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Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics rang-

ing from software design and computer graphics to Internet computing and security, from scientific appli-

cations and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

Self-Encrypting Drive  
Evolving Toward Multitenant 
Cloud Computing

The authors of this February 2024 

Computer article propose multiten-

ant security architectures employ-

ing self-encrypting drives (SEDs) for 

improving security in cloud servers. 

They introduce emerging security 

technologies, such as link encryp-

tion, trusted virtualization, attesta-

tion, and fine-grained encryption, 

to address questions concerning 

the new threats and drawbacks 

when contemporary solutions are 

naively combined with an SED. 

They describe how next-generation 

SEDs can incorporate these tech-

nologies and discuss how the mult-

itenant cloud system, properly built 

with these SEDs, can effectively 

address the new challenges.

Adopting Software Engineer-
ing Concepts in Scientific 
Research: Insights from Physi-
cists and Mathematicians 
Turned Consultants

To investigate potential benefits 

of software engineering concepts 

(SECs) in scientific projects, a sur-

vey was conducted of former phys-

ics and mathematics research-

ers now working as consultants in 

the software engineering domain. 

In the survey, as reported in a 

July/August 2023 article in Com-

puting in Science and Engineer-

ing, the participants reflected on 

the usefulness of various SECs 

for improving repeatability, repro-

ducibility, and correctness of 

research results. This suggests 

that research in these fields could 

benefit from increasing usage of 

SECs, particularly agile develop-

ment, continuous integration, and 

containerization.

 

Educational Computers  
in New Zealand Schools:  
1977 to 1983

New Zealand, though always a 

technologically advanced country, 

experienced some delays in get-

ting computers into schools once 

available in 1977. In 1981, two New 

Zealand academics recognized 

an opportunity to improve access 

and produced two machines 

designed for education/schools: 

the Poly series of computers and 

the Aamber Pegasus. This Octo-

ber–December 2023 IEEE Annals 

of the History of Computing arti-

cle examines this piece of New 

Zealand history and puts it in 

the context of other countries’ 

approaches to computers in edu-

cation during this era. 

“Feels Like an Indie Game”—
Evaluation of a Virtual  
Field Trip Prototype 
on Radioactive Waste 
Management Research for 
University Education

This article in the January/Feb-

ruary 2024 issue of IEEE Com-

puter Graphics and Applications 

describes the design and evalu-

ation of a virtual field trip on the 

topic of radioactive waste man-

agement research for university 

education. The authors created an 

interactive virtual tour through the 

Mont Terri underground research 

laboratory by enhancing the vir-

tual experiment information sys-

tem, designed for domain experts, 

with background information, 

illustrations, tasks, tests, and an 

improved user interface. 
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If Our Aim Is to Build Morality 
Into an Artificial Agent, How 
Might We Begin to Go About 
Doing So?

The authors of this November/

December 2023 IEEE Intelligent 

Systems article highlight the differ-

ent aspects that should be consid-

ered when building moral agents, 

including the most relevant moral 

paradigms and challenges. They 

also discuss the top-down and bot-

tom-up approaches to design and 

the role of emotion and sentience 

in morality, and how governance 

and policy are becoming ever more 

critical in AI ethics and in ensur-

ing that the tasks we set for moral 

agents are attainable and that eth-

ical behavior is achieved.

Rethinking Certification 
for Trustworthy Machine-
Learning-Based Applications

Certification in machine learning 

(ML)-based applications is seen 

by policy makers, regulators, and 

industrial stakeholders as the pre-

ferred assurance technique to 

assess nonfunctional properties 

(e.g., fairness, robustness, and pri-

vacy) and improve trustworthi-

ness. In this November/Decem-

ber 2023 article in IEEE Internet 

Computing, the authors analyze 

the challenges and deficiencies 

of current certification schemes, 

discuss open research issues, 

and propose a first certification 

scheme for ML-based applications.

Privacy by Memory Design: 
Visions and Open Problems

In this January/February 2024 IEEE 

Micro article, the authors propose 

a first-of-its-kind design regime 

that realizes differential privacy 

(DP) in hardware memories. The 

salient feature of this novel design 

lies in its transformation of the 

notorious memory noises at sub-

nominal voltages into the desired 

DP noises, thereby achieving 

power savings and privacy preser-

vation simultaneously: a “win-win” 

outcome. They also demonstrate 

the feasibility of this design regime 

and outline a potential future 

research road map. 

eCubeLand: An  
Intelligent Multiview  
Video Data Modeling

The extensive use of surveil-

lance systems, particularly those 

installed in Internet of Things envi-

ronments, leads to the contin-

uous harvesting of tremendous 

amounts of video data, which 

presents a challenge to process 

due to variability and unstruc-

tured storage. The authors of this 

October–December 2023 IEEE 

MultiMedia article propose an 

intelligent modeling framework, 

offering a convenient represen-

tation with indexing for real-world 

objects and solving complicated 

computer vision problems, such 

as anomaly detection and person 

re-identification. 

Detecting Mobile  
Malware Associated With 
Global Pandemics

This article, in IEEE Pervasive Com-

puting’s October–December 2023 

issue, proposes the use of app 

permissions and an extra feature 

(the total number of permissions) 

to develop a static detector using 

machine learning (ML) models to 

enable the fast-detection of pan-

demics-related Android malware 

at installation time. Using a data-

set of more than 2000 COVID-19 

related apps and by evaluating 

ML models created using decision 

trees and Naive Bayes, they show 

that pandemics-related malware 

apps were detected with an accu-

racy above 90% using decision 

tree models with app permissions 

and the proposed feature.
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Augmenting Security and 
Privacy in the Virtual Realm: 
An Analysis of Extended 
Reality Devices

The authors of this IEEE Security 

& Privacy article, in the January/

February 2024 issue, present a 

device-centric analysis of security 

and privacy attacks and defenses 

on extended reality (XR) devices. 

They also explore future research 

directions and propose design 

considerations to help ensure the 

security and privacy of XR devices. 

Focusing on What 
Matters: Explaining Quality 
Tradeoffs in Software-
Intensive Systems Via 
Dimensionality Reduction

Building and operating software-

intensive systems involves explor-

ing decision spaces composed of 

large numbers of variables and their 

complex relations. The authors of 

this January/February 2024 IEEE 

Software article report on using 

dimensionality reduction tech-

niques that enable decision makers 

in different domains to focus on cru-

cial elements of the decision space. 

An Overall First  
Responder Tracking and 
Coordination Framework

For first responders (FRs), self-

localization at the scene can be 

especially difficult in indoor sce-

narios where signals and navi-

gation systems may be unavail-

able for reliable positioning. In this 

November/December 2023 IT Pro-

fessional article, the authors pro-

pose a system combining self-

localization, communication of the 

FRs’ locations, 3-D building recon-

struction or floor plans (if avail-

able), and visualization to improve 

indoor positioning, georeferencing 

the positions, and finally, visualiz-

ing the results in a suitable visual-

ization tool. 
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Editor’s Note

The Incredible Potential and 
Risks of Machine Learning and 
Artificial Intelligence 

T he potential uses of arti-

ficial intelligence (AI) and 

machine learning (ML) seem end-

less. But as progress speeds 

ahead, developers may overlook 

the risks of relying too heavily on 

ML and AI without proper testing 

and development. This issue of 

ComputingEdge highlights some 

of the ways ML and AI can aid soci-

ety, such as through medical dis-

coveries, architectural advance-

ment, edge computing, and data 

analysis. The articles also grapple 

with the limitations of depending 

on ML and AI, particularly when it 

comes to trust. 

To utilize the potential of using 

AI to advance architecture and 

other fields, people must be able 

to trust it. The authors of “Harness-

ing Artificial Intelligence to Design 

Healthy, Sustainable, and Equita-

ble Places,” from Computer, explore 

how architects can use ML and AI 

to design buildings and neighbor-

hoods. IEEE Security & Privacy’s 

article “Trustworthy AI Means Pub-

lic AI [Last Word],” argues that busi-

nesses must prioritize security 

and transparency over profit when 

developing AI in order to ensure its 

trustworthiness. 

Computer vision applications 

create exciting opportunities in 

the human brain and the work-

place. In “Visualizing Multimodal 

Deep Learning for Lesion Predic-

tion,” from IEEE Computer Graphics 

and Applications, the authors dis-

cuss the potential for using image 

segmentation to predict lesions 

caused by strokes. IT Professional’s 

“Implementing Behavioral Biomet-

rics With TRUST,” explains why com-

panies should implement behav-

ioral biometrics using the TRUST 

approach as a way to maintain 

transparency and respect between 

workers and management. 

IT engineers worldwide are 

brainstorming strategies for how 

to make edge computing more 

efficient and effective. “Toward 

Building Edge Learning Pipe-

lines,” from IEEE Internet Comput-

ing, envisions a future where data 

acquisition, advanced ML, and ana-

lytics workflows blend together to 

develop edge learning solutions. In 

IEEE Internet Computing’s “Toward 

Sustainable Serverless Comput-

ing,” the authors make the case for 

using ML to enable more energy 

efficient serverless computing. 

To use ML effectively, organiza-

tions must be able to trust it. The 

authors of “The Flow of Trust: A 

Visualization Framework to Exter-

nalize, Explore, and Explain Trust in 

ML Applications,” from IEEE Com-

puter Graphics and Applications, 

present a framework for helping 

users build trust in ML through 

interactive visualizations. In IEEE 

Intelligent Systems’ “The Secrets 

of Data Science Deployments,” 

the authors identify obstacles that 

are getting in the way of using ML 

to analyze large data sets and pro-

pose possible solutions. 
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DEPARTMENT: COMPUTING ARCHITECTURES

Harnessing Artificial Intelligence 
to Design Healthy, Sustainable, 
and Equitable Places
Phillip Bernstein, Yale School of Architecture

Mark Greaves, Pacific Northwest National Laboratory

Steve McConnell, NBBJ

Clifford Pearson, Architectural Record

Modern machine learning and artificial intelligence (AI) have revolutionized many 
disciplines but have only minimally impacted the practice of architecture. We discuss 
design challenges that architects face, illustrate how AI can meet them, and describe 
three areas where progress is needed to ignite the AI revolution in architecture.

Our term for the designers of computing 
systems, architects, is derived from the far 
older profession of designing the structures 

and places that occupy our world. Today’s architec-
tural firms are avid consumers of computing technol-
ogy, from powerful CAD systems and building models 
to sophisticated urban simulations. However, while 
modern machine learning and artificial intelligence 
(AI) techniques have revolutionized many disciplines, 
they have only minimally impacted the practice of 
architecture.

Architects of the built environment need to do 
more than ever. It is no longer sufficient for build-
ings and places to meet Vitruvius’ rubric: firmitas, 
utilitas, et venustas—strength, utility, and beauty. 
Now architects must also respond to a broad range 
of environmental, social, and community concerns. 
Designing even a single-family home today requires 
attention to climate change, pollution, the carbon 
footprint of every material used in construction, fair 
labor practices throughout the building supply chain, 
affordability, racial equity, and the development of 
healthy communities—in addition to all of the usual 
demands of the client and regulatory agencies. An 

explosion of information and data on all of these 
issues now influences every step in the design pro-
cess and simultaneously threatens to overwhelm the 
people running that process. How can the architects 
of our built environment meet the demands of this 
new class of design goals without losing sight of their 
less-quantifiable aspiration to create inspiring and 
captivating buildings?

Designing great buildings has always been a 
“wicked” problem—one defined  by imprecise goals, 
incomplete knowledge, deeply interconnected 
subproblems, and the need to continuously make 
best-guess tradeoffs (https://en.wikipedia.org/wiki 
/Wicked_problem). Instead of right or wrong answers, 
wicked problems require us to think in terms of 
better or worse solutions and rely on professional 
judgment and experience to point us forward. In 
a recent op-ed (https://www.archpaper.com/2021 
/02/op-ed-tackling-bidens-climate-change-challenge 
-artificial-and-human-intelligence/), we discussed 
a wicked problem tucked within President Bidens 
year-one legislative agenda on climate change 
(https://joebiden.com/climate-plan/)—a call to 
create the innovative technologies needed to build 
“zero net energy buildings at zero net cost.” Owing 
to the cross-disciplinary nature of the problem and 
its resistance to traditional design methods, we 
argued that architects could leverage AI as a tool to 

Digital Object Identifier 10.1109/MC.2021.3134422 
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supplement human intelligence and help find novel 
solutions.

Today’s architects already work routinely with 
digital tools to design, manage, and construct 
projects. At the center of this work is a technol-
ogy known as building information modeling (BIM), 
which enables an architect to create a detailed, 3D 
representation of her design that behaves, digitally, 
like a real building. That model can then be used to 
predict the energy performance, daylight usage, and 
even the cost of the project before it is built as well 
as generate drawings and images to help explain the 
project to the client. With BIM as a base, architects 
can create vast amounts of digital information about 
their projects with tools that simulate a building and 
predict how it might operate in reality—everything 
from the amount of carbon needed to power its 
lighting system to the number of people who might 
occupy a particular space at a particular time. The 
builder can use that same model to price the project, 
order materials, coordinate labor in the field, and 
sequence construction. The BIM simulation lives on 
after construction as a digital tool that can be used 
by the building owner to operate the property and 
monitor its performance. BIM has established a com-
mon platform for architects, engineers, consultants, 
and contractors to develop and analyze building proj-
ects with robust analyses driven by explicit 3D model-
ing, well-understood relationships, and conventional 
types of digital simulation.

Contemporary AI approaches are fundamentally 
different from traditional BIM-based analyses. While 
BIM allows designers to model individual structures 
in significant detail, the machine learning algorithms 
used by today’s AI systems identify patterns and cor-
relations that are implicit in massive pools of data 
and then use those patterns to make predictions 
about specific instances. Crucially, the patterns that 
AI systems discover from large sets of design data 
can far exceed the power of the handcrafted building 

data models and simulations that are encompassed 
by BIM. These patterns capture subtle but authentic 
regularities across thousands of individual features 
and millions of examples, surpassing what humans 
can encode or even effectively explain using tradi-
tional models and rules.

Modern facial recognition systems illustrate this 
well. Rather than having programmers explicitly iden-
tify and model all the graphical elements relevant to 
recognizing faces and then write computer code that 
recognizes specific faces as unique combinations of 
these elements, AI systems process millions of images 
to learn distinguishing facial patterns for themselves. 

Continuous feedback and retraining allow the AI sys-
tem to perform with increasing accuracy. Yet, the way 
that specific machine-learned parameters encode 
facial features to allow identification of any one face 
remains a mystery that, so far, is extremely challenging 
to explain in intuitive terms. This AI process is reminis-
cent of how humans learn to identify faces. No one 
explicitly teaches us how to recognize our friends. Our 
brains independently learn to do this task automati-
cally and reliably based on experience gathered at a 
very young age, and yet the details of our own ability 
to recognize faces are a mystery. As with AI, we cannot 
satisfactorily explain how we do it, even to ourselves.

The basic property that characterizes modern AI 
is that machine learning algorithms are able to extract 
subtle patterns and correlations from large data sets 
without requiring an expert to explicitly model all of the 
detailed relations among the elements of such data 

THE BIM SIMULATION LIVES ON AFTER 
CONSTRUCTION AS A DIGITAL TOOL 
THAT CAN BE USED BY THE BUILDING 
OWNER TO OPERATE THE PROPERTY 
AND MONITOR ITS PERFORMANCE.
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sets. For example, AI might help uncover a deep con-
nection between certain design choices and patient 
health outcomes to create more effective hospitals 
or exploit complex patterns between space and light 
to identify designs that would best support a socially 
vibrant public square.

While modern AI has gained little traction in the 
building industry to date, it is on track to provide a 
powerful path to extend and complement the detailed 
modeling capabilities of BIM and support architects in 
understanding tradeoffs that are not apparent from 
traditional digital-model representations of a design. 
A variety of innovative digital tools available in recent 
years has amplified architects’ capabilities to create, 
depict, analyze, and communicate their design ideas 

(https://www.architecturalrecord.com/articles/15409 
-continuing-education-artificial-intelligence). Many 
such tools extend the data and power of BIM models, 
but they are targeted at single designs rather than 
leveraging a broad array of data compiled from many 
projects. AI improves on this by identifying patterns 
implicit in hundreds or even thousands of individual 
designs to help architects effectively respond to subtle 
and difficult-to-model design concer–ns. Just as AI has 
revolutionized how we design our drugs and drive our 
cars, it can uniquely help architects create inspiring and 
beautiful buildings that also respond to our desire for 
equity, justice, health, and community—issues that are 
at the forefront of the architectural profession today.

