exploiting 
simple optimizations could lead to substantial savings 
(266% reduction in inference time) in the use of 
Stable Diffusion, a popular Generative AI model for 
text-to-image generation.6

We can remember a time when green software 
engineering (SE) was extensively discussed.7,8 But now, 
not so much. Is it a topic that has gone “off the boil”?
The journey toward green SE started more than a 
decade ago, with Professor Patricia Lago pioneering 
the field, among others. Nowadays, it’s understandable 
to feel that software energy engineering might 
have been overshadowed, especially with the 
rapid advancements and hype surrounding other 
technological fields like AI and machine learning. These 
areas often receive more attention due to their rapid 
development and immediate, visible impact on daily life 
and business. At the same time, the progress in green 
SE has hardly been as dramatic. Many advancements 
in green SE are incremental improvements rather 
than disruptive breakthroughs. While these steady 
improvements are vital for long-term sustainability, 
they may not capture the public’s attention in the 
same way as groundbreaking new technologies. That 
said, energy engineering remains a critical and active 
area of research and development, even if it doesn’t 
always capture the headlines.

Can you provide examples where energy consumption 
is a high priority for organizations?
Energy consumption is becoming a high priority for many 
organizations due to its impact on operational costs, 
environmental sustainability, and regulatory compliance. 
Software contributes to energy consumption on par 
with other IT components such as hardware, data, 
and network. However, most of the industrial effort 
to date has been focused on minimizing the costs of 
IT infrastructure such as data centers that require 
significant power and cool environments to operate. 
Companies like Google, Amazon, and Microsoft invest 
heavily in energy-efficient technologies and renewable 
energy sources to power their data centers. More 
work is needed toward addressing software energy 
consumption, especially for AI-powered software.

What kind of work is needed?
Software engineers can play a crucial role in making 
the design choices that affect software energy 
consumption. We need to better support that decision 

making. There is a strong need for tools and frameworks 
that help developers write/use more energy-efficient 
code. For example, in the FECoM project,9 we aim to 
increase developer energy-awareness in the use of 
deep learning frameworks through fine-grained energy 
measurement. This work is part of my Green Shift 
Left mission, a broad research agenda supported by 
many excellent academic and industrial collaborators, 
aiming at shifting the concern of sustainability from 
being after-the-fact to being an integral part of the 
software engineering lifecycle.

Can you offer some success stories in changing 
energy consumption practices?
I would like to share a project recently developed by 
UCL computer science students alongside Intel, UCL 
EnergyGuard.10 It enables computer users to monitor 
and reduce their energy consumption while playing 
games on their laptops or PCs. GPUs are power-hungry, 
so EnergyGuard is helping users become aware of the 

TO REALIZE RESPONSIBLE SOFTWARE 
SYSTEMS, WE NEED TO GO BEYOND 
PROVIDING THE USER WITH THE 
RIGHT FUNCTIONALITIES.

ABOUT PROF. FEDERICA
SARRO

Prof. Federica Sarro is 
a professor of software 
engineering at University 
College London, WC1E 
6BT London, U.K. For more 
information, see http://
www0.cs.ucl.ac.uk/staff 
/f.sarro/ or contact her at f.sarro@ucl.ac.uk.
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amount of energy gaming costs them—the electricity 
bill, hardware costs, subscription costs, bandwidth, 
and so on. I believe this project exemplifies how the 
future of green technology should look like by giving 
the end-user the possibility of making sustainable 
choices when using any software.

What are the current challenges in this field, and what 
do you foresee for the future?
The software engineering effort has mainly 
concentrated on code optimization (i.e.,. refining 

software code to be more efficient, thereby reducing 
the energy required for execution) but there is still 
much more to do to enable the Green Shift Left. 
Developers need energy-aware development tools. 
We also need better methods for making end-users 
aware of their software’s energy consumption (e.g., 
letting them see the accumulated wattage of software 
as they produce or use it). This will give software users 
a sense of its real-world cost and the ability to make 
environmentally friendly decisions.

Are there any legislative needs to support these issues?
Europe has some legislation requiring organizations to 
report on energy consumption, but similar regulations 
are lacking elsewhere. Given the increasing prevalence 
of deep learning and LLMs, this is concerning. There 
is an important ethical matter policy makers should 
not forget: The high computational and energy costs 
associated with powerful AI models can exacerbate 
inequalities, given that only well-funded organizations 
can afford to train and deploy these systems. This 
creates a division between those who have access to 
advanced AI capabilities and those who do not.

Thanks for talking. Overall, what message would you 
like to leave the readers of IEEE Software?
The energy demands of software, and in particular 
AI-powered software, are staggering. So it is crucial 
for the software engineering community to 
prioritize green engineering. While most research 
comes from academia, there is a growing interest 
from industry in developing measurement tools 
(for notes on that work, see http://www0.cs.ucl.ac 
.uk/staff/f.sarro/). So we need to coordinate efforts, 
share tools, and build a trusted ecosystem of certain 
standards and best practices. For those who want to 
get involved, I invite you to join groups like the Green 
Software Foundation.11 
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Everyone acknowledges the importance of responsible computing, but practical advice
is hard to come by. Important Internet applications are ways to accomplish business
processes. We investigate how they can be geared to support responsibility as
illustrated via sustainability. Sustainability is not only urgent and essential but also
challenging due to engagement with human and societal concerns, diverse success
criteria, and extended temporal and spatial scopes. This article introduces a new
framework for developing responsible Internet applications that synthesizes the
perspectives of the theory of change, participatory systemmapping, and computational
sociotechnical systems.

How can we create responsible Internet applica-
tions? We address this question through a par-
ticular family of Internet applications, namely,

process and project management, and through a par-
ticular illustration of responsibility, namely, sustainabil-
ity (see “Sustainability”). Our envisioned framework
highlights the fact that responsibility, like the closely
related concept of ethics, cannot be approached from
the standpoint of pieces of software but must be
viewed in terms of how they affect human outcomes
and interactions in a social context.1 Computer scien-
tists use the term “system” almost exclusively to refer
to an artifact realized in software or hardware. Sus-
tainability calls for a broader notion of a system that
reflects two connotations: a system encompasses the
entities of interest (and so must include stakeholders),
and a system is what we place in an environment (and
so must take into account its interactions with the sur-
rounding socioeconomic world).2

Key challenges arise in incorporating sustainability
into the business processes and practices of planning,

scheduling, and executing projects.3 We adopt the term
project management for sustainability (PMfS) to include
the desired capabilities and practices. Current manage-
ment tools (e.g., Zoho Projects, JIRA, and Microsoft Pro-
ject) emphasize considerations relating to the cost,
time, and quality but offer weak support for the com-
plex factors that underpin sustainability.4 Moreover,
achieving responsibility is not merely a matter of apply-
ing tools because, conceptually, prior to any tools, the
requirements for a project must be understood, it must
be ensured that they reflect criteria such as ethics.

This article identifies the key aspects for which pro-
ject management needs to be expanded: optimization,
stakeholders, causal models, and ethics. It offers an
interdisciplinary framework for responsibility combin-
ing the theory of change and participatory system
mapping from the social sciences with computational
sociotechnical systems. It concludes with guidance
on future research challenges and a call to arms for
responsible Internet computing.

CHALLENGES FOR SUSTAINABILITY
To understand the challenges facing PMfS, consider
a typical construction project—a housing complex.

1089-7801 © 2023 IEEE
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Sustainability is crucial across the three stages in the
lifecycle of the complex.

Creating and Commissioning: Developers iden-
tify a need and find a site. To obtain approvals
for converting that land from its current use,
they prepare designs showing how the envi-
sioned complex would fit into its environment
in terms of ecology (wildlife habitats), construc-
tion (building materials and equipment), transit
(road capacity and a new metro stop), utilities
(water, sewage, electricity, and telecommunica-
tions), and services (schools and clinics). They
build the complex.
Use: Households move in, leading to ongoing
operations and maintenance, with an environ-
mental footprint.

Decommissioning: Decades later, the complex
is taken out of use and possibly demolished.
Concerns include the reusability and recyclabil-
ity of the materials; any pollution caused; and
the effects on the local socioeconomic system,
such as nearby businesses.

Decisions can have long-term effects. An energy-
efficient construction with space for trees lowers the
carbon footprint during use. Damage to the environ-
ment during use may hinder reintroducing a bird sanc-
tuary upon decommissioning. Furthermore, clean
decommissioning facilitates commissioning another
project in the same space.

The processes that go into realizing a complex’s
lifecycle are clearly based on information exchange
and decision making. How those decisions are framed

Sustainability

E merging issues such as climate change, pollution,

depletion of natural resources, and social

inequality have made sustainability an existential

concern for humanity, leading to an urgent need to

accommodate sustainability in all business operations.S1

Von Carlowitz in his seminal Sylvicultura

OeconomicaS2 formulated sustainability in the early

1700s in the context of forestry: how planned

reforestation would mitigate the risks of timber

shortages. Carson’s book Silent SpringS3 inspired the

study of sustainability in the modern era. The Limits to

GrowthS4 was a landmark report based on computer

simulations arguing that the finite supply of natural

resources is unlikely to support the then-current rates of

economic and population growth much beyond 2100.

This report has led to international initiatives,

including the Earth Summit and the United Nations

Commission on Sustainable Development. Sustainable

development is “development that meets the need of

the present without compromising the ability of future

generations to meet their own needs.S5

The triple bottom lineS6 captures the three essential

elements of sustainability:

Social: culture, accessibility, and participation.

Environmental: soil, water, atmosphere, biodiver-

sity, and energy consumption.

Economic: costs and bureaucracy.

These factors cannot be traded off directly, and

coming up with joint criteria is nontrivial. For each

of these factors, we must balance short-term and

long-term risks and payoffs, local and global scope,

transparency, and accountability with privacy, individual

freedom, and societal interests. Additionally, these

factors interact in subtle ways, and we must tackle the

interdependencies.3

Sustainability is reliant on the behaviors of

stakeholders, with their beliefs and competencies.

How well it is achieved depends on how we capture

stakeholders’ requirements, help them reconcile conflicts,

and responsibly trade off current and future needs.
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Everyone acknowledges the importance of responsible computing, but practical advice
is hard to come by. Important Internet applications are ways to accomplish business
processes. We investigate how they can be geared to support responsibility as
illustrated via sustainability. Sustainability is not only urgent and essential but also
challenging due to engagement with human and societal concerns, diverse success
criteria, and extended temporal and spatial scopes. This article introduces a new
framework for developing responsible Internet applications that synthesizes the
perspectives of the theory of change, participatory systemmapping, and computational
sociotechnical systems.