APPLYING AI TO THE DESIGN  
OF PLACES

AI can make it possible for architects to resolve vastly 
more complex design agendas than they are able to 
today. It will do this by rapidly analyzing huge amounts 
of data to generate options for design teams to con-
sider and refine, just as Spotify or Netflix do when 
they recommend music or movies we might like. In 

architecture, AI can accelerate the design process 
to find and evaluate options that are likely to satisfy 
a complex set of design requirements across a vari-
ety of programmatic and qualitative domains. Finally, 
AI can integrate with advanced simulation technol-
ogy to help architects assess the effectiveness of var-
ious design solutions aimed at satisfying the diverse 
demands of a building project.

Of course, solving complex—even wicked—prob-
lems such as “zero net energy buildings at zero net 
cost” through design involves evaluating the human 
costs of tradeoffs and judgments, tasks that humans 
still do far better than algorithms. So while AI may be 
a disruptive technology, it cannot fully automate the 
work of design, any more than BIM “solved” architec-
ture. Used properly, AI can give architects mastery of 
complex agendas by revealing insights based on other-
wise impossible-to-recognize patterns and solutions, 
while preserving the ability of architects to focus on 
understanding human needs, applying creativity, and 
developing artistry.

In the near future, architects may employ AI to help 
with a broad range of challenges. To offer a clearer 
idea of what this might mean, following are three sce-
narios involving different project scales and levels of 
complexity.

BETTER EDUCATION
The first example is an elementary school in a subur-
ban community designed to exemplify best practices 
in education, sustainability, and racial and economic 
diversity. In November 2020, the Public School Review, 
a widely used platform that provides free, detailed pro-
files of American public schools and their surround-
ing communities, highlighted 10 major challenges fac-
ing these institutions—including addressing social 
and health issues. But this information offers archi-
tects and educators only limited help in identifying the 
cause-and-effect relationships between critical ele-
ments in school design and desired outcomes, such 
as reduced absenteeism, higher test scores, and more 
parental engagement.

In this example, AI can work as an architect’s assis-
tant by leveraging large databases of BIM elementary 
school models along with regional health and testing 
data to surface new and promising configurations that 
best correlate a range of holistic, qualitative objectives. 

WHILE AI MAY BE A DISRUPTIVE 
TECHNOLOGY, IT CANNOT FULLY 
AUTOMATE THE WORK OF DESIGN, 
ANY MORE THAN BIM “SOLVED” 
ARCHITECTURE.
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By broadening the scope and increasing the depth of 
the architect’s understanding of the design problem, 
such assistance can help create schools that work 
better for students, faculty, and staff.

BETTER HEALTH OUTCOMES
A second scenario examines a larger, more complex 
project: a regional hospital with inpatient and out-
patient care, a full range of departments (obstetrics, 
oncology, emergency, cardiac, renal, pulmonary, and 
so on), and both research and clinical facilities. Not 
only is this project larger and more expensive than the 
school, but it must resolve the often-competing needs 
of its different user groups: patients, visitors, medical 
professionals, and support staff.

New AI tools can review continually evolving data 
on patient-stay durations, medical procedure recovery 
times, and hospital-borne infections to find critical 
patterns and then apply this knowledge to help archi-
tects design the hospital. By revealing the underlying 
connections between design and outcomes—such as 
the relationship of building configuration to reduced 
hospital stays, better utilization of expensive medical 
equipment, and reduced carbon footprint—AI can 
establish an evidence-based process for architecture. 
It can also provide validation for design decisions, 
allowing architects to explore strategies that might 
not seem promising at first glance. And AI systems 
can be continually updated with new data sets and the 
latest studies.

BETTER COMMUNITIES
The third example involves the master plan for an 
urban neighborhood that proposes a holistic strat-
egy for commercial mixed-use buildings, residential 
construction, infrastructure improvements, and pub-
lic open space. By encompassing not only individual 
buildings, but also the interactions among them within 
the larger context of streets, parks, and occupants, the 
plan must accommodate a degree of complexity that 
challenges any existing technology. It requires coordi-
nation at multiple scales: from the building materials 
used to solar orientation, from landscaping to transit 
facilities, from safe bicycle routes to issues of afford-
ability and diversity. By finding correlations across 
the relevant data, AI can help architects and planners 
evaluate complex decisions, make myriad tradeoffs, 

and project how individual pieces will fit together to 
support a vibrant community.

These data will be provided by today’s smart 
city technologies, which collect vast amounts of 
information on traffic, pollution, open space usage, 
crime, energy consumption, and all kinds of other 
urban functions. If all of this information could be 
brought together, it could be used to train algorithms 
to discover patterns and offer insights on complex 
environmental, social equity, population health, and 
community governance issues that can’t be found 
using traditional planning methodology. Those same 
AI tools could periodically update the master plan with 
new insights as the project moves forward over time, 
keeping it relevant as the community develops and 
plans evolve. As the AI systems learn more from these 
large data sets, they can begin to simulate and predict 
to help planners and architects shape a healthier and 
more sustainable future.

Each of these three imagined scenarios offers a 
window into the realm of possibilities that can lever-
age AI to correlate complex agendas that span a range 
of social, health, and environmental issues central to 
human progress and a healthy planet.

AI can also help architects expand the scope and 
value of services they provide to clients. Armed with 
the latest software, firms can engage with clients ear-
lier in the process—providing advice, for example, on 
real estate decisions and programming. At the other 
end of the process, AI can help architects use data 
gathered on a completed building’s performance in 
terms of energy use, water conservation, indoor air 
quality, and user comfort to manage a property for a 
client, a service not normally assumed by architects, 
but one that could be attractive to some.

U ltimately, AI is a tool of empowerment, giving 
architects the space to do what they do best: 

develop innovative ideas and new solutions. AI will 
allow them to focus on the poetics of a project, not 
just the pragmatics. AI has tremendous potential to 
advance the practice of design to more reliably create 
places and buildings that respond to national priorities 
for equity, justice, health, and community—and lever-
age the built environment to bolster our values across 
all strata of society. There are three areas where prog-
ress is needed to bring about this future:
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1.	 The promise of AI to improve architecture 
depends on the ability of these algorithms to 
learn from massive assemblies of information 
about design, construction, and building 
operation. Data are the fuel for AI and analysis. 
Compiling these data, though, is beyond the 
capability of any single firm or group of firms 
in the design industry, or even leading profes-
sional associations like the American Institute 
of Architects. There are complex and difficult 
issues surrounding creation of such a data 
resource, including ownership, access, privacy, 
data bias, social equity, data assurance, 
labeling, governance standards, and protec-
tion. We envision a built environment data 
trust, overseen by a distinguished oversight 
board, which would aggregate as much building 
design data as possible. Such a resource will 
ignite the AI revolution in architecture.

2.	 AI can allow designers to create far better 
performing buildings while reducing their envi-
ronmental and energy footprints, improving the 
health of people who use and live near them, 
and leveraging the built environment to address 
a broad range of social and economic issues. 
These impacts and the processes needed to 
achieve them will first be explored in architec-
ture schools and leading architecture firms. 
We envision a set of innovative pilot programs 
aimed at using AI and information in the built 
environment data trust to drive AI forward for 
architectural design. This effort should include 
public–private partnerships with leading 
architecture firms, universities, construction 
companies, real estate developers, and building 
owners to ensure that technical advances can 
be quickly applied to real-world projects. Work-
ing together, such partnerships can enable the 
multitrillion-dollar design and construction 
market to take transformative steps to operate 
with greater efficiency and create communities 
that are healthier and more environmentally 
sustainable.

3.	 Each of us recognizes the excitement that 
can be generated when like-minded people 
come together. We look forward to an increas-
ing number of workshops and conferences 

addressing AI’s impact on the built environ-
ment. They will involve researchers, technolo-
gists, practitioners, developers, financiers, and 
government officials, all seeking to identify 
innovative ways of using data and AI to design 
and build sustainable, resilient, and healthy 
places for the 21st century.

A powerful tool tends to change its user. AI is 
a revolutionary technology that can transform the 
American practice of architecture in deep and positive 
ways and shape a healthy and sustainable future for 
the world we live in. 
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Back in 1998, Sergey Brin and Larry Page intro-
duced the Google search engine in an aca-
demic paper that questioned the ad-based 

business model of the time. They wrote: “We believe 
the issue of advertising causes enough mixed incen-
tives that it is crucial to have a competitive search 
engine that is transparent and in the academic realm.” 
Although they didn‘t use the word, their argument 
was that a search engine that could be paid to return 
particular URLs is fundamentally less trustworthy. 
“Advertising income often provides an incentive to 
provide poor quality search results.”

We all know what happened next. Google even-
tually sold ads: first in dedicated boxes that made it 
obvious that the links were paid for, and then slowly 
integrated into the actual search results until paid 
links were seamlessly integrated into the “real” search 
results.

It’s a story that’s been repeated many times. 
Your Facebook and Instagram feeds are filled with 
“sponsored posts.” An Amazon search returns pages 
of products whose sellers paid for placement. Buried 
behind an obscure link, the travel search engine Kayak 
discloses that “some results have been promoted 
based on their revenue potential for us.”

This is how the Internet works. Companies spy 
on us as we use their services. Data brokers buy that 
information from smaller companies, and assemble 
detailed dossiers on us. They then sell that informa-
tion back to other companies, who combine it with 
data they collect in order to manipulate our behavior 
to serve their interests—at the expense of our own.

And even if they don’t manipulate us directly— 
even if we pay for the products and services— they spy 
on us. Our televisions spy on us. Our smartphones spy 
on us, as do our appliances, our cars, and everything 

else with a plug or battery. Surveillance is the business 
model of the Internet. And the use of manipulative 
interfaces is so prevalent that it has its own name: 
dark patterns.

We use all of these services as if they were our 
agents. In fact, they are double agents, secretly work-
ing for their corporate owners. We trust them, but they 
are not trustworthy.

We should not expect the current crop of genera-
tive AI systems to be any different. And the results will 
be much worse, for two reasons.

The first is that these AIs will be more relational. 
We will be conversing with these systems, using 
natural language. As such, we will naturally ascribe 
human-like characteristics to them. And we will treat 
them as trusted assistants and intimate friends.

This relational nature makes it easier for double 
agents to do their work. Did your chatbot recommend 
a particular airline or hotel because it’s truly the best 
deal, given your particular set of needs, or because 
the AI company got a kickback from those providers? 
When you asked it to explain a political issue, did it bias 
that explanation towards the company’s position? Or 
in a way that benefits whichever political party gave it 
the most money?

The second reason to be concerned is that these 
AIs will be more intimate. One of the promises of 
generative AI is a personal digital assistant: acting as 
your advocate with others, and as an intimate butler 
with you. This requires an intimacy greater than your 
search engine, email provider, cloud storage system, 
or smartphone. You’re going to want it with you 24 × 7, 
constantly recording and training on everything you 
do, so it can most effectively work in your best interest.

And it will help you in many ways. It will notice your 
moods and know what to suggest. It will anticipate 
your needs and work to satisfy them. It will be your 
therapist and life coach.

You will want to trust it. Its interface will make it 
hard not to trust, because we have evolved to judge 
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humans—and quickly ascribe human agency when we 
see human-like behaviors. Previous computer inter-
faces were limited, so it was easy to remember that a 
search window—or a thermostat’s interface—wasn’t 
a person. AI agents will interact with the totality of our 
existence in ways another person would, easily break-
ing our prior systems of judgment. And so, again, it will 
need to be trustworthy.

Today’s generative AI systems are not trustworthy. 
We don’t know how they are trained. We don’t know 
their secret instructions. We don’t know their biases, 
either accidental or deliberate. All we know is that they 
are created, at great expense, by corporations that will 
use every trick they can think of to make them as prof-
itable as possible.

We are going to need to build these generative AI 
systems and assistive agents with security in mind, 
from the ground up. This means security from outside 
attack, of course, but also from the changing business 
models of the corporations themselves.

Everyone will need their own secure personal 
data storage. Processing will require secure enclaves. 

Communications will need to be encrypted. All of this 
will need to be decoupled, so that no single provider 
can compromise security. This isn’t hard—it’s the sort 
of stuff security engineers do all the time—but we will 
continuously need to fight against both corporate 
and government desires for surveillance. This means 
no backdoors.

Transparency is essential, but only part of the solu-
tion. It’s possible to poison a model in a way that even 
someone looking at the training data won’t know. And, 
more generally, the market incentive for the large 
tech companies to violate our privacy and influence 
our behavior is just too great. We are going to need to 
build open-source public models, not licensed from 
or otherwise controlled by the large tech companies. 
The development of this transformative technology 
must not be steered solely by the private sector’s 
near-term financial interests. Generative AI is just too 
important, too transformative, too relational, and too 
intimate. We won’t truly trust AI unless it’s trustwor-
thy, and that requires both secure technology and 
secure policies. 
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A U-Net is a type of convolutional neural network that has been shown to output
impressive results in medical imaging segmentation tasks. Still, neural networks in
general form a black box that is hard to interpret, especially by noncomputer
scientists. This work provides a visual system that allows users to examine U-Nets
that were trained to predict brain lesions caused by stroke using multimodal
imaging. We provide several visualization views that allow users to load trained
U-Nets, run them on different patient data, and examine the results while visually
following the computation of the U-Net. With these visualizations, we can provide
useful information for our medical collaborators showing how the training
database can be improved and which features are best learned by the neural
network.

Lesions define areas in organs or tissue dam-
aged through injury or disease. Brain lesions
can lead to movement, attention, speech, and

language disorders.1 In the case of stroke, a vessel in
the brain becomes occluded and fails to provide the
surrounding tissue with an appropriate amount of
blood. Strokes are the second leading cause of disabil-
ity worldwide2 and a precise and reliable prediction of
a lesion, including its location and shape, can help
clinicians in making a diagnosis and determining the
proper treatment.

Neural networks have become increasingly popu-
lar in the medical domain as they have proven to be
quite powerful, especially in image segmentation
tasks3 often used for the prediction of stroke lesions.

Lesion prediction can be performed in various
ways, ranging from a basic quantification of the out-
come (good or bad) to a holistic prediction of tissue
damage in the brain. In these disciplines, neural

networks have been shown to achieve impressive pre-
diction results.

However, to the end user, neural networks form a
black box, meaning that the prediction process cannot
be reviewed directly. This is an important issue in med-
ical applications,4 as clinicians make decisions that
can have a massive impact on patients’ health. Medi-
cal researchers tend to discard novel computational
approaches if they do not provide a mechanism that
allows them to review and understand how the
method works.5

Tjoa and Guan6 highlighted this issue and pro-
posed that a visual interpretation of neural network
approaches is a crucial requirement for using these
algorithms in applications and reaching the goal of
explainable artificial intelligence (XAI) in medicine.7

Singh et al.8 provided a survey on available visualiza-
tion approaches in the area of XAI and highlighted
that the selection of a proper algorithm is highly
dependent on the underlying task.

Although a variety of XAI approaches have
been published in recent years, applying XAI to the
prediction of brain lesions raises a number of novel
questions. Our lesion prediction technique uses multi-
modal input, meaning that each patient is captured by
multiple types of medical images. A neural network is
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A U-Net is a type of convolutional neural network that has been shown to output
impressive results in medical imaging segmentation tasks. Still, neural networks in
general form a black box that is hard to interpret, especially by noncomputer
scientists. This work provides a visual system that allows users to examine U-Nets
that were trained to predict brain lesions caused by stroke using multimodal
imaging. We provide several visualization views that allow users to load trained
U-Nets, run them on different patient data, and examine the results while visually
following the computation of the U-Net. With these visualizations, we can provide
useful information for our medical collaborators showing how the training
database can be improved and which features are best learned by the neural
network.

Lesions define areas in organs or tissue dam-
aged through injury or disease. Brain lesions
can lead to movement, attention, speech, and

language disorders.1 In the case of stroke, a vessel in
the brain becomes occluded and fails to provide the
surrounding tissue with an appropriate amount of
blood. Strokes are the second leading cause of disabil-
ity worldwide2 and a precise and reliable prediction of
a lesion, including its location and shape, can help
clinicians in making a diagnosis and determining the
proper treatment.

Neural networks have become increasingly popu-
lar in the medical domain as they have proven to be
quite powerful, especially in image segmentation
tasks3 often used for the prediction of stroke lesions.

Lesion prediction can be performed in various
ways, ranging from a basic quantification of the out-
come (good or bad) to a holistic prediction of tissue
damage in the brain. In these disciplines, neural

networks have been shown to achieve impressive pre-
diction results.