How can we create responsible Internet applica-
tions? We address this question through a par-
ticular family of Internet applications, namely,

process and project management, and through a par-
ticular illustration of responsibility, namely, sustainabil-
ity (see “Sustainability”). Our envisioned framework
highlights the fact that responsibility, like the closely
related concept of ethics, cannot be approached from
the standpoint of pieces of software but must be
viewed in terms of how they affect human outcomes
and interactions in a social context.1 Computer scien-
tists use the term “system” almost exclusively to refer
to an artifact realized in software or hardware. Sus-
tainability calls for a broader notion of a system that
reflects two connotations: a system encompasses the
entities of interest (and so must include stakeholders),
and a system is what we place in an environment (and
so must take into account its interactions with the sur-
rounding socioeconomic world).2

Key challenges arise in incorporating sustainability
into the business processes and practices of planning,

scheduling, and executing projects.3 We adopt the term
project management for sustainability (PMfS) to include
the desired capabilities and practices. Current manage-
ment tools (e.g., Zoho Projects, JIRA, and Microsoft Pro-
ject) emphasize considerations relating to the cost,
time, and quality but offer weak support for the com-
plex factors that underpin sustainability.4 Moreover,
achieving responsibility is not merely a matter of apply-
ing tools because, conceptually, prior to any tools, the
requirements for a project must be understood, it must
be ensured that they reflect criteria such as ethics.

This article identifies the key aspects for which pro-
ject management needs to be expanded: optimization,
stakeholders, causal models, and ethics. It offers an
interdisciplinary framework for responsibility combin-
ing the theory of change and participatory system
mapping from the social sciences with computational
sociotechnical systems. It concludes with guidance
on future research challenges and a call to arms for
responsible Internet computing.

CHALLENGES FOR SUSTAINABILITY
To understand the challenges facing PMfS, consider
a typical construction project—a housing complex.
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yields the requirements that determine whether infor-
mation technologies are applied responsibly. Thus,
PMfS must address the following challenges arising
from the wide scope that sustainability induces:

Optimization: Whereas traditional project man-
agement has a short horizon, PMfS must con-
sider the entire lifecycle of a project. In our
housing complex example, we should include the
eventual reclamation of the site upon decommis-
sioning. Since information about the future may
be lacking, we may need to combine quantitative
and qualitative methods for optimization.
Stakeholders: PMfS relies on stakeholder partici-
pation for defining problems, identifying solu-
tions, realizing them, and tracking and assessing
outcomes.5 The stakeholders may change over
the lifecycle of a project, e.g., for a housing com-
plex: first the designers; then the building mate-
rial suppliers; then residents, operators, and the
surrounding community members; and, finally,
future generations who will decommission the
complex. Such stakeholders are autonomous
and do not follow a top-down hierarchy as tradi-
tional process management assumes.
Causal models: Capturing the interplay of
causal relationships at multiple timescales and
across organizational boundaries (accounting
for autonomous stakeholders) is essential for
PMfS. The causal models of interest involve not
just physical phenomena (e.g., a garbage incin-
erator puts out smoke, or big trees help reduce
the need for cooling) but also social and cogni-
tive phenomena (e.g., a lack of public transpor-
tation leads people to use personal vehicles, or
people may adjust their air conditioner settings
depending on how their neighbors set theirs).
Ethics: PMfS must contend with competing
demands by stakeholders and along different
sustainability dimensions. The social norms and
values that motivate human behavior are particu-
larly relevant in achieving sustainability. Interest-
ing considerations here involve intergenerational
equity (the trading of present prosperity with the
future) and intragenerational equity (how welfare
is distributed currently) under uncertainty.

ELEMENTSOFACONCEPTUAL
FRAMEWORKFORRESPONSIBILITY

As these challenges indicate, tackling responsibility
requires a new, interdisciplinary framework, which we
introduce here in terms of its three main elements.

Theory of Change
To bring about change, i.e., to identify or evaluate poten-
tial interventions, we need an understanding, or theory,
about cause and effect. These theories help us tackle
complex systems where outside influences and internal
indeterminacy render hard predictions impossible.

The theory of change is a way to make the theories
underlying an intervention explicit.6 The theory of
change is widely used for policy evaluation by govern-
ments and by nongovernment organizations. The
approach begins with a project’s long-term goals and
then works back through intermediary stages until the
current state is reached.7 Laying out a theory of
change forces us to articulate the causal links, thereby
exposing unproven or problematic assumptions.

Typically, theories of change are developed by
starting with the goal of the project and working back-
ward through a causal chain to identify the outcomes
that are expected to yield the expected impact. These
outcomes map to project outputs (e.g., deliverables
and products). Project activities that create the out-
puts require inputs, such as people, money, and equip-
ment. Thus, we obtain a causal chain that shows the
requirements to achieve the goals. Using this chain,
one can clarify the assumptions underlying the theory
of change and justify these assumptions by reference
to prior knowledge, experience, or intuition. It helps to
arrange the causal chain along a timeline and specify
what resources are needed when, as in conventional
process management.

Making explicit the assumptions, contexts, and
mechanisms that underlie a project plan reveals misun-
derstandings and conflicts as well as potential path-
ways to resolve them. A theory of change can help
clarify the assumed scope of a project, including which
factors and outcomes are integral to the desired
change and which are irrelevant or unchanging. Finally,
a theory of change is a useful starting point for compu-
tational models of the project domain that incorporate
the mechanisms posited in the theory.

Participatory System Mapping
Despite its strengths in laying out the hypothesized
causes of change, the theory of change approach may
oversimplify complex systems as linear sequences of
inputs, activities, outputs, outcomes, and impacts and
ignore feedback loops between outputs and inputs or
activities. Moreover, the approach emphasizes direct
causes and causes that are within a narrow project
boundary, risking ignoring exogenous disruptive
causes. One way of overcoming these limitations is to
combine the theory of change with participatory sys-
tem mapping.
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Participatory system mapping is a modeling meth-
odology in which a group of stakeholders collabora-
tively develop a causal map of an issue. This map
includes factors and links between them. A factor is
anything expressed as a variable (i.e., can increase or
decrease); a link is a causal relationship between fac-
tors. The map represents what stakeholders believe to
be the causal structure of their system.

Building a map is a valuable exercise in clarifying
participants’ understanding. The map is a useful
resource, not only for documentation but also for fur-
ther analysis. Participatory system maps, such as the
example in Figure 1, provide the thinking tools that can
be used for the discussion and exploration of complex
issues as well as sense-checking the implications of
suggested causal links.

Figure 1 was created using the Participatory System
Mapper tool for participatory mapping.8 The displayed
map shows the theory of change geared to our exam-
ple. The cocreation of such maps by stakeholders does
take effort in that they must reflect on each other’s
perspectives, but the exercise is facilitated by the
structure of the map.

Participatory mapping is helpful in developing an
understanding of a domain and identifying the project

scope. The map may then be formalized as the basis
for a theory of change, or by quantifying the links
between factors to yield a system dynamics model, or
by building an agent-based model that represents the
causal analysis embodied in the map.

However, methods for formalizing system maps
into more quantified models are still in their infancy.
Further research is needed on methods for refining a
system map into a theory of change and then into a
computational model.

Computational Sociotechnical
Systems
We adopt the notion of a sociotechnical system, whose
social tier includes stakeholders and whose technical
tier includes computational artifacts or resources,
such as databases and sensors. The stakeholders have
(preferences over) goals and values. They interact with
each other to advance their goals and to promote their
values; they form expectations of one another and
track them. Being autonomous, the stakeholders may
violate each other’s expectations but concomitantly
can hold others—and be held by others—to account.2

The technical artifacts make their interactions possible

FIGURE 1. An example participatory system map. The rectangles mark the course of the project, color-coded by stage. The ovals

represent sustainability factors, and the arrows show causal links. The green arrows are positive relationships, red dotted arrows

are negative relationships, and dashed arrows are long-term effects.
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yields the requirements that determine whether infor-
mation technologies are applied responsibly. Thus,
PMfS must address the following challenges arising
from the wide scope that sustainability induces:

Optimization: Whereas traditional project man-
agement has a short horizon, PMfS must con-
sider the entire lifecycle of a project. In our
housing complex example, we should include the
eventual reclamation of the site upon decommis-
sioning. Since information about the future may
be lacking, we may need to combine quantitative
and qualitative methods for optimization.
Stakeholders: PMfS relies on stakeholder partici-
pation for defining problems, identifying solu-
tions, realizing them, and tracking and assessing
outcomes.5 The stakeholders may change over
the lifecycle of a project, e.g., for a housing com-
plex: first the designers; then the building mate-
rial suppliers; then residents, operators, and the
surrounding community members; and, finally,
future generations who will decommission the
complex. Such stakeholders are autonomous
and do not follow a top-down hierarchy as tradi-
tional process management assumes.
Causal models: Capturing the interplay of
causal relationships at multiple timescales and
across organizational boundaries (accounting
for autonomous stakeholders) is essential for
PMfS. The causal models of interest involve not
just physical phenomena (e.g., a garbage incin-
erator puts out smoke, or big trees help reduce
the need for cooling) but also social and cogni-
tive phenomena (e.g., a lack of public transpor-
tation leads people to use personal vehicles, or
people may adjust their air conditioner settings
depending on how their neighbors set theirs).
Ethics: PMfS must contend with competing
demands by stakeholders and along different
sustainability dimensions. The social norms and
values that motivate human behavior are particu-
larly relevant in achieving sustainability. Interest-
ing considerations here involve intergenerational
equity (the trading of present prosperity with the
future) and intragenerational equity (how welfare
is distributed currently) under uncertainty.

ELEMENTSOFACONCEPTUAL
FRAMEWORKFORRESPONSIBILITY

As these challenges indicate, tackling responsibility
requires a new, interdisciplinary framework, which we
introduce here in terms of its three main elements.

Theory of Change
To bring about change, i.e., to identify or evaluate poten-
tial interventions, we need an understanding, or theory,
about cause and effect. These theories help us tackle
complex systems where outside influences and internal
indeterminacy render hard predictions impossible.

The theory of change is a way to make the theories
underlying an intervention explicit.6 The theory of
change is widely used for policy evaluation by govern-
ments and by nongovernment organizations. The
approach begins with a project’s long-term goals and
then works back through intermediary stages until the
current state is reached.7 Laying out a theory of
change forces us to articulate the causal links, thereby
exposing unproven or problematic assumptions.

Typically, theories of change are developed by
starting with the goal of the project and working back-
ward through a causal chain to identify the outcomes
that are expected to yield the expected impact. These
outcomes map to project outputs (e.g., deliverables
and products). Project activities that create the out-
puts require inputs, such as people, money, and equip-
ment. Thus, we obtain a causal chain that shows the
requirements to achieve the goals. Using this chain,
one can clarify the assumptions underlying the theory
of change and justify these assumptions by reference
to prior knowledge, experience, or intuition. It helps to
arrange the causal chain along a timeline and specify
what resources are needed when, as in conventional
process management.

Making explicit the assumptions, contexts, and
mechanisms that underlie a project plan reveals misun-
derstandings and conflicts as well as potential path-
ways to resolve them. A theory of change can help
clarify the assumed scope of a project, including which
factors and outcomes are integral to the desired
change and which are irrelevant or unchanging. Finally,
a theory of change is a useful starting point for compu-
tational models of the project domain that incorporate
the mechanisms posited in the theory.