However, to the end user, neural networks form a
black box, meaning that the prediction process cannot
be reviewed directly. This is an important issue in med-
ical applications,4 as clinicians make decisions that
can have a massive impact on patients’ health. Medi-
cal researchers tend to discard novel computational
approaches if they do not provide a mechanism that
allows them to review and understand how the
method works.5

Tjoa and Guan6 highlighted this issue and pro-
posed that a visual interpretation of neural network
approaches is a crucial requirement for using these
algorithms in applications and reaching the goal of
explainable artificial intelligence (XAI) in medicine.7

Singh et al.8 provided a survey on available visualiza-
tion approaches in the area of XAI and highlighted
that the selection of a proper algorithm is highly
dependent on the underlying task.

Although a variety of XAI approaches have
been published in recent years, applying XAI to the
prediction of brain lesions raises a number of novel
questions. Our lesion prediction technique uses multi-
modal input, meaning that each patient is captured by
multiple types of medical images. A neural network is
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then trained that can output a probabilistic lesion map
of a patient’s brain. Although there have been visuali-
zation approaches that assist in reviewing multimodal
medical images,9 including ones applied to multimodal
brain lesion visualization,10,11 suitable visualization
approaches in the context of XAI need to be found.

In this work, we demonstrate an XAI approach that
helps clinicians understand and interpret a specific
neural network trained to predict brain lesions.

MEDICAL IMAGINGMODALITIES
Endovascular Stroke Database
In this project, we worked with datasets acquired at
the Department of Neuroradiology, University of Leip-
zig Medical Center. A standardized pipeline was imple-
mented to create datasets for 117 patients suffering
from acute ischemic stroke due to large vessel occlu-
sion. Each patient record contains multiple computed
tomography (CT) scans and a magnetic resonance
imaging (MRI) scan. These scans can be separated
into two groups: Acute Stroke Imaging and Follow-up
Imaging, as shown in Figure 1.

Acute Stroke Imaging
When a patient enters the hospital and all symptoms
match a potential stroke, several types of CT scans
are acquired using a Brilliance 64-slice or Ingenuity
128-slice CT scanner (Philips Healthcare, Best, The
Netherlands) in clinical daily routine. Figure 1 shows
the following three types of acute stroke imaging.

Noncontrast CT (NCCT) is a conventional CT scan
of a patient’s brain, showing the brain of the patient
surrounded by the skull. White matter in a brain can be
affected by lesions. The slice number depends on the
patient’s anatomy and slice thickness is between 0.8
and 5 mm. NCCT gives a first overview of the lesion.

CT Angiography (CTA) is the medical term for the
radiological imaging of blood vessels through diagnos-
tic imaging procedures. After the application of a con-
trast medium, one volume from the aortic arch to the
vertex of the skull was acquired. CT Angiography
allows the identification of blood vessels as can be
seen in the lighter color in Figure 1 CTA. As lesions are
a result of blocked vessels, this is important informa-
tion for clinicians.

CT Perfusion (CTP) is a functional radiological
examination method used to quantitatively determine
cerebral perfusion. During the intravascular injection
of a contrast medium, several images of the brain are
generated in rapid succession, typically 16 time-steps
per volume, capturing the propagation of the contrast
medium over time. CT perfusion can indicate areas in
the brain that are not properly supplied with oxygen.

Parameter Map(s) (CTP Masks) are used to reduce
the complexity of CTP datasets, which can be hard to
review as each is a video of volumes. We generate
three types of CTP masks summarizing the measured
CTP: Cerebral blood volume (CBV) is the volume of
blood present at a given moment within the brain,
Cerebral Blood Flow (CBF) depicts the flow of blood in
the brain measured over time, and Time to Peak
(Tmax) map shows the moment at which the contrast
medium reaches its highest concentration. The calcu-
lations are made with software developed by VEOcore
(veobrain.com).

Follow-Up Imaging
Although acute stroke imaging contains valuable
information about which parts of the brain are cur-
rently badly supplied, it does not guarantee that a
lesion will be found. Lesions can dissipate as parts of
the tissue recover, but can also enlarge in border
areas where partially supplied tissue is not able to
recover properly. The final outcome is measured some

FIGURE 1. Endovascular Stroke Database: for each patient, multiple scans are acquired that can be separated into acute stroke

imaging (blue) and follow-up imaging (green). Acute stroke imaging consists of NCCT, CTA, and CTP, where CTP is used to gener-

ate CTP Masks (Tmax, CBV, CBF). Follow-up imaging consists of MRI and a semi-automatically created ground truth.
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days after the stroke, requiring a further imaging
procedure.

Follow-Up MRI scans are acquired to definitively
diagnose the final lesions.

Lesion Map (LM): Each lesion map is created by a
neurologist utilizing a semiautomated segmentation
algorithm clusterize tool (github.com/carderne/clus-
terize) operating on the follow-up MRI imaging con-
taining the final lesion of the patient.

All modalities as well as the ground truth images
are resliced and normalized to a standard brain.

LESION PREDICTION USING A
U-NET

Using our endovascular stroke database, we can train
a neural network to predict lesions. This training pro-
cess is summarized in Figure 2. The input is formed by
an arbitrary subset of acute stroke imaging (excluding
CTP). We fuse all input images into one large stack of
individual images.

This input is fed into a U-Net, which is a special var-
iant of a convolutional neural network introduced by
Ronneberger et al.,12 who showed that U-Nets are well
suited to medical imaging segmentation tasks. U-Nets
can be separated into two parts. Part one is a compo-
sition of multiple convolutional layers (Con) and pool-
ing layers (Pool), which iterate down to a bottleneck at
the narrowest part of the neural network. Part two of
the U-Net then expands back out using multiple
deconvolutional (DCon) and pooling layers into a
result that resembles the original image with the addi-
tion of a probabilistic lesion risk map, see Figure 2.

It is important to note that we are not simply per-
forming a segmentation task with the utilized U-Net
but also aim to predict lesions. The follow-up imaging
that is used to generate the ground truth of the lesion
is not fed into the U-Net as an input during training.

We conducted our initial experiments using leaky
rectified linear units (ReLU) as activation layers, batch
norm layers13 to stabilize the output of activation
layers, max pooling layers, stochastic gradient descent
as the optimizer, and mean squared error as the error
function. We ran the experiments (Table 1) with 1000
epochs and learning rates of 0.1, 0.01, 0.001, and
0.0001, where 0.1 and 0.01 learning rates provided the
most promising results. This remained true when
switching the loss function from mean squared error
(MSE) to binary cross entropy loss (BCE).

Two kinds of data augmentation were also tested:
rotating the input by 90� in a random direction and
elastic deformation14 of the input. Random changes
on the input data act as an enlargement of the train-
ing dataset for the model, resulting in more accurate

FIGURE 2. Training procedure of U-Net for multimodal stroke

imaging. Acute Stroke imaging is used as an input to train a

U-Net that outputs a lesion risk map. Layers are enumerated

for reference.

TABLE 1. Visually evaluated models of U-Net. Each model

contains an ID, the included modalities, and the resulting AUC

value.
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predictions. However, combining both methods of
data augmentation led to slightly worse results, sug-
gesting that more training epochs are still needed to
adapt to the virtually enlarged dataset.

In all, we tested 168 configurations of the U-Net in
combination with different learning rates and exam-
ined more closely ten different models (Table 1) with
the highest area under their ROC-curve. The receiver
operating characteristics (ROC) curve maps true-posi-
tive-rate to false-positive-rate when comparing the
ground truth output with the output of the model,15

see for example Figure 5 upper right. Higher area
under this curve (AUC) represents higher sensitivity, a
major goal in the training process. AUC-ROC is a per-
formance measure for classification problems as
shown in this case.

DEEP LEARNING VISUALIZATION
SYSTEM

Our neural network visualization system was imple-
mented using the Python library Dash (dash.plotly.com).
An overview of our system can be found in Figure 3.

Input
The input to our system is a composition of the Endo-
vascular Stroke Database, the pretrained U-Net, and a
brain atlas. We used the SRI24 atlas16 to map brain
regions to our data. The atlas describes a “standard ref-
erence systemof normal human brain anatomy.” For our
purposes, the atlas consists of a volume that has a
region label for each voxel and a look-up-table for each
region. We resized this volume as needed to match the
data from the Endovascular Stroke Database.

The atlas consists of 422 classes using all regions
and 96 additional classes clustering these into larger
groups. The resulting brain atlas provides an implicit
hierarchy, which separates regions into subregions.
The single most important level of the hierarchy is the
separation of the left and right brain.

Processing
A natural approach to gaining insights into the struc-
ture of the examined U-Nets is to visualize the inter-
mediate data of the network. For this purpose, we use
activation and saliency maps to analyze the inner
computational processes of neural networks and
understand the network’s computation in image
space. Especially for medical researchers, this is an
important feature, as it allows them to review the
developed visualizations in their usual manner.

Activation Maps
Activation Maps (see Figure 6) describe the activation
of the output of each neuron in a given U-Net layer.
Combining all respective neurons into a layer and con-
sidering the output of a whole layer makes this pro-
cess more natural for the user. The output of the layer
is a set of volumes, which contain an activation value
for each voxel.

Saliency Maps
The size and dimensions of the imaging volumes
themselves can vary substantially. Considering the
large number of volumes near the U-Net bottleneck,
users will most likely not go through all of them. To
help with prioritization, we use Saliency Maps. These
look like activation maps, except that a saliency value
is given for each voxel indicating which voxels affect
the result the most: a positive value indicates support
of the classification given by the overall result and a
negative value suggests nonsupport. Saliency, as
defined by Simonyan et al.,17 is the gradient of the out-
put given by an input. We compute saliency with the
AutoGrad system in PyTorch (pytorch.org), which
computes the gradient of the function for each node
in the computation graph using the chain rule.

Visualization
For reviewing the training process of a U-Net, we provide
a visualization system that encodes the different aspects
of the network shown in Figure 3. After data processing,
the user selects data to be visualized in a Selection View
(Figure 4). The Network View (Figure 5) is then used to
indicate the importance of different datasets as well as
learned features in the network. Finally, for a deeper
understanding of the neural network, we provide a Con-
text View (Figure 6) showing the distribution of activation
and saliency values for the whole layer. Throughout, we
incorporate brain region maps in the slice plots to help
the user better visualize spatial information.

Selection View: The closer a layer is to the bottle-
neck, the larger the number of feature channels there

FIGURE 3. Overview of our visualization approach for under-

standing the learning process of U-Nets used to predict brain

lesions.
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days after the stroke, requiring a further imaging
procedure.

Follow-Up MRI scans are acquired to definitively
diagnose the final lesions.

Lesion Map (LM): Each lesion map is created by a
neurologist utilizing a semiautomated segmentation
algorithm clusterize tool (github.com/carderne/clus-
terize) operating on the follow-up MRI imaging con-
taining the final lesion of the patient.

All modalities as well as the ground truth images
are resliced and normalized to a standard brain.

LESION PREDICTION USING A
U-NET

Using our endovascular stroke database, we can train
a neural network to predict lesions. This training pro-
cess is summarized in Figure 2. The input is formed by
an arbitrary subset of acute stroke imaging (excluding
CTP). We fuse all input images into one large stack of
individual images.

This input is fed into a U-Net, which is a special var-
iant of a convolutional neural network introduced by
Ronneberger et al.,12 who showed that U-Nets are well
suited to medical imaging segmentation tasks. U-Nets
can be separated into two parts. Part one is a compo-
sition of multiple convolutional layers (Con) and pool-
ing layers (Pool), which iterate down to a bottleneck at
the narrowest part of the neural network. Part two of
the U-Net then expands back out using multiple
deconvolutional (DCon) and pooling layers into a
result that resembles the original image with the addi-
tion of a probabilistic lesion risk map, see Figure 2.

It is important to note that we are not simply per-
forming a segmentation task with the utilized U-Net
but also aim to predict lesions. The follow-up imaging
that is used to generate the ground truth of the lesion
is not fed into the U-Net as an input during training.

We conducted our initial experiments using leaky
rectified linear units (ReLU) as activation layers, batch
norm layers13 to stabilize the output of activation
layers, max pooling layers, stochastic gradient descent
as the optimizer, and mean squared error as the error
function. We ran the experiments (Table 1) with 1000
epochs and learning rates of 0.1, 0.01, 0.001, and
0.0001, where 0.1 and 0.01 learning rates provided the
most promising results. This remained true when
switching the loss function from mean squared error
(MSE) to binary cross entropy loss (BCE).

Two kinds of data augmentation were also tested:
rotating the input by 90� in a random direction and
elastic deformation14 of the input. Random changes
on the input data act as an enlargement of the train-
ing dataset for the model, resulting in more accurate

FIGURE 2. Training procedure of U-Net for multimodal stroke

imaging. Acute Stroke imaging is used as an input to train a

U-Net that outputs a lesion risk map. Layers are enumerated

for reference.

TABLE 1. Visually evaluated models of U-Net. Each model

contains an ID, the included modalities, and the resulting AUC

value.
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displayed when the user hovers over a voxel. Detailed
region stats are connected to this visualization for the
currently selected volume, e.g., average saliency and
activation values for all regions are visualized. This is
done using boxplots (Figure 7).

For each layer and region, a boxplot is created that
contains all average activation or saliency values for
that region. These values can be filtered by model and
patient, as shown in Figure 6 for a small set of regions.
Here, the putamen L region of the brain was selected
(P) and shows in white a significant overlap between
the predicted lesion and the selected area of the brain.
This area of the brain is known to play a significant
role in movement control and would indicate a likely
problem for the patient.

ADDRESSING COLLABORATOR
QUESTIONS

To test the value of our approach, we used our sys-
tem to address a number of questions posed by our

collaborators, in examining the 10 models shown in
Table 1.

Does the database show any flaws?
We utilized our tool to sort the patients according to
the AUC of the respective lesion prediction. Based on
this sorting, we reviewed the 5 most inaccurate pre-
dictions for all models shown in Table 1. We found that
the lesion of a patient is predicted less accurately
when there is no labeled lesion in the final ground
truth. These cases do occur, but the database only
contains 9 patients that were treated by a special sur-
gery that was able to prevent damage to their brains.
Unfortunately, the number of these patients is very
low which inhibits proper training of the U-Net.

Another problem arose for a group of patients that
also had an “old” lesion. Here, we determined that the
neural network is not able to separate the old and
new lesions and tries instead to predict both, which
implies that training should incorporate a further label
to indicate this separation.

Are all input modalities required?
Figure 8 shows the comparison of models 0 which
uses all modalities and model 6 which does not.
Figure 8(a) and (b) show the activation values of the
first encoder layer in the neural network for model 0
and 6, whereas Figure 8(c) and (d) show the activation
values in the output layer of the U-Nets 0 and 6 in
white with an overlay of the putamen region (cyan).
This comparison indicates that the lesion is detected
much faster in model 0, which utilizes all input

FIGURE 6. The Context View provides an overview of the

visualization system. The user can select brain regions of

their choosing and these will be highlighted in the slice plot.

Here putamen L (P) was selected (right) and the predicted

lesion is highlighted in green (left).

FIGURE 7. Boxplot visualization of brain regions comparing

saliency values (y-axis) to identify the most interesting

regions for a given patient. Colors are determined by the

SRI24 dataset.

FIGURE 8. Layer 1 activation maps for model ID 0 (a) and

model ID 6 (b). Comparison of prediction to ground truth for

model ID 0 (c) and model ID 6 (d). Model ID 0 aggregates all

imaging modalities and produces the best results.
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are to view. To facilitate selections within the gener-
ated volumes, we implemented a Selection View,
which allows selection of volumes according to vari-
ous attributes. In our case, volumes that have high
saliency or activation values are the most interesting.
Attributes are measured by summing all values of a
volume or by computing the maximum value within a
volume. A single scalar value can thus be attributed to
every volume. Sorting by this value gives a ranking of
all volumes for the selected layer, using either saliency
max, saliency sum, activation max, or activation sum.
We can also compute the saliency values for the input
data and rank all input modalities.

The Selection View provides feedback for the
modality that has the highest impact on a given input.
A similar approach can be used to compare different
patients wherein all modalities are summed so that
each patient is assigned one scalar value. The Selec-
tion View can be seen in Figure 4.

Network View: To better visualize intermediate
data as well as the neural network output, a similar
approach is used. Before visualizing, we need to obtain
the data from PyTorch. Each layer in the neural network
is considered a computation and therefore a node in
PyTorch’s computation graph. First, a forward pass with
the input data is initiated whereby the output of each
node is stored and labeled as the activation values of
the model. The result of the forward pass is used as the
input of a backward pass in which each node applies
the gradient of the computation to the given input.

As both of our types of atlas classes are very simi-
lar in structure, they can be visualized by the same
approach. We use slice plots, where a volume is visual-
ized by a set of color maps. Each color map corre-
sponds to a flat surface given by slicing the volume
orthogonally to the y-axis, a visualization approach
requested by our medical collaborators.