Participatory System Mapping
Despite its strengths in laying out the hypothesized
causes of change, the theory of change approach may
oversimplify complex systems as linear sequences of
inputs, activities, outputs, outcomes, and impacts and
ignore feedback loops between outputs and inputs or
activities. Moreover, the approach emphasizes direct
causes and causes that are within a narrow project
boundary, risking ignoring exogenous disruptive
causes. One way of overcoming these limitations is to
combine the theory of change with participatory sys-
tem mapping.
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and provide affordances that make some interactions
easier and some harder.1

This vision of a sociotechnical system is computa-
tional in that the specific interactions of the stakehold-
ers in the social tier are characterized computationally
and are realized by the more detailed computations by
the artifacts in the technical tier. Figure 2 illustrates
our conception in schematic terms.

We adopt sociotechnical systems as a basis for
modeling sustainability. To be sustainable, a system
must be open in that the stakeholders can come and
go—the system must outlast its stakeholders’ tenures
in it. Moreover, even for the same stakeholders, their
goals and values change over time because of their
experiences, needs, and changing social mores. A hall-
mark of sustainability is the coherence over time of the
values realized by the system.

Thinking about sustainability naturally leads to a
social tier of norms that guide the behaviors of its
members (the stakeholders) yet leaves them with the
autonomy to contravene those norms, should that be
appropriate. Furthermore, a technical tier remains
essential because we need to design our devices and
data to be able to respect the dictates of sustainability.
As environmental conditions or stakeholder values
change (in the extreme case, because of a generational
shift, but even otherwise), the currently established
norms may no longer be appropriate for many of the
stakeholders. When that happens, their behavior in
alignment with their values would repeatedly lead to
the norms being deviated from.9 When the norms are
deviated from sufficiently often by sufficiently many

stakeholders, the social tier has changed in either
interpretation of norms: 1) for nonlegislated norms, the
deviations are evidence that new norms have emerged,
and 2) for legislated norms, there would be ample
grounds for revising them.

VISION AND DIRECTIONS
Putting these together, our envisioned conceptual
framework for responsible Internet computing involves
1) expanding our conception of a system for an Internet
application to include the social structure in which it is
(to be) deployed; 2) engaging the stakeholders in cap-
turing their preferences over the functionality desired,
their values, and what tradeoffs are acceptable; and
3) developing causal models of possible interventions.

To realize this vision requires advances along each
of these three themes. We outline some representative
(i.e., not comprehensive, but promising) challenges for
each theme.

Causal Modeling
We need ways to achieve better causal modeling,
which underpins the theory of change. One way to do
so is through the extensive use of agent-based model-
ing and simulation. In addition, these models should be
used as inputs to further participatory mapping to pro-
vide empirical grounding to the deliberations being car-
ried out and, thus, help identify misalignment in their
assumptions. This process would be recursive in that
producing a causal model of one aspect of the project
may require additional participatory mapping and
uncover additional misalignments.

Value Alignment
Ethics is fundamentally based on values. Responsibility
requires that we respect stakeholders’ values, which
they may have figured out a priori. If the stakeholders
support sustainability, they would find that at least
some of their values align, suggesting the possibility of
them being able to collaborate, though they may be at
variance on other values. Even if they do not fully
agree, they would need to understand where each
other stands. In addition, being able to sufficiently rec-
oncile the tradeoffs they are willing to make would lead
to the creation of a social tier that prohibits or disin-
centivizes certain behaviors and outcomes.

Renewal
Sustainability, by definition, is not a one-shot problem
and calls for constant care. A sustainable project must
include the ability to monitor its functioning, e.g., to dis-
cover if the right goals are being (adequately) met and if
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FIGURE 2. A sociotechnical system and its stakeholders
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and provide affordances that make some interactions
easier and some harder.1

This vision of a sociotechnical system is computa-
tional in that the specific interactions of the stakehold-
ers in the social tier are characterized computationally
and are realized by the more detailed computations by
the artifacts in the technical tier. Figure 2 illustrates
our conception in schematic terms.

We adopt sociotechnical systems as a basis for
modeling sustainability. To be sustainable, a system
must be open in that the stakeholders can come and
go—the system must outlast its stakeholders’ tenures
in it. Moreover, even for the same stakeholders, their
goals and values change over time because of their
experiences, needs, and changing social mores. A hall-
mark of sustainability is the coherence over time of the
values realized by the system.

Thinking about sustainability naturally leads to a
social tier of norms that guide the behaviors of its
members (the stakeholders) yet leaves them with the
autonomy to contravene those norms, should that be
appropriate. Furthermore, a technical tier remains
essential because we need to design our devices and
data to be able to respect the dictates of sustainability.
As environmental conditions or stakeholder values
change (in the extreme case, because of a generational
shift, but even otherwise), the currently established
norms may no longer be appropriate for many of the
stakeholders. When that happens, their behavior in
alignment with their values would repeatedly lead to
the norms being deviated from.9 When the norms are
deviated from sufficiently often by sufficiently many

stakeholders, the social tier has changed in either
interpretation of norms: 1) for nonlegislated norms, the
deviations are evidence that new norms have emerged,
and 2) for legislated norms, there would be ample
grounds for revising them.

VISION AND DIRECTIONS
Putting these together, our envisioned conceptual
framework for responsible Internet computing involves
1) expanding our conception of a system for an Internet
application to include the social structure in which it is
(to be) deployed; 2) engaging the stakeholders in cap-
turing their preferences over the functionality desired,
their values, and what tradeoffs are acceptable; and
3) developing causal models of possible interventions.

To realize this vision requires advances along each
of these three themes. We outline some representative
(i.e., not comprehensive, but promising) challenges for
each theme.

Causal Modeling
We need ways to achieve better causal modeling,
which underpins the theory of change. One way to do
so is through the extensive use of agent-based model-
ing and simulation. In addition, these models should be
used as inputs to further participatory mapping to pro-
vide empirical grounding to the deliberations being car-
ried out and, thus, help identify misalignment in their
assumptions. This process would be recursive in that
producing a causal model of one aspect of the project
may require additional participatory mapping and
uncover additional misalignments.

Value Alignment
Ethics is fundamentally based on values. Responsibility
requires that we respect stakeholders’ values, which
they may have figured out a priori. If the stakeholders
support sustainability, they would find that at least
some of their values align, suggesting the possibility of
them being able to collaborate, though they may be at
variance on other values. Even if they do not fully
agree, they would need to understand where each
other stands. In addition, being able to sufficiently rec-
oncile the tradeoffs they are willing to make would lead
to the creation of a social tier that prohibits or disin-
centivizes certain behaviors and outcomes.

Renewal
Sustainability, by definition, is not a one-shot problem
and calls for constant care. A sustainable project must
include the ability to monitor its functioning, e.g., to dis-
cover if the right goals are being (adequately) met and if
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the goals being met are the right ones. Based on such
observations, if any misalignments arise, we would need
a way to make course corrections by changing the pro-
cess being enacted. Not all such misalignments need to
be resolved in a project, so a concomitant challenge is
to resolve the project scope such that the participants
can focus their efforts on themost germane aspects.

Such improvements can be seen in terms of optimi-
zation. Given the stakeholders’ preferences, we expect
the system to maximize an associated objective that
reflects those preferences. When the outcomes are no
longer optimal—either because new knowledge indi-
cates better solutions or because the stakeholders’
preferences have shifted—we would need to revise the
operations in the technical tier as well as the applica-
ble norms in the social tier. As explained, mostly, those
revisions may be incremental, but, sometimes, they
may require extensive changes.

Putting it together, we can see that achieving
responsible Internet computing requires more than an
exhortation to be responsible or do the right thing.
Computer scientists must engage stakeholders in ways
that go beyond current approaches focused on surveys
or interviews to 1) help stakeholders understand the
causal models of the technical aspects, which they may
not understand well; 2) obtain their help in jointly devel-
oping models of social interactions, where they would
have experience; and 3) jointly elicit and formalize the
values and tradeoffs to be embodied in the solution.
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Distributed computing continuum systems (DCCSs) are integrated systems that 
combine cloud, edge, and Internet of Things devices to deliver scalable and low-
latency computing resources across diverse applications and environments. 
Composed of a heterogeneous mix of computational units, storage systems, and 
communication networks, DCCSs facilitate real-time data processing and analysis 
by distributing tasks dynamically based on resource availability and demand. 
The complex structure of DCCSs reflect the intricate organization of the human 
body, where different systems work together to maintain overall functionality. 
This article draws parallels between the human body’s intelligence mechanisms 
and the operational strategies needed for DCCSs. We especially explore several 
human body analogies or principles that can be incorporated into DCCSs to 
mitigate interpretable and noninterpretable challenges while enhancing overall 
performance.

Distributed computing continuum systems 
(DCCSs) are an emerging computing paradigm 
that integrates cloud, edge, mobile edge, the 

Internet of Things, and other computing environments 
into a unified system.1,2 In DCCSs, computing tasks 
are dynamically distributed across geographically dis-
persed nodes, thus effectively reducing latency by pro-
cessing data closer to their source. This uses resource 
hierarchy upon demand and thereby enhances overall 
system efficiency. With DCCSs, tasks are allocated to 
the most appropriate computing nodes when needed, 
resulting in improved performance and resilience. This 
capability meets the growing demand for complex, da-
ta-intensive, real-time data processing, big data analy-
sis, and emerging generative artificial intelligence (AI) 

applications. DCCSs can be used in a wide variety of 
fields,3 including smart cities, health care, autonomous 
vehicles, and industrial automation, where multiple 
objectives are required, including low latency, efficient 
resource utilization, high accuracy, and energy efficien-
cy. DCCSs improve operational efficiency by ensuring 
the optimal use of computing resources and reducing 
the need for centralized data processing and storage.

Recently, DCCSs have also integrated smart devic-
es with embedded intelligence,4 allowing them to au-
tonomously perform simple sensing and control tasks, 
thereby reducing the need for manual intervention. 
However, intelligence is needed not only within individ-
ual devices but across the entire system. In particular, 
DCCSs require intelligent and efficient mechanisms to 
ensure reliable integration, optimal performance, and 
robust management of complex operations. AI and ma-
chine learning (ML) are increasingly utilized in DCCSs 
for advanced control strategies, enabling predictive 
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maintenance, orchestration, elasticity (e.g., autoscal-
ing), efficient resource utilization, latency minimiza-
tion, and optimization of processes through real-time 
data analysis.5 For instance, in Zhang et al.,6 multilev-
el edge management and control modes form hierar-
chical structures to manage varying levels of control 
across the system, ranging from local controllers to 
central supervisory systems. Extended with causality, 
DCCSs can be easier understood and managed, allow-
ing deeper insights into system dynamics and interac-
tions through analysis of their behavior and impact.7

Traditional AI and ML techniques have limitations, 
particularly in DCCSs; one major issue is that they re-
quire vast amounts of input and training data, which 
can be impractical in resource-constrained environ-
ments. These approaches are also computationally 
intensive, requiring significant processing power and 
energy, which can be costly and inefficient. In some 
cases, the benefits of deploying traditional AI/ML solu-
tions can outweigh their costs. However, adversarial 
attacks can undermine systems’ security and reliabil-
ity, especially faulty training models or mismatched 
input for training.8 Moreover, it is difficult to verify re-
al-time accuracy, which complicates their deployment 
in dynamic and critical applications.