For a user-selected y-value, the grayscale color
map can then be displayed. Since the output of the
neural network is just the activation of the final node
in the computation graph, it is visualized in the same
way. The only difference is that the output consists of
just one volume, whereas the intermediate nodes out-
put multiple volumes.

To give the user a comparison between the selected
volume and the other volumes in the layer, a histogram
is used (upper right panel of Figure 5). Here, the distribu-
tion of all saliency or activation values in the layer is dis-
played. Since it is not easy to compare the displayed
color map with a histogram, we use histogram brushing
to make this process easier. After selecting a maximum
max and a minimum value min in the histogram, all the
values v2 [min, max] are highlighted in the slice plot (left
panel of Figure 5). Considering that the last layer only
outputs one volume, the user can opt to highlight the
expected output of the neural network to facilitate com-
parison and draw conclusions about the quality of the
prediction. By computing the receiver operating charac-
teristic (ROC) or a Dice similarity coefficient of the
expected and the actual output, this quality can also be
quantified and visualized (lower right panel of Figure 5).

Context View: To give the user context of the
lesion in the brain, we show major brain regions in the
slice plots. The user can select a voxel in the plot and
all other voxels of that region will also be shown. The
highlight color is defined by the color scheme of the
SRI24 dataset that we used, as can be seen in Figure 6.
For broader context, all the regions in the currently
selected slice are displayed in a separate plot. The
user can match the selected region in the slice plot by
color so that nearby regions can more easily be exam-
ined. For both plots, the name of the region is

FIGURE 4. The Selection View allows selection and sorting of

imaging volumes by attributes such as saliency and activation.

FIGURE 5. The Network View has three components: a slice

plot (left), a region plot (upper right), showing the histogram

of the selected region, and the AUC (lower right). The slice

plot shows the actual output of the network. The cyan

regions are classified as a lesion by the ground truth.
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displayed when the user hovers over a voxel. Detailed
region stats are connected to this visualization for the
currently selected volume, e.g., average saliency and
activation values for all regions are visualized. This is
done using boxplots (Figure 7).

For each layer and region, a boxplot is created that
contains all average activation or saliency values for
that region. These values can be filtered by model and
patient, as shown in Figure 6 for a small set of regions.
Here, the putamen L region of the brain was selected
(P) and shows in white a significant overlap between
the predicted lesion and the selected area of the brain.
This area of the brain is known to play a significant
role in movement control and would indicate a likely
problem for the patient.

ADDRESSING COLLABORATOR
QUESTIONS

To test the value of our approach, we used our sys-
tem to address a number of questions posed by our

collaborators, in examining the 10 models shown in
Table 1.

Does the database show any flaws?
We utilized our tool to sort the patients according to
the AUC of the respective lesion prediction. Based on
this sorting, we reviewed the 5 most inaccurate pre-
dictions for all models shown in Table 1. We found that
the lesion of a patient is predicted less accurately
when there is no labeled lesion in the final ground
truth. These cases do occur, but the database only
contains 9 patients that were treated by a special sur-
gery that was able to prevent damage to their brains.
Unfortunately, the number of these patients is very
low which inhibits proper training of the U-Net.

Another problem arose for a group of patients that
also had an “old” lesion. Here, we determined that the
neural network is not able to separate the old and
new lesions and tries instead to predict both, which
implies that training should incorporate a further label
to indicate this separation.

Are all input modalities required?
Figure 8 shows the comparison of models 0 which
uses all modalities and model 6 which does not.
Figure 8(a) and (b) show the activation values of the
first encoder layer in the neural network for model 0
and 6, whereas Figure 8(c) and (d) show the activation
values in the output layer of the U-Nets 0 and 6 in
white with an overlay of the putamen region (cyan).
This comparison indicates that the lesion is detected
much faster in model 0, which utilizes all input

FIGURE 6. The Context View provides an overview of the

visualization system. The user can select brain regions of

their choosing and these will be highlighted in the slice plot.

Here putamen L (P) was selected (right) and the predicted

lesion is highlighted in green (left).

FIGURE 7. Boxplot visualization of brain regions comparing

saliency values (y-axis) to identify the most interesting

regions for a given patient. Colors are determined by the

SRI24 dataset.

FIGURE 8. Layer 1 activation maps for model ID 0 (a) and

model ID 6 (b). Comparison of prediction to ground truth for

model ID 0 (c) and model ID 6 (d). Model ID 0 aggregates all

imaging modalities and produces the best results.

September/October 2021 IEEE Computer Graphics and Applications 95

APPLICATIONS

41mcg05-gillmann-3099881.3d (Style 7) 31-08-2021 13:36

are to view. To facilitate selections within the gener-
ated volumes, we implemented a Selection View,
which allows selection of volumes according to vari-
ous attributes. In our case, volumes that have high
saliency or activation values are the most interesting.
Attributes are measured by summing all values of a
volume or by computing the maximum value within a
volume. A single scalar value can thus be attributed to
every volume. Sorting by this value gives a ranking of
all volumes for the selected layer, using either saliency
max, saliency sum, activation max, or activation sum.
We can also compute the saliency values for the input
data and rank all input modalities.

The Selection View provides feedback for the
modality that has the highest impact on a given input.
A similar approach can be used to compare different
patients wherein all modalities are summed so that
each patient is assigned one scalar value. The Selec-
tion View can be seen in Figure 4.

Network View: To better visualize intermediate
data as well as the neural network output, a similar
approach is used. Before visualizing, we need to obtain
the data from PyTorch. Each layer in the neural network
is considered a computation and therefore a node in
PyTorch’s computation graph. First, a forward pass with
the input data is initiated whereby the output of each
node is stored and labeled as the activation values of
the model. The result of the forward pass is used as the
input of a backward pass in which each node applies
the gradient of the computation to the given input.

As both of our types of atlas classes are very simi-
lar in structure, they can be visualized by the same
approach. We use slice plots, where a volume is visual-
ized by a set of color maps. Each color map corre-
sponds to a flat surface given by slicing the volume
orthogonally to the y-axis, a visualization approach
requested by our medical collaborators.

For a user-selected y-value, the grayscale color
map can then be displayed. Since the output of the
neural network is just the activation of the final node
in the computation graph, it is visualized in the same
way. The only difference is that the output consists of
just one volume, whereas the intermediate nodes out-
put multiple volumes.

To give the user a comparison between the selected
volume and the other volumes in the layer, a histogram
is used (upper right panel of Figure 5). Here, the distribu-
tion of all saliency or activation values in the layer is dis-
played. Since it is not easy to compare the displayed
color map with a histogram, we use histogram brushing
to make this process easier. After selecting a maximum
max and a minimum value min in the histogram, all the
values v2 [min, max] are highlighted in the slice plot (left
panel of Figure 5). Considering that the last layer only
outputs one volume, the user can opt to highlight the
expected output of the neural network to facilitate com-
parison and draw conclusions about the quality of the
prediction. By computing the receiver operating charac-
teristic (ROC) or a Dice similarity coefficient of the
expected and the actual output, this quality can also be
quantified and visualized (lower right panel of Figure 5).

Context View: To give the user context of the
lesion in the brain, we show major brain regions in the
slice plots. The user can select a voxel in the plot and
all other voxels of that region will also be shown. The
highlight color is defined by the color scheme of the
SRI24 dataset that we used, as can be seen in Figure 6.
For broader context, all the regions in the currently
selected slice are displayed in a separate plot. The
user can match the selected region in the slice plot by
color so that nearby regions can more easily be exam-
ined. For both plots, the name of the region is

FIGURE 4. The Selection View allows selection and sorting of

imaging volumes by attributes such as saliency and activation.

FIGURE 5. The Network View has three components: a slice

plot (left), a region plot (upper right), showing the histogram

of the selected region, and the AUC (lower right). The slice

plot shows the actual output of the network. The cyan

regions are classified as a lesion by the ground truth.
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modalities. We observe that models trained with all
modalities start identifying the lesion in earlier layers
compared to models that did not, which suggests that
using all input modalities leads to more efficient train-
ing of the neural network.

Also, spatial information remains intact when all
input modalities are used, but models trained solely
with CTA and NCCT do not show this property. This
reinforces our hypothesis that using all image modali-
ties is better for training.

Do some imagingmodalities havemore
influence on decisionmaking than others?
For the tested models, we examined the activation
and saliency maps within different layers of the
examined U-Nets. It can be seen that for all models a
relatively low activation throughout the CTA and
NCCT modalities occurs. This results in good saliency
values for these modalities. We can conclude that
the parameter maps derived from CTP have a higher
influence on the decision-making process of the U-
Net. This is also strengthened by the saliency values
of the Tmax modality, which has the highest saliency
values of all modalities. Thus, the T-max modality is
the most important modality in terms of interpretabil-
ity of the neural network. Still, T-max should be com-
bined with other modalities, as it does not achieve a
precise prediction result on its own (see Table 1,
Model 9).

In our experiments, the CTP T-Max modality is
found to have a greater influence on the outcome
of the prediction when used in training, increasing
interpretability. CTA and NCCT, when used in con-
junction with Tmax, act as a regulating factor and
improve the accuracy of the prediction as shown by
the ROC-curve.

Which parts of the input images are used by
the network to make a decision?
As shown in Figure 8, the neural network first elimi-
nates voxels that are not part of the patient but there
is not any obvious separation beyond that. The highly
specialized filters in deeper U-Net layers cannot be
easily compared, as they adapt to each patient individ-
ually. The deeper one gets into the network the more
variability is represented in the captured feature chan-
nels. Still, we can observe that the network eventually
narrows down the area where lesions can be located,
starting from the head of the patient, continuing with
the two sides of the skull and resulting in the area
where the lesion is located.

In general, the network does not “think” about
brain regions as defined in the brain atlas. The only

observation we can make is that the right area of the
brain seems to be considered more strongly than the
left. The most important use of the brain map is to
indicate which areas of the brain will probably be
affected by a lesion.

What features is themodel looking for?
Figure 8 shows the activation map of the first layer, in
which the network is primarily locating the head of a
patient, though it already seems to point out the
lesion. When moving toward the bottleneck of the
neural network, complex concepts are broken down
into smaller ones, but this also means that the number
of feature channels is increasing. This makes review-
ing the network more challenging, as all feature chan-
nels need to be visually inspected to form a
hypothesis.

Still, we can say that the closer a layer gets to the
bottleneck, the more patient-specific its feature maps
become, though locating the head in the first layer is
very similar for all patients.

Is there a relation between functional areas
in the brain and computed features in the
model?
In Figure 7, we analyzed three important areas of the
brain, the insula, caudate, and putamen, differentiated
by left and right sides. We reviewed the saliency values
of each of these classes, as shown in Figure 7. We see
that regions which end up containing the lesion (in
this case the left hemisphere) result in higher saliency
values than their counterpart on the other hemi-
sphere. This behavior is especially pronounced in mod-
els that use all the input modalities.

How does themodel treat individual patients in
relation to the others?
Our visualization approach allows us to rate different
patients in the Endovascular Stroke Database accord-
ing to their importance in the neural network. The
sorting according to saliency and activation allows us
to review which patients are most important in the
neural network prediction process.

Figure 9 shows two feature channels in the third
layer of network 6. We can see that the network
separates the boundary of the patient’s head into
two different parts. Figure 9(a) shows the 53rd
feature channel of a patient in layer 3, which indi-
cates that the skull is detected, while Figure 9(b)
shows that channel 91 is searching for another part
of the skull. Hence, the deeper the computation
enters a network, the more clearly the features get
separated.
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modalities. We observe that models trained with all
modalities start identifying the lesion in earlier layers
compared to models that did not, which suggests that
using all input modalities leads to more efficient train-
ing of the neural network.

Also, spatial information remains intact when all
input modalities are used, but models trained solely
with CTA and NCCT do not show this property. This
reinforces our hypothesis that using all image modali-
ties is better for training.

Do some imagingmodalities havemore
influence on decisionmaking than others?
For the tested models, we examined the activation
and saliency maps within different layers of the
examined U-Nets. It can be seen that for all models a
relatively low activation throughout the CTA and
NCCT modalities occurs. This results in good saliency
values for these modalities. We can conclude that
the parameter maps derived from CTP have a higher
influence on the decision-making process of the U-
Net. This is also strengthened by the saliency values
of the Tmax modality, which has the highest saliency
values of all modalities. Thus, the T-max modality is
the most important modality in terms of interpretabil-
ity of the neural network. Still, T-max should be com-
bined with other modalities, as it does not achieve a
precise prediction result on its own (see Table 1,
Model 9).

In our experiments, the CTP T-Max modality is
found to have a greater influence on the outcome
of the prediction when used in training, increasing
interpretability. CTA and NCCT, when used in con-
junction with Tmax, act as a regulating factor and
improve the accuracy of the prediction as shown by
the ROC-curve.

Which parts of the input images are used by
the network to make a decision?
As shown in Figure 8, the neural network first elimi-
nates voxels that are not part of the patient but there
is not any obvious separation beyond that. The highly
specialized filters in deeper U-Net layers cannot be
easily compared, as they adapt to each patient individ-
ually. The deeper one gets into the network the more
variability is represented in the captured feature chan-
nels. Still, we can observe that the network eventually
narrows down the area where lesions can be located,
starting from the head of the patient, continuing with
the two sides of the skull and resulting in the area
where the lesion is located.

In general, the network does not “think” about
brain regions as defined in the brain atlas. The only

observation we can make is that the right area of the
brain seems to be considered more strongly than the
left. The most important use of the brain map is to
indicate which areas of the brain will probably be
affected by a lesion.

What features is themodel looking for?
Figure 8 shows the activation map of the first layer, in
which the network is primarily locating the head of a
patient, though it already seems to point out the
lesion. When moving toward the bottleneck of the
neural network, complex concepts are broken down
into smaller ones, but this also means that the number
of feature channels is increasing. This makes review-
ing the network more challenging, as all feature chan-
nels need to be visually inspected to form a
hypothesis.

Still, we can say that the closer a layer gets to the
bottleneck, the more patient-specific its feature maps
become, though locating the head in the first layer is
very similar for all patients.

Is there a relation between functional areas
in the brain and computed features in the
model?
In Figure 7, we analyzed three important areas of the
brain, the insula, caudate, and putamen, differentiated
by left and right sides. We reviewed the saliency values
of each of these classes, as shown in Figure 7. We see
that regions which end up containing the lesion (in
this case the left hemisphere) result in higher saliency
values than their counterpart on the other hemi-
sphere. This behavior is especially pronounced in mod-
els that use all the input modalities.

How does themodel treat individual patients in
relation to the others?
Our visualization approach allows us to rate different
patients in the Endovascular Stroke Database accord-
ing to their importance in the neural network. The
sorting according to saliency and activation allows us
to review which patients are most important in the
neural network prediction process.

Figure 9 shows two feature channels in the third
layer of network 6. We can see that the network
separates the boundary of the patient’s head into
two different parts. Figure 9(a) shows the 53rd
feature channel of a patient in layer 3, which indi-
cates that the skull is detected, while Figure 9(b)
shows that channel 91 is searching for another part
of the skull. Hence, the deeper the computation
enters a network, the more clearly the features get
separated.
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DISCUSSION
Benefits and Drawbacks
Using our visualization system, we are able to retrace
the steps of how the chosen U-Net models make deci-
sions. We can identify which datasets and voxels
within a dataset contribute to the decision making
more than others. Including the brain atlas allows us
to determine where in the brain a lesion is located and
which parts of the brain are used by the network to
make this decision.

However, other steps are still hard to retrace. This
especially applies to layers that are close to the bottle-
neck layer, as the respective feature maps have many
channels but only a small number of voxels spatially.
Our system does seem to have a preference for the
right hemisphere of the brain although the reason for
this behavior remains to be explored.

User Feedback
Our medical collaborators were initially reluctant, but
after seeing what XAI could do, they were very
impressed with the results. However, our initial group
of collaborators is relatively small, and a formal user
study would not likely result in statistically significant
results. Still, our collaborators gave us some very moti-
vating feedback:

› It is very interesting to see how the neural net-
work becomes more specialized throughout its
computation. I was not aware of that.

› I am very glad to have a visual indicator that
helps me improve the Endovascular Stroke
Database.

› I would like to encourage you to research the
possibility of putting the found features into a
mathematical description. This could help to cre-
ate a better description of strokes in general.

Future Directions
We believe our visualization approach will be useful for
examining neural networks from other application
domains, a topic we hope to explore further.

In future work, we also aim to extend our analytic
system so that it can visually indicate the uncertainty
contained in neural networks, a task we have shown to
be of great importance in themedical imaging field.18

ACKNOWLEDGMENTS
The authors would like to thank the Department of
Neurology of the University Hospital at Leipzig Univer-
sity for providing us with the Endovascular Stroke
Database.