In general, AI/ML approaches rely on historical data 
to generate or suggest outcomes or solve issues. How-
ever, addressing noninterpretable future challenges or 
needs can be difficult when they are based solely on 
past information. DCCSs require efficient solutions 
that anticipate and adapt to future demands, enabling 
full autonomy and adaptability; however, current AI/
ML strategies are not sufficient for that. Alternative-
ly, the human ecosystem serves as a prime example 
of an intelligent living system. Recent studies have 
highlighted how the human body efficiently adapts 
and adjusts to changing environmental conditions 
through its complex and well-coordinated internal sys-
tems.9 Similarly, the intricate structure of the human 
body closely resembles DCCS architectures, suggest-
ing that insights from biological systems could inspire 
more effective and adaptive solutions for managing 
and optimizing DCCSs.10 This approach ensures that 
systems remain effective and relevant as they evolve 
and face future challenges. With this motivation, we 
present this article with the following contributions:

 ❯ We draw parallels between the complex mecha-
nisms within the human body and DCCSs.

 ❯ We explore and study various intelligent mech-
anisms of the human body that could be effec-
tively incorporated into DCCSs to enhance their 
adaptability and efficiency.

HUMAN BODY ANALOGY WITH 
DCCSs

The human body is an intricate and highly sophisticat-
ed system, composed of cells organized into tissues 
(approximately 37.2 trillion cells, each specialized for 
different functions), and organ systems that work in 
harmony to sustain life. There are several systems in 
the body that are deeply interconnected, including the 
skeletal, muscular, nervous, cardiovascular, and respi-
ratory systems. All of these systems depend on one 
another to function properly. Similarly, DCCSs mirror 
this complexity and interconnectedness, as shown in 
Figure 1. We have classified the human body’s anatomy 
into two main categories, infrastructure systems and 
regulatory systems, which are further discussed in the 
next sections in relation to DCCSs.

Infrastructure Systems
The human body infrastructure system contains 
three parts: the skeletal, cardiovascular, and nervous 
systems. These systems are vital for maintaining the 
structure of the body, efficiently moving resourc-
es, and coordinating functions across various parts. 
These systems are closely parallel to key elements 
within DCCSs, such as devices, communication or co-
ordination, data transmission or flow, and learning or 
knowledge extraction capabilities. Next we illustrate 
how biological principles can inform and enhance our 
understanding of complex computing systems.

In the human body, the skeletal system provides a 
network of bones and joints that facilitate movement 
while protecting vital organs. Similarly, a DCCS’s struc-
tural framework is analogous to its physical infrastruc-
ture, which includes devices such as servers, routers, 
and data centers. Just as the skeleton supports the 
body, this physical infrastructure supports various 
computing tasks so that the system functions effec-
tively. The cardiovascular system circulates blood, 
delivering oxygen and nutrients to cells while remov-
ing waste, ensuring that every body part receives the 
resources it needs. In DCCSs, it is data that move 
through networks and communication channels, thus 
ensuring that computational resources and informa-
tion are efficiently distributed across nodes. Hence, 
data can be seen as the system’s “blood.” Next, the car-
diovascular system’s role in maintaining steady blood 
flow parallels how DCCSs manage energy supply, data-
flow, and bandwidth to maintain optimal performance 
and prevent bottlenecks. Finally, the nervous system 
transmits signals, processes information, and coor-
dinates actions, enabling the body to respond quick-
ly to stimuli and adapt to new situations. Similarly, in 
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Distributed computing continuum systems 
(DCCSs) are an emerging computing paradigm 
that integrates cloud, edge, mobile edge, the 

Internet of Things, and other computing environments 
into a unified system.1,2 In DCCSs, computing tasks 
are dynamically distributed across geographically dis-
persed nodes, thus effectively reducing latency by pro-
cessing data closer to their source. This uses resource 
hierarchy upon demand and thereby enhances overall 
system efficiency. With DCCSs, tasks are allocated to 
the most appropriate computing nodes when needed, 
resulting in improved performance and resilience. This 
capability meets the growing demand for complex, da-
ta-intensive, real-time data processing, big data analy-
sis, and emerging generative artificial intelligence (AI) 

applications. DCCSs can be used in a wide variety of 
fields,3 including smart cities, health care, autonomous 
vehicles, and industrial automation, where multiple 
objectives are required, including low latency, efficient 
resource utilization, high accuracy, and energy efficien-
cy. DCCSs improve operational efficiency by ensuring 
the optimal use of computing resources and reducing 
the need for centralized data processing and storage.

Recently, DCCSs have also integrated smart devic-
es with embedded intelligence,4 allowing them to au-
tonomously perform simple sensing and control tasks, 
thereby reducing the need for manual intervention. 
However, intelligence is needed not only within individ-
ual devices but across the entire system. In particular, 
DCCSs require intelligent and efficient mechanisms to 
ensure reliable integration, optimal performance, and 
robust management of complex operations. AI and ma-
chine learning (ML) are increasingly utilized in DCCSs 
for advanced control strategies, enabling predictive 
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DCCSs, communication networks and learning capa-
bilities facilitate rapid information exchange between 
distributed nodes, ensuring task coordination and 
timely responses.

Medical research shows that neurons are not 
confined to the brain, they are present in various or-
gans throughout the body, each serving specialized 
functions: the brain, with its approximately 86 billion 
neurons, serves as the central hub for processing in-
formation and decision making. The spinal cord, which 
contains roughly 13.5 million neurons, functions as a 
crucial communication pathway between the brain and 
the rest of the body. The enteric nervous system, often 
referred to as the second brain, manages the digestive 
system with approximately 500 million neurons, over-
seeing gastrointestinal processes independently. The 
heart contains roughly 40,000 neurons that regulate its 
rhythm and function, ensuring efficient cardiac opera-
tions. The eyes have approximately 100 million neurons 
in their retinas, which process visual information.11 Ad-
ditionally, the skin is equipped with millions of sensory 
neurons that detect touch, pressure, temperature, and 
pain, allowing the body to respond to environmental 
stimuli. This complex distribution of neurons across 
various organs highlights the body’s sophisticated sys-
tem for managing diverse and essential functions.

Neurons are crucial for both physiological func-
tions and cognitive processes. They enable the brain 

to acquire, process, and store information and adapt 
responses based on experience—an aspect that is 
also central to learning in AI and ML. The widespread 
distribution of neurons across different organs is an 
instance of distributed intelligence, similar to how 
DCCSs operate. Edge and fog devices can perform 
localized computations, like the heart and gut, while 
the cloud handles more extensive computations. For 
instance, DCCSs can directly compute visual data ana-
lytics at intelligent edge devices, hence mimicking the 
high amount of neurons integrated into the system’s 
“eyes.” Just as the human body’s various parts collab-
orate to manage complex tasks efficiently, organs with 
specialized neurons work together to form an integrat-
ed and responsive system. This parallel suggests that 
DCCSs can emulate the decentralized processing and 
coordination seen in the human body, enhancing its 
efficiency, intelligence, and autonomy.

Regulatory Systems
The human body’s regulatory system contains two 
parts: the lymphatic and endocrine systems; togeth-
er, they regulate the body’s internal environment, 
preserving balance and coordinating responses to in-
ternal and external changes. The lymphatic system is 
essential for maintaining fluid balance and protecting 
against infection. It includes lymph nodes, vascular 
system vessels, and lymphoid organs like the spleen 

FIGURE 1. Parallels between the human body and DCCSs. IoT: Internet of Things. 
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and tonsils, which collect excess tissue fluid, filter out 
pathogens, and support the immune system by trans-
porting lymphocytes. The endocrine system, on the 
other hand, regulates various physiological processes 
through hormone secretion. For this, glands release 
hormones into the bloodstream to control growth, 
metabolism, mood, and reproduction, thus maintain-
ing overall bodily balance and homeostasis.

Similarly, DCCSs incorporate elastic features to 
dynamically allocate resources based on demand, e.g., 
during peak usage times. Thus, it is possible to scale up 
a service according to external requirements. To adapt 
to changes and recover from disruptions, DCCSs can 
also ensure fault tolerance through redundancy and 
recovery protocols, thus mirroring abilities such as 
the immune system’s response to infection. Similar to 
the lymphatic system, DCCSs regulate data transfer 
to ensure efficient communication and security. The 
endocrine system’s role in hormonal signaling parallels 
distributed control mechanisms in DCCSs, where var-
ious components and nodes use protocols and algo-
rithms to coordinate tasks, optimize performance, and 
adapt to changing conditions.

HUMANLIKE INTELLIGENCE 
IN DCCSs

The previous section demonstrated that the human 
body exemplifies distributed intelligence through-
out its intricate and interconnected systems, each of 
which is essential for maintaining overall function and 
adaptability. In this section, we examine how DCCSs 

can benefit from incorporating humanlike systems. 
Specifically, we examine how concepts such as feed-
back loops and adaptability, self-healing capabilities, 
efficient communication and coordination, and ad-
vanced decision-making processes can significantly 
enhance DCCS functionality. Figure 2 summarizes 
which intelligent mechanisms of the human body 
can be replicated as operational strategies in a DCCS. 
We assume a healthy human body for the following 
analogies.

Feedback Loops and Adaptability
In the human body, feedback loops play a crucial role 
in regulating processes such as cell growth, division, 
self-repair, and responses to environmental changes. 
These loops are essential for maintaining homeostasis 
through long-range extracellular feedback between 
cells. Feedback loops involve a process in which a 
system’s output influences its own activity, either by 
amplifying it (positive feedback) or reducing it (nega-
tive feedback).12 A negative feedback loop is a control 
mechanism in which the output of a system counter-
acts the initial stimulus, helping the system to main-
tain stability and equilibrium. For example, when blood 
sugar levels rise after eating, the pancreas releases 
insulin, which helps cells absorb glucose and lower 
blood sugar levels. As blood sugar drops to normal lev-
els, insulin secretion decreases. If blood sugar levels 
fall too low, the pancreas releases glucagon to raise it 
back up, maintaining balanced blood sugar levels. On 
the other hand, a positive feedback loop is a process in 

FIGURE 2. Human body’s intelligent mechanisms and the operational strategies need for DCCSs. QoE: quality of experience; 

QoS: quality of service. 
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which the output of a system amplifies the initial stim-
ulus, pushing the system farther in the same direction. 
Unlike negative feedback, positive feedback loops of-
ten lead to rapid changes and are typically involved in 
processes that require quick decisions. Blood clotting 
is a well-known positive feedback loop. When a blood 
vessel is injured, platelets stick to the site and release 
chemicals that attract more platelets. As more plate-
lets accumulate, they release even more chemicals, 
rapidly amplifying the clotting process until the wound 
is sealed.