REFERENCES
1. R. Adolphs, “Human lesion studies in the 21st century,”

Neuron, vol. 90, no. 6, pp. 1151–1153, 2016.

2. V. L. Feigin, B. Norrving, and G. A. Mensah, “Global

burden of stroke,” Circulation Res., vol. 120, no. 3,

pp. 439–448, 2017.

3. H. Seo et al., “Machine learning techniques for

biomedical image segmentation: An overview of

technical aspects and introduction to state-of-art

applications,”Med. Phys., vol. 47, pp. 148–1167, May 2020.

4. A. Holzinger et al., “What do we need to build

explainable AI systems for the medical domain?,” Clin.

Orthopaedics Related Res., Dec. 2017.

5. R. G. C. Maack et al., “Towards closing the gap of

medical visualization research and clinical daily

routine,” in VisGap—The Gap Between Visualization

Research and Visualization Software, C. Gillmann,

M. Krone, G. Reina, and T. Wischgoll, Eds., Aire-la-Ville,

Switzerland: The Eurographics Assoc., 2020, pp. 25–233.

6. E. Tjoa and C. Guan, “A survey on explainable artificial

intelligence (xai): Toward medical xai,” IEEE Trans.

Neural Netw. Learn. Syst., to be published, doi: 10.1109/

TNNLS.2020.3027314.

7. G. J. Katuwal and R. Chen, “Machine learning model

interpretability for precision medicine,” 2016.

8. A. Singh, S. Sengupta, and V. Lakshminarayanan,

“Explainable deep learning models in medical image

analysis,” J. Imag., vol. 6, no. 6, 2020, Art. no. 52.

9. K. Lawonn et al., “A survey on multimodal medical data

visualization,” Comput. Graphics Forum, vol. 37,

pp. 1–25, Oct. 2017.

10. K. Schardt et al., “Multi-modal visualization of stroke

lesion CT-imaging,”Neurology, vol. 95, pp. e2954–e2964,

Nov. 2020, doi: 10.31219/osf.io/qk39a.

FIGURE 9. Comparison of two feature channels of a patient

in layer 3 of model ID 6. The channels show that different

parts of the skull are detected by the neural network.

September/October 2021 IEEE Computer Graphics and Applications 97

APPLICATIONS



24	 ComputingEdge�  April 2024

APPLICATIONS

41mcg05-gillmann-3099881.3d (Style 7) 31-08-2021 13:36

11. C. Gillmann et al., “Uncertainty-aware brain lesion

visualization,” in Proc. Eurograph. Workshop Visual

Comput. Biol. Med., 2020, pp. 97–101.

12. O. Ronneberger, P. Fischer, and T. Brox, “U-net:

Convolutional networks for biomedical image

segmentation,” inMedical Image Computing and

Computer-Assisted Intervention, vol. 9351, Berlin,

Germany: Springer, 2015, pp. 234–241.

13. S. Ioffe and C. Szegedy, “Batch normalization:

Accelerating deep network training by reducing

internal covariate shift,” in Proc. 32nd Int. Conf. Int.

Conf. Mach. Learn., Jul. 2015, vol. 37, pp. 448–456.

14. P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best

practices for convolutional neural networks applied to

visual document analysis,” in Proc. 7th Int. Conf.

Document Anal. Recognit., 2003, pp. 958–963.

15. P. Gholizadeh, B. Esmaeili, and B. Memarian,

“Evaluating the performance of machine learning

algorithms on construction accidents: An application

of roc curves,” in Proc. Construction Res. Congr., 2018,

pp. 8–18.

16. T. Rohlfing et al., “The sri24 multichannel atlas of

normal adult human brain structure,” Hum. Brain

Mapping, vol. 31, no. 5, pp. 798–819, 2010.

17. K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside

convolutional networks: Visualising image

classification models and saliency maps,” in Proc.

Workshop Int. Conf. Learn. Representations, 2014.

18. C. Gillmann et al., “Uncertainty-aware visualization in

medical imaging—A survey,” Comput. Graphics Forum,

vol. 40, no. 3, pp. 665–689, 2021.

CHRISTINA GILLMANN is a Researcher of the Signal and

Image Processing Group with the University of Leipzig. She is

the corresponding author of this article. Contact her at

gillmann@informatik.uni-leipzig.de.

LUCAS PETER is a Student Assistant of the Signal and Image

Processing Group with the University of Leipzig. Contact him

at lp25sidy@studserv.uni-leipzig.de.

CARLO SCHMIDT is an IT Consultant at Empolis Information

ManagementGmbH.Contact himat carlo.schmidt@empolis.com.

DOROTHEE SAUR is a Head Physician at the Neuroradiology

Department, Medical Centre, Leipzig University. Contact her

at dorothee.saur@medizin.uni-leipzig.de.

GERIK SCHEUERMANN is the Leading Professor of the

Signal and Image Processing Group with the University of Leip-

zig. Contact him at scheuermann@informatik.uni-leipzig.de.

Contact department editorMike Potel at potel@wildcrest.com.

98 IEEE Computer Graphics and Applications September/October 2021

APPLICATIONS

Write for the IEEE Computer 
Society’s authoritative 
computing publications 
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp



2469-7087/24 © 2024 IEEE	 Published by the IEEE Computer Society	 April 2024� 25

EDITOR: Amir Dabirian, amir@fullerton.edu

COLUMN: IT TRENDS

Implementing Behavioral 
Biometrics With TRUST
Jayson Killoran , Smith School of Business, Queen’s University, Kingston, ON, K7L 3N6, Canada

Yuanyuan (Gina) Cui , Auckland University of Technology, Auckland, 1010, New Zealand

Andrew Park , Gustavson School of Business, University of Victoria, Victoria, BC, V8W 2Y2, Canada

Patrick van Esch , Kennesaw State University, Kennesaw, GA, 30144, USA

Amir Dabirian , California State University, Fullerton, Fullerton, CA, 92834, USA

Jan Kietzmann , Gustavson School of Business, University of Victoria, Victoria, BC, V8W 2Y2, Canada

This article originally  
appeared in 

 

vol. 25, no. 1, 2023

EDITOR: Amir Dabirian, amir@fullerton.edu

COLUMN: IT TRENDS

Implementing Behavioral Biometrics
With TRUST
Jayson Killoran , Smith School of Business, Queen’s University, Kingston, ON, K7L 3N6, Canada

Yuanyuan (Gina) Cui , Auckland University of Technology, Auckland, 1010, New Zealand

Andrew Park , Gustavson School of Business, University of Victoria, Victoria, BC, V8W 2Y2, Canada

Patrick van Esch , Kennesaw State University, Kennesaw, GA, 30144, USA

Amir Dabirian , California State University, Fullerton, Fullerton, CA, 92834, USA

Jan Kietzmann , Gustavson School of Business, University of Victoria, Victoria, BC, V8W 2Y2, Canada

Companies using behavioral biometrics to monitor employee performance risk creating
a dangerous tension in the workplace. Implementing behavioral biometrics with TRUST
(transparency, respect, understanding, sharing, and timing) may be the solution.

Behavioral biometrics—a technological evolution
where patterns in human movement and activi-
ties are identified, captured, and analyzed to

optimize organizational processes—provide a newworld
of opportunities for managers and employees alike.

For some time now, employees have been sub-
jected to physiological biometrics, mostly for security
purposes. These include fingerprint or iris scanning as
well as facial and voice recognition. However, these
authentication processes only produce surface bio-
metrical data that allow managers to track employees’
times and locations. They say little about what hap-
pens at work.

As technologies for capturing and analyzing behav-
ioral data mature, behavioral biometrics offer managers
deeper, richer insights about their employees’ conduct.
Managers can glean new information based on employ-
ees’ keystrokes, hand and body movements, heart
rates, voice inflections, and even brain activity. Do
supermarket cashiers or casino dealers smile enough?
Do their smiles appear genuine or fake? Such behav-
ioral attributes can be directly tied to the organizational
bottom line.

The tension is clear. Organizations stand to gain a
lot of control, whereas their employees fear that reveal-
ing such personal and private data will lead to a loss

of discretion at work. A recent PwC study revealed
that 88% of executives claimed biometric technology
makes their business lives better, whereas only 48% of
employees agreed.1 To help close this gap, we suggest
that companies implement behavioral biometrics with
TRUST: transparency, respect, understanding, sharing,
and timing (Figure 1).

TRANSPARENCY
The implementation of behavioral biometrics needs to
start with transparency—a rather novel suggestion
given recent technology implementation trends. As
employees continue to work in hybrid work arrange-
ments, suspicious managers increasingly monitor them
using “bossware” or “tattleware.”2

This monitoring software can scour employees’
social media posts, log their keystrokes; take intermit-
tent screenshots; access live video feeds; start web-
cams to watch their facial expressions; and even
measure their cognitive load, stress, and attention lev-
els. This happens both in the home office and at work.

Managers seem to believe that monitoring should
happen without explicit disclosure and consent; other-
wise employeeswould evade the technology or alter their
behavior to manipulate the data. Consequently, most of
these technologies are remotely installed or inconspicu-
ously hidden in other software. If employees discover the
existence of these technologies, they justifiably feel that
their right to privacy has been compromised and that
their superiors fundamentally do not trust them.

1520-9202 © 2023 IEEE
Digital Object Identifier 10.1109/MITP.2023.3236532
Date of current version 10 March 2023.

January/February 2023 Published by the IEEE Computer Society IT Professional 13



26	 ComputingEdge�  April 2024

IT TRENDS

A fresher approach is needed to combat the long-
established us-versus-them history of IT-based distrust
between managers and employees. Full transparency
around the rationale for and processes of data collec-
tion not only reduces distrust but actively builds institu-
tional trust when managers openly talk with employees
about

why behavioral biometrics are needed;
what specific behavioral data will be collected;
where the behavioral data will be stored;
who (else) has access to the behavioral data;
how the results will be used to help improve
individual and organizational performance; and
when and how the data will be destroyed.

BHP Billiton, the second largest mining company in
the world, uses “smart caps” to track miners’ levels of
fatigue and drowsiness. They obtained increased levels
of employee buy-in by being up front about the type of
data collected, how smart caps detect fatigue, and
why this information is important both for the miners’
safety and well-being and for organizational success.

RESPECT
The second building block of TRUST is manifested
when employers expand transparency through inclu-
sive decision making. When managers empathize with

their employees by forming decisions together, they
not only demonstrate emotional intelligence but also
strong IT leadership skills.

Especially at a time when both employers and
employees are concerned that their organizations han-
dle data responsibly, including both parties in decisions
related to the implementation of behavioral biometrics
builds a culture of trust, inclusion, shared purpose, and
responsibility.

Respect is demonstrated when organizations
develop behavioral biometrics with their employees,
not for them. This can take many forms, from including
employees in initial behavioral biometric design activi-
ties to involving them in subsequent IT decisions. At
the very least, employees will remind managers to go
on a data diet—only collecting data when they can
demonstrate a clear purpose.

Ricardo Semler, CEO of Semco Partners, sent a
strong message to employees by always keeping two
board seats open for employees, with equal voting
rights. By doing so, Semco empowered employees to
have a say in important decisions and kept executives
informed of significant employee concerns.

UNDERSTANDING
When companies demand or even coerce employees
to agree to be monitored as part of their employment
conditions, they do not build trust. Rather, this practice

FIGURE 1. Implementing behavioral biometrics with TRUST.
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highlights the power imbalance between employers
and employees, where one gives orders and the other
has no choice but to follow. Despite involving employ-
ees in behavioral biometric decisions, there remain jus-
tifiable objections to volunteering highly personal data.

Even when included in behavioral biometric deci-
sion making, employees might remain skeptical about
revealing private data. If these concerns are not taken
seriously, the practice can potentially backfire. Ironi-
cally, performance monitoring tools can actually dimin-
ish performance.3 When monitoring technologies are
implemented poorly, innovativeness, creativity, reflec-
tion, and collaboration suffer, and costly instances of
employee sickness and burnout increase.

Understanding the dilemma around this power
dynamic, we propose two viable recommendations:

1) Building differential privacy by separating what
employees and employers see: This allows man-
agers to receive useful aggregate behavioral
metadata while, at the same time, protecting
the anonymity of individual employees.

2) Offering employees either an opt-in or opt-out
option when it comes to data collection without
any negative consequences: Power relationships
are balanced when job prospects, bonus pay-
ments, professional development opportunities,
or promotion are not influenced by an employ-
ee’s consent to behavioral biometrics.

Humanyze, aMassachusetts Institute of Technology-
born people analytics company, provides employees
with wearable ID badges to learn who interacts with
whom and for how long andmeasures employees’ stress
levels based on heart rate and voice inflection. In antici-
pating strong objections, Humanyze decided to deploy
this technology only to employees who opt in. Everyone
else received an identical yet nonfunctional badge.

SHARING
With the option to opt in or opt out, why would anyone
participate? The TRUST-building answer lies in sharing
and co-owning the benefits of behavioral biometrics
for both the company and employees alike.

Employees have an intrinsic motivation to increase
effectiveness, to understand the potential risks of
workplace injuries, and to improve time management
skills to avoid burnout. Behavioral biometrics also offer
valuable insights into how employees can tweak their
performance, especially when compared to organiza-
tional benchmarks.

Moreover, employees can also leverage their
own behavioral biometric data for extrinsic reasons.

Examples abound—employees can use behavioral
data from meetings after working hours to negotiate
more time off or use voice data to showcase how they
managed difficult customer encounters to gain recog-
nition or rewards. This kind of bias-free evidence can
also help employees during performance evaluations,
when preparing applications for professional develop-
ment, or when highlighting key skills on their r�esum�es.

Microsoft manages the benefit-sharing process well
by giving employees choices and shared access to
data. Staff receive confidential reports combining
organizational benchmarks with the employees’ per-
sonal performance and behavioral work patterns.
This incentivizes employees to participate while offer-
ing them the option to remain anonymous, even from
their managers.

TIMING
In most jurisdictions, certainly in the United States,
these recommendations are largely optional. Managers
who understand the disruptive potential of behavioral
biometrics will not wait for the U.S. Department of
Labor or similar employment tribunals to mandate
standards and compliance-monitoring programs for
behavioral biometrics. Instead, leaders know that they
are accountable for managing the process responsibly,
especially in the absence of regulation. Responsible
managers proactively and voluntarily develop a practi-
cal framework for behavioral biometrics.

While managers approach the topic with a sense of
urgency, they understand that successful IT implemen-
tation takes time. Otherwise, short-term gains pro-
duced by behavioral insights will likely lead to long-term
losses to organizational culture. As a result, leaders
resist the temptation to quickly adopt one of numerous
tools available now and, instead, focus on openly involv-
ing all stakeholders, policies, and practices that are
impacted by the new technology.

TRUST MATTERS
Behavioral biometrics are quickly becoming the norm
of performance monitoring. By capturing rich behav-
ioral data, these technologies certainly have the poten-
tial to offer compelling insights into how organizations
truly work. However, just because we can measure and
monitor everything does not mean we should. As the
appetite for more behavioral data increases, precau-
tion measures—like the TRUST framework—should
drive the implementation.

The full potential of behavioral biometrics can only
be realized with managers’ commitment to transpar-
ency, respect for employees, understanding of the
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about
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when and how the data will be destroyed.

BHP Billiton, the second largest mining company in
the world, uses “smart caps” to track miners’ levels of
fatigue and drowsiness. They obtained increased levels
of employee buy-in by being up front about the type of
data collected, how smart caps detect fatigue, and
why this information is important both for the miners’
safety and well-being and for organizational success.

RESPECT
The second building block of TRUST is manifested
when employers expand transparency through inclu-
sive decision making. When managers empathize with

their employees by forming decisions together, they
not only demonstrate emotional intelligence but also
strong IT leadership skills.

Especially at a time when both employers and
employees are concerned that their organizations han-
dle data responsibly, including both parties in decisions
related to the implementation of behavioral biometrics
builds a culture of trust, inclusion, shared purpose, and
responsibility.

Respect is demonstrated when organizations
develop behavioral biometrics with their employees,
not for them. This can take many forms, from including
employees in initial behavioral biometric design activi-
ties to involving them in subsequent IT decisions. At
the very least, employees will remind managers to go
on a data diet—only collecting data when they can
demonstrate a clear purpose.

Ricardo Semler, CEO of Semco Partners, sent a
strong message to employees by always keeping two
board seats open for employees, with equal voting
rights. By doing so, Semco empowered employees to
have a say in important decisions and kept executives
informed of significant employee concerns.

UNDERSTANDING
When companies demand or even coerce employees
to agree to be monitored as part of their employment
conditions, they do not build trust. Rather, this practice

FIGURE 1. Implementing behavioral biometrics with TRUST.
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importance of informed and optional consent, sharing
and co-ownership of the benefits, and timeliness in
their approach. By doing so, managers demonstrate
good intentions through their concerns for both people
and processes. By implementing behavioral biometrics
with TRUST, companies can generate data-driven
managerial value, build a strong brand, attract and
empower high-caliber employees, and develop a far-
reaching reputation as being a great place to work!
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From a bird’s eye point of view, large-scale data analyticsworkflows, e.g., those
executed in popular tools, such as Apache Spark and Flink, are typically represented by
directed acyclic graphs. Also, they are in a large scale in two dimensions: first, they are
capable of processing big data (e.g., both in terms of volume and velocity) mainly
through employingmassive parallelism, and second, they can run over (powerful)
distributed infrastructures. This article focuses on edge computing and its confluence
with big data analyticsworkflows, which nowadays place special emphasis on deep
learning and data quality.

E arly examples of large-scale data analyticswork-
flows were primarily MapReduce programs,1–3

which, however, could only handle nonstream-
ing data over fixed data centers; streaming data analytics
was initially evolving rather independently,4 but nowa-
days, massive parallelism for processing data streams is
the norm.5 There were also several efforts that have tried
to extend database query plan optimization technology
to account for arbitrary user-defined functions, so that
such plans can correspond to generic analytics work-
flows extending traditional ETL data pipelines.6–9 Overall,
it has been shown that database technology can offer a
lot to large-scale data analytics workflows from its sev-
eral decades of experience in terms of declarativeness
and principled (cost based) optimization.6,7,10,11

More recently, research emphasis regarding exe-
cuting big data analytics tasks is placed on the follow-
ing topics.

› High-level system details, such as 1) derivation of
the exact requirements from the software engi-
neering point of view and the exact architecture
to be adopted,12 or 2) the data models underlying
big data analytics.13

› Low-level execution engine details, e.g., with
regards to aspects, such as state management.14

This is also related to tuning and optimized
resource usage in complex systems for big data
analytics, such as Hadoop and Spark15,16 along
with service level agreement (SLA) management
when such systems are deployed in the cloud.17

› In addition to the advances abovementioned, sev-
eral efforts advocate taking amore holistic view in
modern data analytics, i.e., address all compo-
nents and steps involved in real applications, from
storage to user interfaces and DevOps, and from
data preparation to (iterative) model building and
validation. Also, in practice, complete ecosystems
need to be developed around processing engines
for big data analytics.18–20

In all the aspects mentioned thus far, mature ind-
ustry-level solutions exist and are adopted by both
researchers and practitioners. Nevertheless, these asp-
ects are not adequate for supporting large-scale data
analytics workflows to their full extent, as defined at
the beginning of this report. This is because the current
solutions cannot support deployment over arbitrarily
resource-constrained distributed computing infrastr-
uctures. Modern data analytics engines are decoupled
fromfixeddata centers and aremoved to cloud solutions,
but their deployment remains largely centralized. In other
words, there is a lack of mature support of deployment
of data-intensive analytics workflow jobs over widely
heterogeneous multiowner geo-distributed edge, fog
and/or cloud resources. However, common IoT and
edge computing settings are characterized by all these
three factors, namely, 1) heterogeneity in several dim-
ensions including resource characteristics, availability,
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permissions and connection speeds, 2) geographical dis-
tribution, and 3) multi-ownership. Such settings are thus
not adequately covered.

Our motivating remark: Future technical advances in
data analytics pipelines should target to fill this gap, i.e.,
to account for heterogeneity, geographical distribution,
and multiownership in large-scale data analytics work-
flows. To this end, there are several initiatives to adapt
data-center-oriented solutions, such as Hadoop and
Spark, to heterogeneous geo-distributed settings.21,22 But
all these fall short in dealing with primary concerns that
edge and fog computing realms entail in a holistic man-
ner. In Bansal et al.’s work,23 which discusses the conflu-
ence between IoT and Big Data, several challenges are
identified with regards to aspects, such as volume, veloc-
ity, variety, veracity, value, variability, visualization, valid-
ity, vulnerability, volatility, venue, vocabulary, and
vagueness. Even when treating single aspects, such as
venue, in isolation, the corresponding research is rather
in its infancy, and many aspects are typically not consid-
ered. For example, for venue, commonly employed sched-
ulers, resource managers, and orchestrators, such as
Kubernetes, YARN, and MESOS, cannot place tasks at
arbitrary geo-distributed places in a judicious manner.
But this is just one part of the complete picture. It is
important to acknowledge that, especially in an edge
computing setting, there is a growing and demanding
need for 1) treating data quality aspects as a first-class
citizen and 2)move complex deep learningmodel training
and inference to the edge,24 which adds significant com-
plexity to the analysis pipelines.

VISION FOR NEXT-GENERATION
EDGE-ENABLED BIG-DATA
ANALYTICSWORKFLOWS

Next generation edge-enabled big data analytics work-
flow solutions should not only address the current limi-
tations but also go beyond them. We envisage a
solution that would not only allow to run every analytics
task everywhere but can also detect the appropriate
data sources to feed the analysis tasks in an automated
or at least semiautomated manner. By everything, we
cover, for example, intelligent deep learningmodel train-
ing and inference. By everywhere, we cover cases, where
a federation of low-end edge/fog devices forms the
computation infrastructure to execute the workflows.
For this vision to be realized, it is important to blend
data lake technologies with edge learning so that local
model training can benefit from all the relevant data
required rather than locally produced ones solely.

Imagine a smart-city scenario, where advanced deep
learning model construction, and inference are deployed
on edge devices, e.g., to reduce latency.25 In the rest of
this article, edge and fog devices will be used inter-
changeably for simplicity. Such a scenario includes
always-on surveillance coupledwith the ingestion of data
streams from third parties, e.g., to acquiremeteorological
conditions data. Similarly, in many application domains
benefiting from edge learning, such as smart health and
agriculture, it is common to join multiple data sources.26

Retail is another field that can benefit from edge analyt-
ics. In this application domain, the real-time big data are

FIGURE 1. Example of an edge data acquisition, processing, and learning pipeline.
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collected through various methods, including video cam-
eras, basket analysis, POS terminals, and customermem-
berships.27–29 Moreover, by combining these data with
data from data lakes, for example, social media posts,
demographic features, and customer information,30

retailers can forecast product demand, predict customer
purchases, provide personalized advertisements, dis-
cover trends, and grow their overall profit, all these based
on edge learning techniques.

Edge learning implies several additional features of
the corresponding workflow: 1) model building needs to
be parallelized across several different computing nodes
in an efficient heterogeneity-aware manner,31–33 2) data
need to be shared only partially and after ensuring that
any privacy concerns are addressed,34 and 3) intensive
data-quality actions, such as outlier removal need to
take place to avoid data poisoning.35

The workflow, depicted as a DAG, comprises four
main groups of tasks corresponding to data acquisi-
tion, data processing, model building, and model infer-
ence, respectively (see Figure 1). Each of these groups
is something broader than, for instance, a single stage
in Spark. Tasks may interact in complex manners and
they may also involve human interaction.

Our vision includes the following three pillars.

1) Allow end users to define complex workflows in a
mostly declarative manner, and these workflows
to run on top of any (edge/fog) computational
infrastructure judiciously in a massively parallel
manner. This entails optimal resource usage and
task allocation taking into account a wide range
of data quality and optimization criteria, well
beyond 2 or 3 typically employed inmodernmulti-
objective scheduling/task allocation solutions.

2) Encapsulate integration with data lakes technol-
ogy, possibly involving novel human-in-the-loop
architectures to semiautomatically, detect the
appropriate data sources that feed the remain-
der of the complex workflow analysis pipelines.

3) Account for edge learning scenarios, which
impose strict constraints on which data can be
shared andmay require the existence of mutually
trusted central cloud nodes that become respon-
sible for specific parts of themodel construction.

Building the aforementioned pillars should cover the
big-data aspects in the Bansal et al.’s23 work, also termed
the 13 V’s, as summarized in Table 1. In the rightmost col-
umn, we mention the challenges involved, which range
fromdealingwithnovel dataand taskplacementproblems
to integrating data quality detection and improvement sol-
utions, and appropriate source detection in data lakes.

Edge learning improvements: Our vision can be
deemed as a call for extension to the state of the art in
edge learning,24 which currently focuses on building ML
models over edge devices in a collaborative manner,
while considering data, computational, communication,
privacy, security, and incentive-related challenges. As
reported in the Deng et al.’s36 work, not only data analyt-
ics on the edge, but even themore restrictive scenario of
AI on the edge employing a limited set of optimization cri-
teria is a topic that requiresmuch deeper investigation. In
any case, the extensions are very important in that

1) they do not separate data acquisition and proc-
essing pipelines with the model training/infer-
ence ones;

2) they account for the full spectrum of big data
aspects; and

3) they call for novel workflow management, i.e.,
expression, execution, and scheduling techniques.

These extensions are further analyzed in the
following.

Toward Next-Generation Edge
Learning: A Closer Look at the Three
Axes
First, integrating data lake technology with database
engines has already been identified as a key research
direction37; what we advocate is such an integration
to also cover the edge learning workflows that we aim
to run over geo-distributed edge nodes. There are
three main problems that are encountered:

(1) detection of the most appropriate sources
(2) optimized sharing of data across all nodes that

run model construction tasks and may benefit
from such sources

(3) including humans in the loop.

Why this is challenging? If a single computational
node becomes responsible for source detection, this
node may easily become a bottleneck. However, if
multiple nodes undertake this task, it is unclear how
to split the corresponding workload and synchronize
their searching process. Finally, having the human-in-
the-loop leads to the development of a whole new
family of techniques.

Second, covering the full spectrum of Big Data
aspects is strongly connected to meeting the 13 V’s
requirements abovementioned. In addition to the pre-
sentation in Table 1, which explains how all big data
aspects are important in our vision, data quality issues
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TABLE 1. Issues and challenges in multifaceted coverage of big data aspects in our vision.

Aspect Description of impact on the solutions Challenge

Volume Relates to maximizing throughput, leveraging massive parallelism, moving
filtering operations as close to the data sources as possible, reusing data,
minimizing data transfers, and so on.

Data cannot be arbitrarily
shared, which renders
existing techniques inefficient
or even inapplicable.

Variety Relates to considering all kinds of resource heterogeneity involved. The variety covers both
computational and
networking infrastructure and
the local datasets available
on each edge device, the
combination of which is not
currently considered.

Velocity Emphasizes on minimizing latency, heavily relies on massive parallelism on
top of heterogeneous resources, and poses restrictions on where model
inference can run.

Incurs tradeoffs when deep
learning models are large and
need to be split across
multiple nodes.

Veracity Calls for detecting the most appropriate and trustworthy data sources on
the fly.

Calls for the development of
novel data lake-aware edge
learning solutions that
emphasize on both the
training and the data
acquisition process.

Value Relates to including intelligent analytics and machine learning (ML) steps in
the workflows apart from simpler data management tasks.

Such intelligent analytics may
require synchronizations,
which are difficult to be
attained in a heterogeneous
setting.

Variability Relates to the capability of the solution to adapt to environmental changes,
i.e., any task/data placement solutions may need to be adaptive.

Tasks are typically stateful.

Visualization Relates to the fact that human-in-the-loop is a key distinctive feature (as
also in the Industry 5.0 vision).

Impacts on metrics, such as
latency, in a non-
straightforward manner.

Validity Envisaged as including data quality checks and enforcement steps as first-
class citizens (in addition to data management and ML operations).

Data quality can be quantified
in several manners and is not
typically considered using
execution plan optimization.

Vulnerability Calls for addressing privacy and security requirements, an issue of
paramount importance in edge learning.

Involves tricky tradeoffs with
performance and placement
flexibility.

Volatility Calls for continuously refining analysis results as more data are produced,
that is, the corresponding analytics workflows should run continuously to
both refine and apply trained models.

Calls for novel techniques to
reduce operations and data
transmissions when no
changes from previous values
and/or results are detected/
predicted.

Venue Relates to the judicious placement of tasks to resources. Need to account for resource
heterogeneity and
geographical distribution.

Vocabulary Relates to the development of higher level (declarative) abstractions to
describe tasks, resources, constraints, objectives, and so on.

No standardized approach
exists to date for the relevant
aspects.

Vagueness Complements validity and veracity. Same as validity and veracity
abovementioned.
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should be further emphasized. Data quality aspects
are defined in multiple manners. For instance, in
Deequ,a Apache Griffin,b and Great Expectations,c

simple data checking operations are defined and
implemented. However, data quality aspects can be
described more broadly, e.g., through ISO-25012d with
a view to covering the veracity, validity, and vagueness
big data dimensions. In this standard, there are several
relevant aspects of data quality. For example, com-
pleteness relates not only to the desire the input
data to have non-NULL values but also all the corre-
sponding data for model training to be available. Also,
precision monitors IoT streams for unjustified data
fluctuations, which are attributed to sensor malfunc-
tion; assessing precision in this sense entails the inser-
tion of a lightweight statistics module in the complete
analysis pipeline. As a third example, credibility relates
to the accuracy of an ML model and is affected by the
presence of a human in the loop. Data quality aspects
are also directly relevant to optimization objectives,
e.g., timeliness relates to the pipeline performance
and its capability to perform model refinement and
inference with low latency.

More specifically, examining the 15 data quality
characteristics of the ISO-25012, we can extract
eight of them, as presented in Table 2, which can
be directly mapped to optimization objectives and
encapsulation of data quality-oriented tasks in the
pipeline. The other seven data quality characteris-
tics are also relevant, but they cannot be easily
quantified in our context, e.g., accessibility, under-
standability, and portability. The quantitative met-
rics in the table complement performance metrics,
such as throughput, latency, power, resource, and
network utilization, which are well understood.4

Also, it is still important to consider quality of ser-
vice (QoS), which may be deemed as quantifying
accuracy after load shedding or can be application
dependent.

Third, workflow management should be geared
toward more declarativity, well beyond merely employ-
ing and calling complex ML libraries through user-
friendly scripts, as is the main status to date.10 The
extended set of optimization criteria and constraints
raise the need for a convenient manner to express
them; similarly, the user feedback needs to be in a format amenable to immediate processing and enact-

ment of corresponding actions, e.g., with regards to
source selection. Thus, there is an interplay of expres-
sion and execution. Execution is also affected by the
data and task placement decisions that also need to
be controlled, at least partially, in a declarative man-
ner. This implies changes in the underlying resource
managers, negotiators, and schedulers.

TABLE 2. Data quality characteristics, as defined in ISO-25012

and the corresponding envisaged optimization metrics and

tasks in data analytics pipelines.

Characteristic Quantitative
metric

Corresponding
task

Accuracy Degree to which
values of ingested
data deviate from
their reference
values.

Measure the
accuracy; choose
data sources
based on their
accuracy values.

Completeness Number of data
features extracted
from external data
sources employed
in model building.

Seek for relevant
and combinable
data sources.

Consistency Degree to which
values for the
same features
from different
sources are
aligned.

Measure the
consistency;
consider
consistency when
choosing data
sources.

Credibility Degree to which
data and models
built is believable
by users.

Receive human
feedback on the
credibility of
external data-lake-
based sources and
ML models.

Currentness The time difference
between data
generation and
data processing.

Assess the
currentness (also
referred to as
timeliness).

Compliance Degree to which
fields such as
timestamps follow
standards.

Task to assess
compliance;
choose data
sources based on
their compliance
values.

Precision Degree to which
sensing
mechanisms
produce precise
measurements.

Assess the
measurements
fluctuations due to
sensing
mechanism
imprecision.

Availability Degree to which
external data
sources are
available.

Profiling of the
availability of
external sources.

a[Online]. Available: htt _ps://github.com/awslabs/deequ
b[Online]. Available: htt _ps://griffin.apache.org/
c[Online]. Available: htt_ps://github.com/great-expectations/
great_expectations
d[Online]. Available: htt_ps://iso25000.com/index.php/en/iso-
25000-standards/iso-25012
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TABLE 1. Issues and challenges in multifaceted coverage of big data aspects in our vision.

Aspect Description of impact on the solutions Challenge

Volume Relates to maximizing throughput, leveraging massive parallelism, moving
filtering operations as close to the data sources as possible, reusing data,
minimizing data transfers, and so on.

Data cannot be arbitrarily
shared, which renders
existing techniques inefficient
or even inapplicable.

Variety Relates to considering all kinds of resource heterogeneity involved. The variety covers both
computational and
networking infrastructure and
the local datasets available
on each edge device, the
combination of which is not
currently considered.