To enhance adaptability, resilience, and quality of 
service (QoS), bioinspired feedback loops can be intro-
duced to DCCSs: negative feedback loops help DCCSs 
maintain the system’s overall stability and adhere to 
service-level objectives (SLOs) by balancing resource 
allocation.13,14 For example, when computational re-
sources such as bandwidth, CPU, or memory meet 
critical SLO thresholds, the system can automatically 
scale down certain processes or offload tasks to pre-
vent overload and minimize potential damage. This 
proactive adjustment helps ensure that performance 
remains within SLO parameters. Similarly, positive 
feedback loops are crucial for rapidly scaling resourc-
es in response to sudden spikes in demand, thereby 
supporting the SLOs related to performance and la-
tency. For instance, when a surge in data processing 
is detected, positive feedback mechanisms can trig-
ger swift allocation of additional computing resources, 
such as autoscaling virtual machines or distributing 

tasks across edge devices. Implementing these feed-
back control strategies in a DCCS allows for coping 
with unforeseen fluctuations, such as occasional net-
work breakdowns,15 a sudden rise in resource demand, 
or on-demand privacy enforcement on streaming 
data.16 Thus, in case of failures, dynamic adjustments 
and resilience mechanisms enhance quality of expe-
rience and QoS.

Self-Healing Mechanism
Self-healing is the body’s natural ability to restore bal-
ance and health without external intervention, often 
utilizing feedback loops to regulate this process. But 
can self-healing mechanisms be applied to DCCSs? 
The answer is, to some extent, yes. In our previous 
work,17 we explored this concept by drawing parallels 
with human wound healing to manage and govern par-
ticipating devices within a computing continuum with 
low human intervention. These self-healing agents 
could be employed to address abnormal device activ-
ities by drawing from the human wound-healing pro-
cess; this process was structured into four distinct 
stages: hemostasis, inflammation, proliferation, and 
reshaping. Figure 3 provides a high-level overview 
of this approach, along with four stages and their 
operations.

Hemostasis, the body’s immediate response to in-
jury, parallels the DCCS approach of isolating and mit-
igating failures. When a disruption occurs in a DCCS, 
affected services are swiftly isolated, and tasks are 

FIGURE 3. Wound self-healing mechanism for monitoring, governance, and predictive fault tolerance in DCCSs. 
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rerouted to stable computing nodes, minimizing dam-
age and preserving overall system stability. Inflamma-
tion involves immune cells identifying and containing 
the problem site in the body. Similarly, in a DCCS, this 
stage entails diagnosing the root cause, whether it is a 
network issue, malfunctioning node, or security threat. 
The system gathers relevant data or learned represen-
tations, diagnoses the issue, and activates appropri-
ate response measures, such as zero-touch service 
provisioning, to contain the disruption. This focused 
action prevents the problem from escalating and pre-
pares the system for recovery. Proliferation in wound 
healing is characterized by the growth of cartilage tis-
sue to replace damaged cells. In a DCCS, this stage is 
mirrored by reconfiguring devices or systems, restor-
ing services from backups, redistributing tasks across 
the network, autonomously recovering lost data, and 
replacing failed hardware. These measures ensure that 
the system returns to normal operations quickly, main-
taining stability and minimizing downtime. Finally, the 
reshaping phase involves strengthening the new tis-
sue and realigning the structure. In a DCCS, this stage 
is reflected in postrecovery optimization, in which the 
system refines updates, backs up learned history, and 
utilizes these data for predictive maintenance. By an-
alyzing the failure and recovery process, the system 
implements improvements such as enhancing fault 
tolerance, updating algorithms, and refining monitor-
ing mechanisms, thus bolstering its resilience against 
future disruptions.

Communication and Coordination
The human body’s communication and coordination 
systems are remarkably complex and interconnected, 
which is comparable to a DCCS’s. The human body 
employs a sophisticated system of communication 
and coordination between its various parts, primarily 
through two main systems: the nervous and endocrine 
systems.18 These systems work together to maintain 
homeostasis, respond to environmental stimuli, and 
regulate bodily functions. The nervous system acts as 
a rapid communication network, transmitting electri-
cal signals through neurons to coordinate immediate 
responses, whereas the endocrine system provides 
slower but more sustainable communication through 
hormones. Similarly, a DCCS needs robust commu-
nication and coordination systems among devices 
(ranging from edge, fog, and the cloud). A typical com-
puting system focuses on low-latency and ultrareliable 
communications, similar to a nervous system. If an 
edge device detects a critical event, such as a securi-
ty breach, it immediately transmits this information to 
other nodes in the network, just like when you touch 

something hot, the nervous system sends pain sig-
nals to your brain. However, sometimes it is not nec-
essary to be low latency, but sustainable and reliable 
communications are necessary. For example, periodic 
updates or reconfigurations that maintain system sta-
bility and efficiency do not necessarily require faster 
communications.

Furthermore, circadian rhythms in the human 
body demonstrate an even broader level of coordina-
tion. The suprachiasmatic nucleus in the brain com-
municates with peripheral clocks in organs such as 
the liver, muscles, and adipose tissue. The metabolic 
processes are synchronized with the day–night cycle 
through a variety of signals, including hormones and 
neural pathways. For example, the liver clock regulates 
glucose metabolism in response to feeding patterns, 
while muscle clocks influence insulin sensitivity and 
glucose uptake. This coordinated timing system allows 
the body to anticipate and prepare for daily physiolog-
ical demands, optimizing energy use and metabolic 
function. DCCSs employ advanced scheduling and 
load-balancing mechanisms to maintain resource 
management equilibrium across the network. DCCSs 
predict and adapt to fluctuations in network traffic and 
processing demands in a way that is similar to circadi-
an rhythms in the body. For example, during peak traf-
fic hours, the system dynamically allocates resources 
by distributing tasks across various nodes, leading to 
efficient load handling. Similar to how the body con-
serves energy during periods of rest, the system may 
downscale operations during periods of low traffic.

Decision Making
Decision-making processes in the human body are 
highly sophisticated and efficient; in particular, they 
are balanced between centralized and decentralized 
components.19 The brain serves as the central com-
mand center for decision making; it processes sensory 
information, coordinates complex behaviors, and ini-
tiates responses. Nevertheless, not all decisions are 
governed by this centralized system; many organs and 
systems have a degree of decentralized, autonomous 
decision making. For example, the heart can regulate 
its rate based on local conditions without relying on 
the brain, and the digestive system has its own enteric 
nervous system that functions independently. The spi-
nal cord triggers immediate responses without involv-
ing the brain, while the endocrine system facilitates 
decentralized communication by releasing hormones, 
allowing for flexible regulation without central coordi-
nation. Similarly, the immune system can detect and 
respond to threats locally, ensuring rapid and targeted 
action against infections.
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DCCSs apply a similar approach to their deci-
sion-making process: the cloud manages high-level 
orchestration and overall system stability, while de-
centralized nodes and devices perform autonomous 
decisions based on local data. However, this process 
needs decision making not only at the source but also 
during transmission, which is similar to the endocrine 
system in the human body. The security systems in 
DCCSs achieve superficial advantages of adapting 
features and a working model of the immune system.20

CONCLUSION
This article explored the parallels between the human 
body’s intelligence mechanisms and the operation-
al strategies required for DCCSs. We aim to address 
both interpretable and noninterpretable challenges 
in DCCSs while improving their overall performance 
by examining human body analogies and principles. 
Specifically, we investigate how concepts such as 
feedback loops and adaptability, self-healing mecha-
nisms, decision-making processes, and communica-
tion and coordination can be applied to DCCSs based 
on the human body analogy. Each of these aspects 
provides valuable insights into creating a more in-
telligent and responsive DCCS. In the future, we will 
implement these techniques and our solutions us-
ing existing or new toolsets to bring our insights and 
gains closer to reality.
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Life at Risk: Uncovering the 
Urgent Security Gaps in Internet 
of Things-Integrated Cloud Infrastructures
Syed Rizvi  and Anthony Demeri , The Pennsylvania State University

The rapid adoption of cloud-integrated Internet of Things devices has greatly 
outpaced the development of adequate security practices. In critical domains, 
this can lead to life-threatening consequences.

A llow yourself the luxury, for a moment, to 
turn back time. Wind the clocks back a few 
decades, and stop right around the early days 

of the Internet’s emergence. Let your ears reimagine the 
beeping, whirring, and honking sounds associated with 
the multiminute, phone-hogging, dial-up connection. 
Never a soul could have predicted the tremendous 
growth of power, size, and quantity for Internet-capable 
computers. Before long, our watches were streaming 
video-calls in real time, our vehicles could be started 
from across the world, and our medications were 
administered autonomously. Thus, as they say, the era 
of the Internet of Things (IoT) emerged. Somewhere 
along the way, as the approximately 75 billion IoT 
devices1 trickled across the globe, a parallel industry 
also arose with prominence: cloud computing. 
Today, IoT-integrated cloud infrastructures provide 
undeniable improvements in our quality of life across 
multiple domains… but—as the title gave away—an 
insecure convergence of these two booming sectors 
can yield life-threatening consequences.

But before we dive into the nitty-gritty details, 
let’s first consider exactly why and how IoT devices 
are so rapidly adopted and integrated into cloud 
infrastructures. To start, we should note the many 
advantages of existing IoT devices, which merge 
the digital and physical worlds, gathering real-time 
information and making real time decisions—either 

autonomously or human-directed—at a fraction of the 
cost of human monitoring. These task-specific devices 
are used by insurance companies, health-care providers, 
municipalities, businesses, and, of course, individuals, 
just like us.1,2,3,4 Similarly beneficial, cloud computing 
platforms provide their users plug-and-play access to 
scalable, high-performance resources at a reduced 
cost (since users do not maintain their own hardware, 
cooling platforms, or physical networks). Plainly put, 
both IoT devices and cloud computing offer their users 
multiple extremely cost-effective service models, 
which can significantly improve one’s quality of life.

Physically, IoT devices are typically small, with 
relatively limited processing power and storage 
capacity, often put in place for an individual’s 
convenience, as might be smart assistants (for 
example, Amazon Alexa), smart deadbolts, and smart 
coffee makers.1 More recently, however, widespread 
adoption has grown to also include life-saving devices, 
such as pacemakers,1 medical infusion pumps,5 
patient vital-monitoring systems,4,6 traffic control 
systems, vehicle control systems,10 water treatment 
controllers,7 thermostats,1 and surveillance systems.1 
From a performance perspective, integrating these 
devices into cloud infrastructure is both intuitive 
and resource-efficient, since such integrations 
expand the capacity for remote management and 
administration. Of course, although these IoT devices 
have the potential for enabling an unprecedented 
increase in quality of life, particularly in the 
health-care domain,8 they have continuously been 
shown to have vast security vulnerabilities.1,2 Further 
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exacerbating the problem, the cloud-integration 
of these already-vulnerable IoT devices results in 
a significant increase in the surface area of attack 
vectors, which are both easy to exploit and complex 
to prevent.9 Although cloud service providers (CSPs) 
tout native encryption solutions for the protection of 
critical data, the primary objectives of this work are to 
1) demonstrate existing security practices as wholly 
insufficient for protecting sensitive cloud service 
user data and 2) examine how the use of IoT devices 
in critical domains (for example, health care, smart 
cities) can lead to life-threatening consequences.

IoT AND CLOUD COMPUTING
To understand the gravity of the risks involved, we 
should first briefly discuss the interaction between 
IoT and cloud computing; as with many things, 
the best way is to look at a diagram. Take a look at 
Figure 1. In Figure 1, critical data are both sent-to 
and received-from the cloud infrastructure, where it 

exists in an encrypted form. Unfortunately, although 
CSPs suggest such encryption as a sufficient means 
of protecting data from unauthorized disclosure or 
manipulation, security researchers note there are no 
proven countermeasures for entirely protecting data 
from attackers, especially malicious insiders.9 As a 
result of these security gaps, life is at risk for a variety 
of stakeholders, including manufacturers, industry 
leaders, municipalities, health-care providers, and, 
perhaps most importantly, the end user—you!