Velocity Emphasizes on minimizing latency, heavily relies on massive parallelism on
top of heterogeneous resources, and poses restrictions on where model
inference can run.

Incurs tradeoffs when deep
learning models are large and
need to be split across
multiple nodes.

Veracity Calls for detecting the most appropriate and trustworthy data sources on
the fly.

Calls for the development of
novel data lake-aware edge
learning solutions that
emphasize on both the
training and the data
acquisition process.

Value Relates to including intelligent analytics and machine learning (ML) steps in
the workflows apart from simpler data management tasks.

Such intelligent analytics may
require synchronizations,
which are difficult to be
attained in a heterogeneous
setting.

Variability Relates to the capability of the solution to adapt to environmental changes,
i.e., any task/data placement solutions may need to be adaptive.

Tasks are typically stateful.

Visualization Relates to the fact that human-in-the-loop is a key distinctive feature (as
also in the Industry 5.0 vision).

Impacts on metrics, such as
latency, in a non-
straightforward manner.

Validity Envisaged as including data quality checks and enforcement steps as first-
class citizens (in addition to data management and ML operations).

Data quality can be quantified
in several manners and is not
typically considered using
execution plan optimization.

Vulnerability Calls for addressing privacy and security requirements, an issue of
paramount importance in edge learning.

Involves tricky tradeoffs with
performance and placement
flexibility.

Volatility Calls for continuously refining analysis results as more data are produced,
that is, the corresponding analytics workflows should run continuously to
both refine and apply trained models.

Calls for novel techniques to
reduce operations and data
transmissions when no
changes from previous values
and/or results are detected/
predicted.

Venue Relates to the judicious placement of tasks to resources. Need to account for resource
heterogeneity and
geographical distribution.

Vocabulary Relates to the development of higher level (declarative) abstractions to
describe tasks, resources, constraints, objectives, and so on.

No standardized approach
exists to date for the relevant
aspects.

Vagueness Complements validity and veracity. Same as validity and veracity
abovementioned.
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TECHNICAL NOTES REGARDING
THE RESEARCH ISSUES INVOLVED

The abovementioned discussion entails and touches
upon several topics. In the following, we further elabo-
rate on four of them.

Data source selection: This is the most challenging
part when building data lake-aware edge learning pipe-
lines. State-of-the-art solutions leverage LSH, while also
focusing on feature engineering, consideration of both
schema- and instance-level data, and advanced data
transformations to reason about the relatedness of data
sources.38,39 The ultimate goal is to yield a list of combin-
able data sources. When the data sources are mapped
to a relational schema, this goal is equivalent to detect
joinable tables. Apart from the related data quality objec-
tives, there are several performance-related optimiza-
tions that need to be taken into account given the high
computation complexity of these tasks; such optimiza-
tions all target aggressive pruning of the search space.
Combining these objectives, with data quality-related
ones and human involvement, gives rise to optimization
problems radically different than those encountered
when considering task allocation. However, still, a prom-
ising approach is to aim to cast the whole problem as an
integer linear programming one in amanner that no scal-
ability problems are encountered, and enhance the initial
solution with nature-inspired techniques,40 something
already shown to work very well in demanding geo-dis-
tributed, heterogeneous scenarios.22,41

Workflow expression: Declarative statement of ser-
vice-level objectives (SLO) is not something new and is
extensively employed in guiding elasticity in large-scale
heterogeneous environments, e.g., Pusztai et al.’s42

work. Such initiatives may serve as a basis to build more
complete solutions that consider the full range of criteria
and constraints involved, and also account for actions
other than elasticity. More specifically, the elasticity
actions need to be extended to allownot only the scaling
and migration of tasks, but also the incorporation of
additional data quality-oriented tasks and the reconfigu-
ration of running tasks on the fly. This entails the devel-
opment of novel schedulers and extensions to current
state-of-the-art resource managers. It also implies more
advanced optimization modules, which are discussed
separately in the following.

Workflow optimization: Analyzing data closer to the
edge devices, rather than in a central cloud, offers low
latency, security, and scalability in many scenarios, such
as smart cities. Several challenges arise when develop-
ing an edge computing-oriented analytics optimizer.
Edge devices are highly heterogeneous in terms of
resources, such asmemory and computational capacity,
and initial works that model such heterogeneity exist,

e.g., Hiessl et al.’s43 work. Furthermore, different cellular
networks, as well as the emerging 5G technology, induce
an additional challenge when combined.44 Edge devices
may also comprise smartphones and other mobile devi-
ces. This mobility needs to be taken into account when
seeking an optimal service placement.45 Overall, the cor-
responding service placement needs to be dynamic and
adaptive to network and resource changes in real-
time.46 Finally, when dealing with sharing data across
multiple edge devices, privacy constraints and restric-
tions may arise.47 Thus, it becomes clear that multiple
aspects should be considered when optimizing edge
computing-oriented analytics. There is also a need to
optimize multiple objectives at the same time or find a
beneficial tradeoff between them. For example, respo-
nse time, latency, energy consumption, and data transfer
need to be minimized while resource utilization and QoS
need to be maximized. Moreover, developing dynamic
pricing models for service providers poses an additional
challenge.44 Independently optimizing workflows may
be sufficient for scenarios with a small number of users;
however, in edge computing applications, multiple users
submit queries at the same time. Optimizing these
queries simultaneously is complicated but would lead
to more efficient resource utilization as techniques,
such as service caching and resource sharing could be
utilized.

Overall, the biggest challenges in the optimization of
the workflows that we envisage stem from the combina-
tion of a much broader set of constraints and additional
data quality-oriented objectives. Furthermore, theoptimi-
zations are not merely limited to judicious multiobjective
task and data placement, configuration of parallelism
degree, choice of the operator implementation, and so
on. They should also cover modifications of the logical
DAG execution plan, e.g., through inserting new data
acquisition- and quality-specific operators. Also, modify-
ing the type of tasks in the DAG based on the placement
choices needs to be considered. For example, inference
using complex deep networks could be allocated to
either a set of edge nodes running different layers
sequentially or to a single node, and thus, the workflow
DAG ismodified accordingly to reflect such decisions.

Workflow frameworks: In addition, the combina-
tion of large-scale data analytics frameworks, such as
Apache Spark, Flink, and Storm, with edge learning
frameworks, such as TensorFlow Federatede and
Fate,f needs to be investigated in depth. Reinventing

e[Online]. Available: htt_ps://www.tensorflow.org/federated
f[Online]. Available: htt _ps://fate.fedai.org/
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TECHNICAL NOTES REGARDING
THE RESEARCH ISSUES INVOLVED
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seeking an optimal service placement.45 Overall, the cor-
responding service placement needs to be dynamic and
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nse time, latency, energy consumption, and data transfer
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pricing models for service providers poses an additional
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be sufficient for scenarios with a small number of users;
however, in edge computing applications, multiple users
submit queries at the same time. Optimizing these
queries simultaneously is complicated but would lead
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such as service caching and resource sharing could be
utilized.

Overall, the biggest challenges in the optimization of
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tion of a much broader set of constraints and additional
data quality-oriented objectives. Furthermore, theoptimi-
zations are not merely limited to judicious multiobjective
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degree, choice of the operator implementation, and so
on. They should also cover modifications of the logical
DAG execution plan, e.g., through inserting new data
acquisition- and quality-specific operators. Also, modify-
ing the type of tasks in the DAG based on the placement
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using complex deep networks could be allocated to
either a set of edge nodes running different layers
sequentially or to a single node, and thus, the workflow
DAG ismodified accordingly to reflect such decisions.

Workflow frameworks: In addition, the combina-
tion of large-scale data analytics frameworks, such as
Apache Spark, Flink, and Storm, with edge learning
frameworks, such as TensorFlow Federatede and
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e[Online]. Available: htt_ps://www.tensorflow.org/federated
f[Online]. Available: htt _ps://fate.fedai.org/

66 IEEE Internet Computing January/February 2023

INTERNET OF THINGS, PEOPLE, AND PROCESSES

27mic01-dustdar-3171643.3d (Style 7) 01-02-2023 16:12

the wheel should be avoided, but it is unclear how this
can be achieved in practice.

SUMMARY
Blending data acquisition, advanced ML, and analytics
workflows to be executed over arbitrary heterogeneous,
and geo-distributed computational resources both envi-
sages and aspires to develop next-generation big data
analytics and edge learning solutions. Current technolo-
gies need to be significantly extended in terms of the big
data aspects directly considered, which in turn yields an
updated list of optimization criteria, SLOs, and con-
straints. Data lake technologies, human intervention,
and data quality guarantees become far more prevalent,
while the underlying workflow execution engines need
to be equipped with more advanced optimizers. Never-
theless, significant research efforts have already been
conducted in several isolated aspects of the complete
vision described hereby. Therefore, the technical road-
map is twofold: to both extend and judiciously combine
existing solutions rather than starting from scratch,
which is inefficient and unnecessary. To this end, we
have identified the main research issues, and we
sketched the current state of the art on top of which we
advocate to build.
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Although serverless computing generally involves executing short-lived “functions,”
the increasing migration to this computing paradigm requires careful consideration
of energy and power requirements. Serverless computing is also viewed as an
economically-driven computational approach, often influenced by the cost of
computation, as users are charged for per-subsecond use of computational
resources rather than the coarse-grained charging that is common with virtual
machines and containers. To ensure that the startup times of serverless functions do
not discourage their use, resource providers need to keep these functions hot, often
by passing in synthetic data. We describe the real power consumption characteristics
of serverless, based on execution traces reported in the literature, and describe
potential strategies (some adopted from existing VM and container-based
approaches) that can be used to reduce the energy overheads of serverless
execution. Our analysis is, purposefully, biased toward the use of machine learning
workloads because: 1) workloads are increasingly being used widely across different
applications; and 2) functions that implement machine learning algorithms can range
in complexity from long-running (deep learning) versus short-running (inference only),
enabling us to consider serverless across a variety of possible execution behaviors.
The general findings are easily translatable to other domains.

People and organizations are increasingly com-
ing to terms with the urgent need to reverse
the deleterious effects of climate change. The

2015 International Paris Agreement on Climate
Changea mandated a temperature rise well below
2 �C—ideally capped at 1.5 �C. The UN proposed 17

Sustainable Development Goals (SDGs), such as
“SDG7: Affordable and Clean Energy,” “SDG9: Industry,
Innovation, and Infrastructure,” and “SDG13: Climate
Action.”b As our society’s needs for computational
power—and as such energy—increase, the software
and computer engineering industries also need to
decisively respond by adopting and encouraging sus-
tainable operational paradigms. Serverless computing,
as a new cloud computing paradigm, must also be
made sustainable. As many predict serverless to be
the next evolution of cloud systems,1 ensuring
that power and energy efficiency of such systems is
adequately managed remains a crucial challenge.

1089-7801 � 2021 IEEE
Digital Object Identifier 10.1109/MIC.2021.3093105
Date of current version 6 December 2021.

ahttps://unfccc.int/process-and-meetings/the-paris-agree-
ment/the-paris-agreement

bhttps://sdgs.un.org/goals
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Serverless computing expands on state-of-the-art
cloud computing by further abstracting away software
operations (ops) and parts of the hardware–software
stack. One could consider functions, the execution
unit of serverless computing, as “lightweight” contain-
ers, invoked with a set of inputs and expected to pro-
duce a set of outputs, when triggered. A key value
proposition for serverless computing is its cost model,
based on dynamic memory and CPU usage (con-
nected directly to function invocations and as such,
resource utilization and thus power/energy). This is
unlike the more traditional cloud computing
approaches, which charge based on the reservation of
computing resources.

Data centers, and as such cloud and serverless
computing, do have a significant impact on the world’s
total energy and power requirements. Estimates range
from 200 to 500 TWh, which corresponds to 1–2.5% of
the world’s total energy usage. Additionally, this num-
ber is likely to increase as the demand for cloud com-
puting increases: The estimated number of machines
in data centers increased from 11 M in 2006 to 18 M in
2020. However, estimates are that only around 50% of
this terawatt-hour energy consumption is used for
actual computation; the other half is used on idling
servers.2 Serverless computing has a key role to play
in this; this 50% waste in idling could in theory be
completely reclaimed by this novel paradigm. Leading
cloud providers have acknowledged the need to intro-
duce real consumption pricing, something that
becomes feasible with serverless architectures
despite measurable overheads due to decomposition.3

Serverless also provides a strong value proposition to
users, who can pay for short time frames (less than a
second), compared to reserving resources for an hour
or more.

Apart from computation and memory, another
energy-intensive computing task is networking. A 2015
metastudy estimated the Internet transmission
energy to be 0.06 kWh/GB.4 The problem is exacer-
bated in the era of Internet-of-Things (IoT) devices
explosive growth: CISCO predicted 5ZB of IoT-related
data to be transmitted in 2022.5 This amount of IoT
traffic will require 60 TWh of energy in 2022, essentially
on par with 12–30% of data centers’ energy needs.

A solution is to move small functions near the data
instead of moving zettabytes of data to the data cen-
ter; however, this adds significant extra development
and operational burdens. Serverless computing,
unlocks an easy migration toward easy-to-manage
edge computing. Crucially, experimental evaluation on
an IoT-driven video-analytics application suggests a
50% reduction in emissions is achievable if edge

servers are used and data transmission to the data
center is used sparingly.6

Therefore, to assure sustainable development for
the Information Technology sector, there is an urgent
call to establish energy- and power-aware design and
operational strategies for the novel paradigm of server-
less computing. We posit that the call for sustainable
serverless computing can be split into three directions.

1. Sustainability techniques need to be designed
and developed at the serverless platform level,
such as power capping, scheduling, consolida-
tion, and switching off policies. Crucially, to pro-
vide more room for maneuvering to the
serverless Platform operator, serverless end-
users need to be given incentives to minimize
noncritical (deadline constrained) requirements,
which can result in provisioning for sustainable
service level agreements (SLAs).

2. The efficacy of serverless sustainability is closely
coupled to workload patterns. The data center
as a whole should avoid peak power consump-
tion on its grid, as this leads to the use of emis-
sions-heavy fossil-fuel-driven backup generators.
As the world increasingly relies on artificial
intelligence (AI) and machine learning (ML), the
workload patterns generated by such smart sys-
tems must be studied and should (potentially)
make use of relaxed SLAs, for instance during
the training phase.

3. Connecting the above two topics, how can we,
indeed, know how successful a serverless sus-
tainability technique is? Sustainability oriented
serverless benchmarks are needed to assess the
quality of the proposed techniques, and these
benchmarks need to be designed with realistic
contemporary workloads, such as AI/ML, in
mind. Crucially, as computation needs to move
closer to the data, monolithic AI applications
need to be replaced with function-oriented
microservice architectures such that they can fit
on low-powered edge devices and serverless
operators can leverage the various aforemen-
tioned sustainability techniques.

Figure 1 illustrates data sources that feed data
streams into serverless functions. Functions are fre-
quently invoked with stream chunks as input,
receiving data across different types of communi-
cation channels. A single data source, e.g., in-built
environments, Industry 4.0, and electric mobility,
may utilize different types of communication
infrastructure.
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Although serverless computing generally involves executing short-lived “functions,”
the increasing migration to this computing paradigm requires careful consideration
of energy and power requirements. Serverless computing is also viewed as an
economically-driven computational approach, often influenced by the cost of
computation, as users are charged for per-subsecond use of computational
resources rather than the coarse-grained charging that is common with virtual
machines and containers. To ensure that the startup times of serverless functions do
not discourage their use, resource providers need to keep these functions hot, often
by passing in synthetic data. We describe the real power consumption characteristics
of serverless, based on execution traces reported in the literature, and describe
potential strategies (some adopted from existing VM and container-based
approaches) that can be used to reduce the energy overheads of serverless
execution. Our analysis is, purposefully, biased toward the use of machine learning
workloads because: 1) workloads are increasingly being used widely across different
applications; and 2) functions that implement machine learning algorithms can range
in complexity from long-running (deep learning) versus short-running (inference only),
enabling us to consider serverless across a variety of possible execution behaviors.
The general findings are easily translatable to other domains.

People and organizations are increasingly com-
ing to terms with the urgent need to reverse
the deleterious effects of climate change. The

2015 International Paris Agreement on Climate
Changea mandated a temperature rise well below
2 �C—ideally capped at 1.5 �C. The UN proposed 17

Sustainable Development Goals (SDGs), such as
“SDG7: Affordable and Clean Energy,” “SDG9: Industry,
Innovation, and Infrastructure,” and “SDG13: Climate
Action.”b As our society’s needs for computational
power—and as such energy—increase, the software
and computer engineering industries also need to
decisively respond by adopting and encouraging sus-
tainable operational paradigms. Serverless computing,
as a new cloud computing paradigm, must also be
made sustainable. As many predict serverless to be
the next evolution of cloud systems,1 ensuring
that power and energy efficiency of such systems is
adequately managed remains a crucial challenge.