Fortunately, these security gaps have not gone 
entirely unnoticed by regulatory personnel. In January 
2025, the White House launched the “U.S. Cyber Trust 
Mark,” to help consumers better ascertain the security 
aspects of IoT devices in the home setting. While this 
is a good start, solving this problem will require all 
stakeholders (for example, end users, manufacturers, 
and industry leaders) to find a balance between 
economic benefits and convenience while maintaining 
an acceptable level of security risk.

 Infusion Pump Sends Vitals and Flow Rate to Cloud
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0.1
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0.1
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0.2
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 Cloud Stores Encrypted Data

 Doctor Examines Vitals and Flow Rate

 Doctor Sends an Updated Flow Rate to the Cloud

Cloud Stores Encrypted Data

 Infusion Pump Receives Updated Flow Rate From Cloud

FIGURE 1. Remote medication management via a cloud-integrated IoT infusion pump.
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SECURITY CHALLENGES
We’ve already said IoT devices and cloud infrastructures 
are vulnerable. In fact, in many cases, we may even know 
where they’re vulnerable, so, can’t we just, you know, fix 
it? Well, as you might expect, the solution is never quite 
so simple as the problem. Due to the highly competitive 
nature of the field, IoT device manufacturers are heavily 
disincentivized from investing time and resources 
into security considerations for their products, since 
such investments increase a product’s cost and 
time-to-market. Furthermore, while some entities 
have enacted privacy policies, such as the California 
Consumer Privacy Act and the General Data 
Protection Regulation, there is no sufficient global 
security framework or standard for IoT devices. But, even 
if IoT manufacturers did secure their individual devices 
from attackers, since cloud computing necessarily 
involves an inherent sharing of resources with multiple 
(potentially malicious) entities, integrated IoT devices 
remain susceptible to a variety of complex cloud-based 
attacks with cascading, catastrophic consequences.9 
Sadly, even the native encryption solutions 
offered by cloud service providers are insufficient 
countermeasures for modern attack vectors, which 
may originate from within the cloud infrastructure 
itself. To better illustrate this vulnerability, let us build 
upon Figure 1; this time, however, in Figure 2, we insert 

a malicious insider on the cloud infrastructure, which is 
known to be hard to both detect and prevent.9 In this 
case, a malicious insider sends a lethal dosing rate and 
patient vital signs are critical. Although the IoT pump 
sends this data to the cloud, since the cloud has been 
compromised by a malicious insider, false data are 
instead sent to the authorized medical professional, 
erroneously indicating the patient is safe, putting life 
at risk.

Note that although the critical data from Figure 
1 was encrypted, a malicious insider is able to bypass 
such encryption and directly relay false or malicious 
data to the doctor and the IoT-integrated infusion 
pump, respectively. While this example might seem 
too shocking to be plausible, in 2024, Cyble’s5 security 
researchers noted 75% of infusion pumps have 
unpatched IoT devices and more than a whopping 50% 
of hospital IoT devices are vulnerable to attack. With very 
few medical IoT devices running active antimalware, 
the risk is more than theoretical; in fact, attackers have 
already begun to exploit these vulnerabilities in the 
wild, putting millions of lives at risk.

LIFE AT RISK
Sadly, there are countless examples of real-world 
exploitation of IoT-integrated cloud infrastructures. 
Let’s take a look at a few examples within the 

Infusion Pump Sends Vitals and Flow Rate to Cloud

Malicious Cloud Insider Bypasses Encryption

Malicious Cloud Insider Sends False Data to Doctor

Doctor Confirms False Data and Issues no Updates

Malicious Cloud Insider Issues Lethal Flow Rate

IInfusion Pump Receives Lethal Flow Rate From Cloud

0.2
mL/h

0.2
mL/h

100
mL/h

100
mL/h

100
mL/h

0.2
mL/h

FIGURE 2. Cloud-level attack disrupts accurate medical monitoring in IoT-based health care.
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domains of critical infrastructure, control systems, 
and health care.

Critical infrastructure
Shockingly, in 2021, cyber attackers obtained remote 
access to supervisor control and data acquisition 
(SCADA) systems at a drinking water facility in 
Florida.7 Initial investigations supposed the attacker 
obtained SCADA system access through cloud-based 
remote-management software, such as TeamViewer. 
After obtaining access, the attacker used the 
SCADA system to increase the amount of sodium 
hydroxide (lye) being added to the drinking water via 
IoT networked controllers. Lye, a caustic chemical, 
can cause severe damage to human tissues, the 
consumption of which could be fatal. Fortunately, an 
employee at the water treatment plant noticed the 
change and corrected the issue before the attack 
propagated into the water supply.

Control systems
In 2015, Wired’s Andy Greenberg (Security) notoriously 
broke a story10 where researchers Chris Valasek and 
Charlie Miller remotely exploited a stock 2014 Jeep 
Cherokee while Andy was traveling 70 mph—the 
five-minute video is worth a watch, if you can spare 
the time. The researchers began with a few practical 
jokes, setting the fan speeds to maximum power and 
displaying a comical picture on the display screen, but, 
before long, they progressed into more frightening 
actions. The researchers set the stereo to a disorienting 
volume, simultaneously spraying the windshield with 
wiper-fluid, neither of which Andy could override. They 
killed the engine next, slowing the highway-bound 
vehicle to a spontaneous and dangerous crawl, 
without the warning of the brake lights being displayed 
to other drivers on the highway. Ultimately, Chris and 
Charlie found thousands of vehicles could be remotely 
controlled to a severe extent, including disabling the 
brakes and overriding steering controls.

In 2016, in Lappeenranta, Finland—a particularly 
cold region, with winter temperatures reaching below 
0 °F—hackers shut down an IoT heating controller 
for multiple apartments, causing a direct threat to 
life in the sub-freezing temperatures.1 These heating 
controllers, like many IoT devices, did not have 
sufficient means of preventing distributed denial 

of service (DDoS) attacks. Since these IoT devices 
were cloud-integrated, with software necessitating 
connection to a remote management server, the DDoS 
attacks caused an infinite reboot cycle, ultimately 
preventing heating operations. Fortunately, this 
multiday attack yielded no known fatalities.

Health care
Recently, in 2024, Change Healthcare suffered one 
of the largest cyberattacks in health care to date,6 
causing cash flow shortages of over a billion USD 
and shutting down services for pharmacies, records, 
clinics, dentists, and patients. With patients unable 
to receive care or fill prescriptions, there was an 

immediate risk posed by an influx of health crises and 
emergency room visits. In this attack, malign actors 
allegedly gained remote access to cloud services 
through the use of a legitimate password. This attack, 
and others like it, cause direct disruption to patient 
care, leading to costly lawsuits and, unfortunately, 
increased fatalities.

BROADER IMPACT
While the previous case studies demonstrate the 
acute impact such life-threatening attacks can have 
on the daily lives of us as individuals, there are also 
broader impacts to be considered from a societal, 
economic, and environmental perspective. For 
society, cyber failures can yield significant erosion 
in public trust for networked systems. Additionally, 
impacted stakeholders will face the economic costs 
associated with data breaches, legal consequences, 
reputation damage, and shareholder hesitancy. Of 
course, the environmental risk is also significant, 
with damage to essential infrastructures causing 
waste—at a minimum—and potential environmental 
catastrophe—think energy spills. The bottom line? 
We’re all impacted.

SADLY, EVEN THE NATIVE 
ENCRYPTION SOLUTIONS OFFERED 
BY CLOUD SERVICE PROVIDERS ARE 
INSUFFICIENT COUNTERMEASURES 
FOR MODERN ATTACK VECTORS.
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RECOMMENDATIONS
We have demonstrated the bidirectional vulnerabilities 
inherent in IoT-integrated cloud infrastructures. 
Naturally, solving the problem similarly mandates 
a bidirectional approach. Remember, IoT device 
manufacturers are effectively economically bounded, 
such that they often cannot adequately address 
security concerns in their respective products. 
Furthermore, even if a given manufacturer did 
implement security measures, there is no globally 
recognized method for an end user to identify the 
presence or strength of these measures. Thus, in 
order to overcome these challenges, we recommend 
rapid design and publication of global security 
standards for IoT devices, such that both individual 
and enterprise-level consumers can easily identify 
the given strengths (and weaknesses) of a particular 
device before deciding to integrate it into their 
respective environment.

Fortunately, for IoT devices, “the IEEE recently 
published the Standard for Clinical Internet of Things 
(IoT) Data and Device Interoperability with TIPPSS 
(trust, identity, privacy, protection, safety, security) 
principles offering a comprehensive framework 
for designing secure, interoperable devices that 
protect individuals and maintain data integrity.”8 
These standards are critical for clinical IoT devices, 
but remain lacking for IoT devices, in general, 
which can similarly be exploited with catastrophic 
consequences. While the adoption of such standards 
by manufacturers will still permit individual consumers 
to purchase IoT devices which fall short of meeting 
adequate security guarantees, critical infrastructure 
can be protected through regulatory requirements for 
specific security standards.

On the other hand, unlike IoT devices, cloud 
services are typically provided by large entities, 
such as Amazon (AWS), Microsoft (Azure), and 
Google (Cloud). Often times, these providers are 
simply administrators of third-party hardware and 
software (as opposed to manufacturers). Thus, in 
order to mitigate the security challenges at the cloud 
infrastructure level, it will take a combination of effort 
from underlying hardware manufacturers—such as 
AMD and Intel—and software developers. At present, 
AMD and Intel provide encrypted-memory solutions 
via their AMD Secure Encrypted Virtualization and 

Intel Total Memory Encryption platforms. While these 
options only address a portion of the data security 
problem, we recommend all cloud service providers 
adopt such platforms at a minimum. The National 
Institute of Standards and Technology and the 
Cybersecurity and Infrastructure Security Agency 
further advocate for additional mitigations through 
implementation of rigorous intrusion detection, 
prevention, and monitoring systems9; in practice, 
this may be accomplished with AI-powered threat 
detection.11

Ultimately, until effective mechanisms exist to 
guarantee true-isolation of all user-data on cloud 
service resources, data will always be vulnerable. With 
vulnerable cloud data comes risk for all IoT-integrated 
devices and, more importantly, their users: us.

The widespread adoption of IoT-integrated cloud 
infrastructures has the potential to benevolently 

reshape our world, offering significant advantages 
to businesses, municipalities, and individual end 
users. Unfortunately, the vulnerabilities within this 
ecosystem are ripe for exploitation by malign actors, 
the consequences of which are life-threatening. 
We call on regulators, cloud service providers, and 
manufacturers to immediately prioritize security for all 
echelons from tiny, wearable IoT devices to enormous 
cloud-level infrastructures. Moving forward, it is 
imperative we strike a balance between technological 
convenience and fiscal responsibility, without 
compromising our safety. 
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Direct-to-consumer genomic testing offers unprecedented access to genetic 
insights but raises significant ethical challenges. Addressing these issues requires 
transparent data practices, stronger informed consent mechanisms, and ethical 
governance to ensure equitable and responsible use of genomic innovations.

“G enetics is not just about the genes 
we inherit but how we use them.” This 
profound statement by Richard Dawkins1 

highlights the transformative potential of genetic 
information in reshaping human health and disease 
management. At the heart of this transformation lies 
genomic data, a comprehensive blueprint housed 
within every cell of the human body. This data, 
composed of approximately six billion DNA letters,2 
contains unique variations that can reveal critical 
insights into an individual’s health, ancestry, and 
predisposition to disease.3 Advances in technology 
such as artificial intelligence (AI) have turned this 
wealth of information into a valuable asset, powering 
breakthroughs in personalized medicine and precision 
health care.4 Yet, the increasing commodification 
of genomic data by health-care systems and tech 
giants has brought ethical concerns to the forefront, 
particularly around privacy, ownership, and the 
equitable use of this sensitive information.5

The rapid growth of direct-to-consumer (DTC) 
genomic testing has made this once-exclusive 
knowledge broadly accessible, fostering what some 
describe as the “democratization” of genetic infor
mation. Companies like 23andMe, Ancestry.com, and 

Nebula Genomics have enabled millions of individuals 
to explore their genetic profiles, uncovering health 
risks, ancestry details, and personal traits from the 
comfort of their homes.5 However, this ease of access 
comes with significant ethical challenges. As genomic 
data becomes increasingly commodified, it is often 
treated as a lucrative asset by corporations, raising 
concerns over privacy, data security, and informed 
consent.6 Many consumers remain unaware of the 
risks associated with sharing their DNA, including data 
breaches, unauthorized usage, and the potential for 
genetic discrimination. Addressing these challenges 
requires robust ethical frameworks that prioritize 
transparency, protect user autonomy, and ensure 
equitable use of genomic resources.

PRIVACY AND OWNERSHIP OF 
GENOMIC DATA

Genomic data are deeply personal, offering insights into 
health, ancestry, and familial connections. However, 
when individuals submit their genetic information 
to DTC testing companies, they often unknowingly 
surrender control over this data. Companies like 
23andMe have faced criticism for sharing anonymized 
genetic data with pharmaceutical firms without explicit 
consumer consent. This raises significant questions 
about who truly owns and controls genomic data.7

The issue of ownership lies at the heart of ongoing 
ethical debates. Should genomic data be considered 
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personal property, or do companies have the right to 
commercialize it once submitted? The legal landscape 
surrounding this question is fragmented and 
inconsistent. Table 1 shows a comparative analysis of 
key data protection laws that highlights this disparity.

As illustrated in Table 1, gaps remain even in 
regions with robust data protection frameworks, 
such as the European Union’s GDPR. For instance, 
genomic data are not explicitly categorized as unique 
personal information, leaving its interpretation to 
varying legal jurisdictions.8 In the United States, GINA 
provides protections against genetic discrimination 
in employment and health insurance, yet it excludes 
critical areas like life and disability insurance, exposing 
individuals to potential misuse.9

These regulatory gaps have allowed companies 
to prioritize their commercial interests. For example, 
23andMe’s partnerships with GlaxoSmithKline raised 
concerns about transparency, as many users were 
unaware that their anonymized data could be sold to 
pharmaceutical companies for drug development.7 
This lack of informed consent underscores the need 
for stronger regulations and clearer definitions of 
ownership and control over genetic data.

Ethical concerns are particularly pressing for 
marginalized populations, such as lower-income or 
minority groups. These communities may have their 
genomic data disproportionately used for profit 
without fair representation or benefits. To address 

these concerns, experts have suggested treating 
genomic data as personal property, akin to intellectual 
property, allowing individuals to retain control over 
how their data are used, shared, or monetized.5 This 
approach aligns with privacy laws like GDPR, which give 
individuals greater control over their personal data.

INFORMED CONSENT  
AND TRANSPARENCY

Informed consent is a cornerstone of ethical medical 
and research practices, yet it remains a significant 
challenge in the DTC genomic testing industry. Many 
companies employ complex, jargon-filled consent 
forms that obscure how genetic data will be collected, 
used, and shared. As a result, consumers often sign 
agreements without fully understanding the potential 
implications, including data sharing with third parties 
or the monetization of their information.11

To better understand this process and its 
challenges, it is helpful to visualize the lifecycle of 
genomic data in DTC testing. Figure 1 outlines the key 
stages, showing critical points where transparency 
and consent mechanisms are essential:

	› Data collection: Genetic samples are collected 
and processed, often with minimal consumer 
awareness of how their information may be used.

	› Data storage: Information is stored in databases, 
which may lack adequate security measures.

Region Applicable Laws Protections O�ered Gaps/Challenges

European
Union 

General Data Protection
Regulation (GDPR) 

Comprehensive data privacy for
personal information, but genomic-
specific gaps remain.

Does not explicitly address genomic data
as unique; interpretation varies across
jurisdictions.

United States Genetic Information Non-
Discrimination Act (GINA)

Protects against genetic
discrimination in employment and
health insurance.

Excludes life insurance, disability
insurance, and other nonhealth-related
uses.

Global Various national and regional
frameworks 

Patchy protections; o�en lacks
specificity for genomic data. 

Inconsistent enforcement; no universal
standard for genomic data handling. 

TABLE 1. Comparative overview of genomic data protections across major regions.
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	› Data usage: Companies analyze data for 
health insights, ancestry reports, or other 
consumer-facing services.

	› Data sharing: Genetic data may be shared 
with third parties, such as pharmaceutical 
companies, often without explicit user consent.

	› Data monetization: Companies may profit 
from selling anonymized data, raising ethical 
concerns about ownership and autonomy.

	› Potential risks: Risks include data breaches, 
re-identification of anonymized data, and 
misuse leading to genetic discrimination.

This lifecycle highlights the importance of robust 
informed-consent mechanisms at every stage. True 
informed consent should empower consumers to make 
decisions based on clear, accessible information about 
how their genetic data will be handled.11 Companies 
should adopt practices that prioritize simplicity and 
transparency,12 such as simplifying legal jargon to 
ensure consumers can easily understand what they 
are agreeing to, using diagrams or infographics to 
illustrate data flows and potential uses, allowing 
users to modify their consent preferences over time, 
such as opting in or out of specific uses or research 
projects, and keeping consumers informed of new 
developments, such as changes to how their data are 
stored or shared.

Blockchain technology offers 
promising solutions for enhancing 
transparency and data security. 
For example, companies like 
Nebula Genomics use blockchain 
protocols to give users more 
control over data access and 
sharing. This technology enables 
an auditable record of who 
accesses data and for what 

purpose. However, critics argue that blockchain alone 
cannot address challenges like ensuring users fully 
comprehend their rights or the irreversible nature of 
some data-sharing agreements.10

Transparency is also crucial for fostering trust in 
the DTC genomic testing industry. Consumers must 
have confidence that their data are being handled 
ethically and securely. Without clear and accessible 
consent mechanisms, public trust in these services 
could erode, limiting participation and undermining 
the potential benefits of genomic innovation.

MISUSE AND POTENTIAL HARM
The DTC genomic testing industry presents a range of 
ethical challenges, particularly concerning the misuse 
of data and its potential harm to individuals. Genetic 
data are profoundly personal, revealing sensitive 
information about not only the individual but also their 
family members.13 These insights, while invaluable 
for advancing personalized medicine, can also lead to 
significant risks if misused.

One of the most pressing concerns is the potential 
for privacy breaches. Data breaches, such as the 
2018 MyHeritage incident that exposed information 
on over 92 million users, show the vulnerabilities 
in current genomic data storage practices.14 Even 
anonymized data are not immune to reidentification, 
as advanced algorithms can cross-reference datasets 
to deduce personal identities. Breaches like these 
erode consumer trust and expose individuals to 
unexpected risks.

The commercialization of genomic data raises 
complex ethical questions. Many DTC companies share 
or sell anonymized genetic data to pharmaceutical 
companies and other third parties without obtaining 
explicit user consent. While this practice supports 
drug development and other research, it often occurs 

Data Collection Data Storage Data Usage

Data Sharing Data Monetization Potential Risks

FIGURE 1. Lifecycle of genomic data in DTC testing.

THIS LACK OF INFORMED CONSENT 
UNDERSCORES THE NEED 
FOR STRONGER REGULATIONS 
AND CLEARER DEFINITIONS OF 
OWNERSHIP AND CONTROL OVER 
GENETIC DATA.
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without adequate transparency, leaving consumers 
unaware of how their data are monetized.11 This 
commodification of genetic information shifts control 
away from the individual, creating imbalances in data 
ownership and benefit distribution.

Another significant risk is genetic discrimination. 
Employers, insurers, or government entities 
could misuse genetic data to make decisions that 
disadvantage individuals. For example, an insurer 
might adjust premiums or deny coverage based on a 
customer’s genetic predisposition to certain diseases.15 
While laws like the GINA offer some protections, they 
are often limited in scope, excluding areas like life 
and disability insurance. This regulatory gap leaves 
individuals vulnerable to exploitation.9

The psychological effects of genomic testing can 
also be profound. Learning about a predisposition to 
severe or incurable conditions may cause anxiety, 
depression, or feelings of helplessness. Without 
proper counseling and clear communication of results, 
individuals may misinterpret their risk levels, leading 
to unnecessary health interventions or distress.16 
This issue is especially evident in cases where 
DTC companies fail to provide adequate support 
resources for interpreting results. Marginalized 
populations, including low-income or minority 
groups, are particularly at risk of exploitation in the 
genomic testing industry. These communities may 
lack the resources or education to fully understand 
the implications of submitting their genetic data.16 
Consequently, they may be disproportionately 
targeted for data collection without receiving 
equitable benefits from the resulting advancements.

There are several measures that can be adopted to 
address these challenges. For example, governments 
should consider expanding existing legal frameworks 
to include genomic data protections, ensuring 
equitable treatment and reducing the risk of misuse. 
Companies must also clearly communicate how 
genetic data will be used, stored, and shared, 
empowering consumers to make informed decisions. 
Additionally, they should also simplify consent forms 
and providing ongoing updates about data usage. 
Finally, both governments and companies should 
engage marginalized communities in discussions 
about genomic testing and its implications in order to 
ensure trust and equitable participation.

IMPLICATIONS FOR PUBLIC TRUST
The rapid expansion of the DTC genomic testing 
industry has brought ethical concerns into sharp 
focus, particularly regarding its impact on public 
trust. Trust is essential for the continued success 
and growth of the industry, as it ensures consumer 
participation and the responsible use of genomic 
data. However, the lack of transparency in data usage, 
insufficient informed consent mechanisms, and 
frequent privacy breaches have eroded consumer 
confidence.17 When companies fail to clearly disclose 
how they collect, store, and share genetic data, they 
increase the risk of misuse and discrimination. For 
instance, fears about data being sold to third parties 
or used for purposes beyond what was initially agreed 

upon are common among consumers.11 Addressing 
these concerns requires companies to adopt robust 
transparency measures, such as detailed consent 
processes, regular updates on data usage, and clear 
communication about security protocols.

The relationship between informed consent 
and trust is equally critical. Consumers need to fully 
understand the implications of sharing their genetic 
data, including potential emotional and psychological 
risks. Without accessible and user-friendly consent 
mechanisms, consumers may feel coerced into 
agreements they do not fully comprehend. This lack 
of clarity can lead to harmful consequences and 
further diminish trust in the industry. Furthermore, 
public trust hinges on the industry’s ability to protect 
the privacy and security of genetic data. High-profile 
data breaches, such as the MyHeritage incident, 
have highlighted vulnerabilities in existing security 
frameworks.14 Companies must prioritize strong 
data protection measures and communicate their 
efforts transparently to reassure consumers that their 
information is secure.

BY ALIGNING TECHNOLOGICAL 
ADVANCEMENTS WITH THESE 
STANDARDS, THE DTC GENOMIC 
TESTING INDUSTRY CAN SAFEGUARD 
CONSUMER RIGHTS WHILE 
ACHIEVING ITS POTENTIAL.
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Corporate accountability and adherence to 
ethical standards also play a key role in fostering trust. 
Exaggerated claims or unsupported predictions in 
genetic testing can mislead consumers, damaging the 
industry’s credibility. Regulatory oversight can help 
ensure that companies meet established scientific 
standards and avoid practices that exploit consumers.17 
Ultimately, building and maintaining public trust requires 
a collaborative approach. Policymakers, technologists, 
health-care providers, and ethicists must work together to 
establish ethical guidelines and regulatory frameworks. 
By aligning technological advancements with these 
standards, the DTC genomic testing industry can safe
guard consumer rights while achieving its potential.

TOWARDS ETHICAL  
GENOMIC INNOVATION

Genomic data holds the potential to revolutionize 
human health and disease management, offering 
insights that were once inconceivable. DTC genomic 
testing has democratized access to this information, 
enabling millions to uncover details about their 
ancestry, health risks, and personal traits. However, 
with these advancements come significant ethical 
challenges, such as privacy risks, informed consent 
issues, and the erosion of public trust.

As Richard Dawkins famously noted, “Genetics 
is not just about the genes we inherit but how we 
use them.” This sentiment underscores the dual 
responsibility of using genomic data for progress 
while safeguarding its ethical use. Genomic data are 
more than just a scientific resource; it represents 
an intimate map of human identity.3 Addressing the 
ethical concerns associated with its use requires 
balancing innovation with accountability. The 
commodification of genetic information underscores 
the need for transparency, robust governance, and 
equitable practices to ensure that advancements in 
genomics benefit society as a whole.

Emerging technologies like blockchain and AI 
present opportunities to enhance data security and 
improve personalization. However, these tools must be 
complemented by strong regulatory frameworks and 
ethical oversight. Collaboration among stakeholders, 
including policymakers, researchers, and industry 
leaders is vital to establishing standards that protect 
individual rights while fostering innovation.

In conclusion, the future of the DTC genomic testing 
industry depends on its ability to address ethical 

concerns proactively. By establishing a foundation of 
trust, transparency, and accountability, the industry 
can continue to innovate responsibly, unlocking 
the transformative potential of genomic data while 
safeguarding individual and societal well-being. 
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IEEE Pervasive: Could you provide an overview of
your research, and what inspired you to pursue
this research direction?

Justin Chan: In the global context, the country in
which you are born has a huge impact on your ability
to access basic medical resources. Within the USA,
the zip code that you live in can markedly affect
healthcare quality and life expectancy. In this setting,
my research focuses on building intelligent mobile and
embedded systems for equitable healthcare.1,2,3,4,5,6

This involves designing novel methods that can exploit
the sensing capabilities of smart or wearable devices
around us in real time for medical diagnostics. By
leveraging the ubiquity of commodity devices, mobile
systems are able to scale and significantly increase
access to healthcare. What drew me toward this line
of research is how innovations in computing that
advance healthcare delivery for even a single condi-
tion can have a profound impact on millions of people.
While deploying my research on low-cost newborn
hearing screening with smart devices in Kenya, I was
struck by how an idea that began in a lab due to my
curiosity about how ears worked was now seen by the
Nairobi Ministry of Health as having the potential to
substantially change the life trajectory of millions of
yet-to-be-born children.

Pervasive: Can you please explain a bit more
about the main challenges you face in your research?

Chan: Inventing intelligent mobile systems for
healthcare is challenging for three key reasons. First,
unlike conventional medical devices, which are cre-
ated for a single piece of calibrated hardware, smart
devices are not designed for medical diagnostics. Fur-
thermore, the sensors and computing power differ
from one smart device to another. Second, medical
diagnostics typically rely on expensive and sensitive

sensors. To achieve equitable healthcare, the chal-
lenge is to leverage low-cost commodity hardware
while still meeting the high standards of clinical per-
formance expected of medical devices. Third, for
these systems to scale across different devices and
environments, it is often necessary to collect large
amounts of diverse data for development and testing.
However, dataset collection and curation can be
costly and difficult, especially as new devices continue
to be introduced to the market. My research toolkit to
tackle these challenges spans:

1) wireless sensing and applied machine learning
techniques that can generalize across different
hardware;

2) hardware–software co-design to achieve both
high clinical accuracy and low cost;

3) dataset collection and augmentation methods
to scale systems across a large number of devi-
ces and environments.

Pervasive: You have also cofounded a company,
Wavely Diagnostics. Can you discuss your journey as a
startup founder?

Chan: Wavely Diagnostics is a company I
cofounded, which is commercializing my work on
detecting ear infections with smartphones, with the
goal of getting this technology into the hands of mil-
lions of people. The technology leverages the speakers
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and microphones on a smartphone to probe and
detect ear infections using no additional attachments
beyond a paper cone.1 Initially, the process of working
with the FDA seemed daunting due to stories of hav-
ing to run large and lengthy clinical studies. However,
after meeting with the FDA, it turned out that many of
their requirements were reasonable and doable. They
wanted the device to be tested across a range of dem-
ographics, including age, race, gender, and ear condi-
tions, to ensure that the system adapts to differences
in ear anatomy and generalizes to a wide population.
They also wanted to ensure that the code was well
documented and tested in various edge cases, such
as the user attaching the paper cone incorrectly or
testing it in a loud environment. These experiences
were invaluable and deepened my understanding of
building robust systems, which I have been able to
bring back to my research.

Pervasive: You have conducted several studies in
Kenya regarding low-cost newborn hearing screening.
Can you tell us more about your efforts in Kenya and
what led you to take your research there?

Chan: In high-income countries, such as the USA,
every child gets screened for hearing at birth. How-
ever, in many low- and middle-income countries, such
as Kenya, there is little to no screening for hearing
loss. As a result, children are often diagnosed with
hearing loss much later, negatively affecting language
acquisition and neurodevelopment. A major challenge
preventing this screening is the high cost of hearing
screening devices that rely on sensitive components
to probe the cochlea and listen for the faint sounds
caused by the tiny vibrations of the inner ear hair cells.
We invented low-cost systems for healthcare workers
to perform hearing screening at orders of magnitude
lower cost using a $10 smartphone probe2 or a wire-
less earbud device,3 which achieve comparable accu-
racies to the expensive, conventional screening
devices. This has led to a larger international effort,
TUNE, which is working across multiple organizations
with the goal of bringing universal newborn hearing
screening to Kenya. We have been closely engaged
with our partner clinics in Nairobi, and we have been
running the clinical studies needed to instigate
changes in public health policy necessary for large-
scale deployment.

Pervasive: Finally, what advice would you offer to
upcoming researchers interested in pursuing a career
in a similar research field as yours, and what are your
future goals?

AS AN OUTSIDER, IT IS OFTEN EASIER
TO SPOT GAPS IN CONVENTIONAL
WISDOM AND INVENT SOLUTIONS
THAT MEANINGFULLY ADVANCE
BOTH FIELDS.

Chan: Do not let a lack of experience in a new
field hold you back from diving deep and making a
unique contribution. As an outsider, it is often eas-
ier to spot gaps in conventional wisdom and invent
solutions that meaningfully advance both fields. The
secret to giving your research the best chance of
societal impact is to partner closely with open-
minded domain experts in designing a practical
technology that has a clear translational pathway
from lab prototype to production-ready system.
About my future goals, we live in a unique and
exciting time for the future of healthcare. The pace
of technological innovation is rapid, with new hard-
ware platforms, sensing capabilities, and machine
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IEEE Pervasive: Could you provide an overview of
your research, and what inspired you to pursue
this research direction?

Justin Chan: In the global context, the country in
which you are born has a huge impact on your ability
to access basic medical resources. Within the USA,
the zip code that you live in can markedly affect
healthcare quality and life expectancy. In this setting,
my research focuses on building intelligent mobile and
embedded systems for equitable healthcare.1,2,3,4,5,6

This involves designing novel methods that can exploit
the sensing capabilities of smart or wearable devices
around us in real time for medical diagnostics. By
leveraging the ubiquity of commodity devices, mobile
systems are able to scale and significantly increase
access to healthcare. What drew me toward this line
of research is how innovations in computing that
advance healthcare delivery for even a single condi-
tion can have a profound impact on millions of people.
While deploying my research on low-cost newborn
hearing screening with smart devices in Kenya, I was
struck by how an idea that began in a lab due to my
curiosity about how ears worked was now seen by the
Nairobi Ministry of Health as having the potential to
substantially change the life trajectory of millions of
yet-to-be-born children.

Pervasive: Can you please explain a bit more
about the main challenges you face in your research?

Chan: Inventing intelligent mobile systems for
healthcare is challenging for three key reasons. First,
unlike conventional medical devices, which are cre-
ated for a single piece of calibrated hardware, smart
devices are not designed for medical diagnostics. Fur-
thermore, the sensors and computing power differ
from one smart device to another. Second, medical
diagnostics typically rely on expensive and sensitive

sensors. To achieve equitable healthcare, the chal-
lenge is to leverage low-cost commodity hardware
while still meeting the high standards of clinical per-
formance expected of medical devices. Third, for
these systems to scale across different devices and
environments, it is often necessary to collect large
amounts of diverse data for development and testing.
However, dataset collection and curation can be
costly and difficult, especially as new devices continue
to be introduced to the market. My research toolkit to
tackle these challenges spans:

1) wireless sensing and applied machine learning
techniques that can generalize across different
hardware;

2) hardware–software co-design to achieve both
high clinical accuracy and low cost;

3) dataset collection and augmentation methods
to scale systems across a large number of devi-
ces and environments.

Pervasive: You have also cofounded a company,
Wavely Diagnostics. Can you discuss your journey as a
startup founder?

Chan: Wavely Diagnostics is a company I
cofounded, which is commercializing my work on
detecting ear infections with smartphones, with the
goal of getting this technology into the hands of mil-
lions of people. The technology leverages the speakers
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learning models being released seemingly daily,
offering the potential to positively impact the
healthcare system. At the same time, even modern
healthcare systems, such as those in the USA face
accessibility challenges, with wait times for a physi-
cian appointment reaching 1–2 months in some
major cities. My vision for the future is to develop
systems that enable every human being on the
planet to have access to basic healthcare at their
fingertips.
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