1089-7801 � 2021 IEEE
Digital Object Identifier 10.1109/MIC.2021.3093105
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ahttps://unfccc.int/process-and-meetings/the-paris-agree-
ment/the-paris-agreement

bhttps://sdgs.un.org/goals
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DESIGNING SUSTAINABLE
SERVERLESS PLATFORMS

Various approaches can be used to limit the power
consumption of serverless functions, ensuring more
efficient use of energy of the associated infrastructure
on which these functions are hosted. These techni-
ques, which can be invoked transparently (from an
end-user perspective) must be implemented by the
serverless platform and can include: power capping of
serverless deployments, use of scheduling strategies
to make more effective use of the physical resources
on which serverless functions are hosted, and mecha-
nisms to minimize cold start times that can have sig-
nificant power consumption requirements. Each of
these approaches is described in this section, along
with their benefit (and limitations).

Power Capping: This approach relies on limiting
the power consumed by functions hosted within a
specific container environment. Power capping
techniques such as dynamic voltage and frequency
scaling (DVFS) and running average power limit
(RAPL) are hardware-based approaches that reduce
CPU frequency and voltage to lower processor
power consumption. However, this degrades the
entire system performance and consequently the
deployed application. Power cap violations are
undesirable and need to be effectively managed, as
the power benefit can be counterproductive—lead-
ing to applications running for longer time periods,
which at times is the worst possible outcome from
a sustainability perspective as it prevents shutting
down under-utilized machines. More specifically,

power cap violations occur when the total power
consumed by a server exceeds a threshold defined
by the server administrators.

Two power capping techniques are particularly rel-
evant in the context of container-based functions: 1)
DockerCap for Docker containers can make use of
system power consumption obtained from a hardware
power meter and RAPL. The CPU quota of all contain-
ers at different scheduling priority is reduced, thereby
affecting the performance of all containers; and
2) DEEP-mon power monitoring can be used for
Docker containers on the Kubernetes platform. This
technique relies on RAPL and DVFS to manage power
cap limits. It is demonstrated that RAPL affects the
run-time performance of all containers on a server.
RAPL enforces a power cap on the processor and
DRAM by reducing the CPU frequency and thus
degrading the overall system performance.

In the context of language-runtime-based func-
tions, such as those supported by serverless plat-
forms such as funcX, which runs on Python,c more
fine-grain power capping can take place. Such algo-
rithms could target specific subcomponents that
might not need to run at full speed, such as
resource-intensive dynamic memory management,
aka., garbage collection.7 Alternatively, the language
runtime might be able to better characterize the
resource requirements of its functions, enabling
improved execution density via adaptive resource
sharing among multitenant functions.8

The performance and execution behavior of a
function is influenced by the power consumed by
each function. Longer running functions can be termi-
nated, for instance, if their power consumption
exceeds the prespecified cap.

Network Power Saving: QUIC employs some of the
basic mechanisms of TCP and TLS while keeping UDP
as its underlying transport layer protocol. QUIC is,
therefore, a combination of transport and security pro-
tocols by performing tasks including encryption,
packet reordering, and retransmission. QUIC can be
considered a user space, UDP-based (stream-ori-
ented) protocol developed by Google—published by
IETF in May 2021 as RFC9000. It is estimated that
approx. 7% of Internet traffic employs QUIC. This pro-
tocol offers all the functionalities required to be con-
sidered a connection-oriented transport protocol,
overcoming numerous problems faced by other con-
nection-oriented protocols, such as TCP and SCTP.
Specifically, the addressed problems are reducing the

FIGURE 1. Serverless functions—responding to incoming

data streams.

chttps://funcx.org/
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connection setup overhead, supporting multiplexing,
removing the head-offline blocking, supporting con-
nection migration, and eliminating TCP half-open
connections.

QUIC executes a cryptographic handshake that
reduces connection establishment overhead by
employing known server credentials learned from past
connections. In addition, QUIC reduces transport layer
overhead by multiplexing several connections into a
single-connection pipeline. Furthermore, as QUIC uses
UDP, it does not maintain connection status informa-
tion in the transport layer. This protocol also eradi-
cates the head-of-line blocking delays by applying a
lightweight data-structure abstraction called streams.
Due to its lightweight nature and support for data
encryption, it is viewed as an important enabler for
serverless functions. Using reduced overheads, the
power consumption of QUIC is also reduced com-
pared to other equivalent network protocols used for
serverless deployment. The QUIC protocol can be also
be used to preserve energy resources, especially
between sleep and awake states that are often used
by IoT devices. Maintaining a TCP connection requires
use of keep-alive packets, which can consume energy
and bandwidth. Understanding how this can under-
take more efficiently is also an important approach to
reduce energy use.9

Hotspot and Coldspot Migration: A common
approach to reducing power consumption is the
dynamic consolidation of virtual machines and con-
tainers on a smaller number of physical machines
(PMs). This is based on the observation that PMs run
at 10–50% of their maximum CPU usage and the
majority of PMs are idle while still consuming about
70% of their peak power. This process involves migrat-
ing workload to enhance resource usage and minimize
the use of machines that are underutilized within a
data center—often turning these PMs OFF so that
they do not consume power. Migration is expected to
be transparent and beneficial when a physical server is
highly overloaded (creating a hotspot) or underloaded
(creating a coldspot). However, consolidation policies
reduce energy consumption significantly but live VM
migration results in increased violations of SLAs.

Many of these techniques, however, suffer from
issues of instability and fluctuation—as migration of
workload is often based on an instantaneous (or time-
window-based) workload analysis. Only recently, time-
series (machine-learning-based) forecasting techni-
ques that take account of multiple criteria for estimat-
ing workloads are being used. Understanding where
cold spots are likely to happen is as important as iden-
tifying the location of over utilized resources within a

data center. A key challenge that differentiates this
challenge within a serverless environment is the over-
head of migrating workloads compared to: 1) the func-
tion execution time; and 2) the migration time and
associated startup time of the function at the new
location. Both of these aspects limit the benefit of
migration for short-running functions—compared to
longer running VMs or containers.

Power-OFF Strategies: As mentioned, traditional
approaches in data center consolidation have focused
on migrating long-running virtual machine instances
to eventually power down idle hosts. More recently,
these approaches have been suggested for reapplica-
tion in cloud-to-fog continuums.10 In our view, such
continuums will emerge everywhere due to the prolif-
eration of sensing, and it would be short-sighted to
assume conventional virtual machines as an execu-
tion technology. Instead, with a serverless computing
approach, there are several advantages to simplify
management and increase efficacy. First, short-run-
ning code can be left alone, and hosts can be switched
OFF or suspended when none or even few instances
remain. This greatly increases flexibility to decide
when a switch-OFF shall occur. Second, the inherent
event-driven nature of function invocation allows cou-
pling with dynamic resumption such as Wake-on-LAN,
in particular with fast-resuming and fast-booting
technologies such as Coreboot11 in conjunction
with delay-tolerant function invocations. This way,
hardware sensors along with virtualized fog nodes
can be connected to as if they were permanently
running, and yet they can power OFF in between. This
programming simplicity resonates with the serverless
computing mindset that infrastructural concerns
are abstracted and largely hidden from application
engineers.

Wake-on-LAN concepts have already reached
beyond LANs and are commonly used in Internet-wide
device management, including with custom protocols
such as Apple’s Bonjour Sleep Proxy (Multicast DNS,
RFC 6762). For messaging-based triggers, protocol
wrapping will allow a device to be booted or resumed
before answering a request. For time-based triggers,
an external time source needs to be added. Figure 2
shows the sequence of events, including eventual sus-
pend and resume actions by the device or virtualized
runtimes, based on rules or machine-learned patterns.

According to our early work experiments on event-
driven power switching of a FaaS platform triggered
by occasional IoT events, this approach added on
average 0.95s execution time per request, within the
delay tolerance to most batch jobs. In return, the plat-
form could be suspended for 73% of the time, leading
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DESIGNING SUSTAINABLE
SERVERLESS PLATFORMS

Various approaches can be used to limit the power
consumption of serverless functions, ensuring more
efficient use of energy of the associated infrastructure
on which these functions are hosted. These techni-
ques, which can be invoked transparently (from an
end-user perspective) must be implemented by the
serverless platform and can include: power capping of
serverless deployments, use of scheduling strategies
to make more effective use of the physical resources
on which serverless functions are hosted, and mecha-
nisms to minimize cold start times that can have sig-
nificant power consumption requirements. Each of
these approaches is described in this section, along
with their benefit (and limitations).

Power Capping: This approach relies on limiting
the power consumed by functions hosted within a
specific container environment. Power capping
techniques such as dynamic voltage and frequency
scaling (DVFS) and running average power limit
(RAPL) are hardware-based approaches that reduce
CPU frequency and voltage to lower processor
power consumption. However, this degrades the
entire system performance and consequently the
deployed application. Power cap violations are
undesirable and need to be effectively managed, as
the power benefit can be counterproductive—lead-
ing to applications running for longer time periods,
which at times is the worst possible outcome from
a sustainability perspective as it prevents shutting
down under-utilized machines. More specifically,

power cap violations occur when the total power
consumed by a server exceeds a threshold defined
by the server administrators.

Two power capping techniques are particularly rel-
evant in the context of container-based functions: 1)
DockerCap for Docker containers can make use of
system power consumption obtained from a hardware
power meter and RAPL. The CPU quota of all contain-
ers at different scheduling priority is reduced, thereby
affecting the performance of all containers; and
2) DEEP-mon power monitoring can be used for
Docker containers on the Kubernetes platform. This
technique relies on RAPL and DVFS to manage power
cap limits. It is demonstrated that RAPL affects the
run-time performance of all containers on a server.
RAPL enforces a power cap on the processor and
DRAM by reducing the CPU frequency and thus
degrading the overall system performance.

In the context of language-runtime-based func-
tions, such as those supported by serverless plat-
forms such as funcX, which runs on Python,c more
fine-grain power capping can take place. Such algo-
rithms could target specific subcomponents that
might not need to run at full speed, such as
resource-intensive dynamic memory management,
aka., garbage collection.7 Alternatively, the language
runtime might be able to better characterize the
resource requirements of its functions, enabling
improved execution density via adaptive resource
sharing among multitenant functions.8

The performance and execution behavior of a
function is influenced by the power consumed by
each function. Longer running functions can be termi-
nated, for instance, if their power consumption
exceeds the prespecified cap.

Network Power Saving: QUIC employs some of the
basic mechanisms of TCP and TLS while keeping UDP
as its underlying transport layer protocol. QUIC is,
therefore, a combination of transport and security pro-
tocols by performing tasks including encryption,
packet reordering, and retransmission. QUIC can be
considered a user space, UDP-based (stream-ori-
ented) protocol developed by Google—published by
IETF in May 2021 as RFC9000. It is estimated that
approx. 7% of Internet traffic employs QUIC. This pro-
tocol offers all the functionalities required to be con-
sidered a connection-oriented transport protocol,
overcoming numerous problems faced by other con-
nection-oriented protocols, such as TCP and SCTP.
Specifically, the addressed problems are reducing the

FIGURE 1. Serverless functions—responding to incoming
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to great savings in power consumption. Figure 3 sum-
marizes the suspend/resume pattern over a window
of 6 min. The research challenge is, then, to learn and
predict messaging patterns to optimize the suspend/
resume or switch-OFF/switch-ON actions.

EFFECT OFWORKLOAD
PATTERNS

We consider machine learning workloads consisting
of deep neural networks (DNN), which comprise a
sequence of layers and is a general term that covers
all neural networks with multiple hidden layers (that is
multiple layers between the input and output layers).

Connectivity between the layers and propagation of
an error function differentiates the different types of
DNN architectures. Overall, a DNNmay include: 1) fully
connected layers, where each node in the network is
connected to nodes at layerþ1 and layer-1. A DNN
may also include nodes that are not fully connected,
or where connections may skip layers; 2) convolution
layers convolve the input to produce feature maps of
inputs to learn features. This is generally undertaken
by identifying X-by-Y windows that are moved over a
stride of Z. A convolution filter is chosen to identify
key properties observed within the input dataset;
3) pooling layers apply a predefined function (maxi-
mum or average) to downsample the input; 4) an acti-
vation layer applies nonlinear functions and the most
commonly used is the rectified linear unit (ReLu); and
5) a Softmax layer is generally used for classification to
generate a probability distribution over the possible clas-
ses. The complexity of the DNN model is dependent on
the number of nodes, the interconnectivity structure,
and the choice of hyperparameters (such as X, Y, Z for
convolution layers and learning rate).

Two different ML deployment scenarios can be
considered: 1) workloads that are distributed and
2) workloads that are miniaturization. Traditionally, a
DNN is trained at a data center and, then, deployed as
a monolithic application on other resources where
they need to be trained. More recently, it has been
demonstrated that DNNs can be partitioned and
deployed across different tiers of resources spanning
the cloud, edge, and user devices to preserve privacy

FIGURE 2. Sustainability approaches for Internet-wide control of device states and virtualized runtime lifecycle based on server-

less event processing.

FIGURE 3. Event-driven suspend/resume patterns leading to

power consumption savings.
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and achieve performance and energy efficiency in dis-
tributed systems.12,13,14 In this scenario, the layers of a
partitioned DNN can be mapped onto serverless func-
tions that are invoked on-demand for inference on
both resource-abundant (data center) and resource-
constrained (edge servers or user devices) tiers. Such
an approach can meet the power cap requirements
on different resources. Since training is typically a
long-running task, traditional mechanisms such as
containers or VMs may be suited for deployment.

In the second scenario, machine learning work-
loads that need to fit on resource-constrained resour-
ces that are located outside conventional data
centers closer to where data are generated are con-
sidered. The energy consumed by both the networking
and compute infrastructure can be reduced. During
inference, the energy consumption of the networking
infrastructure is naturally conserved if limited data are
transferred to geographically distant servers and can
be processed at the edge of the network (up to a 50%
reduction in the carbon footprint when processing
data at the edge has been demonstrated15). In addi-
tion, there are opportunities to reduce energy con-
sumption on a compute resource.

Consider the example of a real-time video ana-
lytics application, such as identifying objects on dif-
ferent frames of a video stream. A different DNN
model from a portfolio of models can be employed
for each frame to maximize the accuracy of detec-
tion.16 This is achieved by leveraging the metachar-
acteristics of each video frame, such as the size of
the object and the speed of movement of the
object. Certain DNN models are more accurate
when detecting fast moving objects but may have
higher power requirements. Conversely, low-power
models may deliver sufficient accuracy for slow-
moving objects. Since the models contained in the
portfolio have different power requirements, server-
less computing can leverage the accuracy and
power tradeoff to deliver a transprecision-based
approach that maximizes accuracy.

QUALITY ASSESSMENT OF
SERVERLESS SUSTAINABILITY

While the sustainability aspect of serverless comput-
ing has gained a lot of attention, the same cannot be
said about approaches and methodologies for
the quality assessment of serverless sustainability.
Kistowski et al. define a benchmark as a “Standard
tool for the competitive evaluation and comparison
of competing systems or components according
to specific characteristics, such as performance,

dependability, or security.”17 The SPEC Cloud IaaS 2018
benchmark,d for example, focuses on four key bench-
markmetrics: 1) replicated application instances, 2) per-
formance score, 3) relative scalability, and 4) mean
instance provisioning time, none of which includes sus-
tainable-related metrics. This is the typical focus of
most of benchmarks in cloud computing,18 and the
ones developed for serverless computing.19,20

Including sustainability in benchmarks for serverless
computing is challenging, yet extremely important,
especially when considering the fast growth of AI appli-
cations deployed in the cloud. In a study conducted by
Strubell et al.,21 it has been found that training a single
deep learning model can generate up to 284,000 kg of
CO2 emissions. This corresponds to the total lifetime
carbon footprint of approximately five cars. But this is
not a one-off cost, concluding with the training of the
ML algorithm—that could be potentially mitigated
using transfer learning techniques. Amazon estimates
that 90% of production ML infrastructure costs are for
inference, not training.22 NVIDIA estimated that 80%–

90% of the energy cost of neural networks deployed in
data centers lie in inference processing.e

In addition, a benchmark should not just focus on
the raw numbers of energy consumption, but rather
on where the energy comes from. If an AI model were
trained using electricity generated primarily from
renewables, its carbon footprint would be correspond-
ingly lower. For instance, Google Cloud Platform’s
power mix is more heavily weighted toward renew-
ables than the AWS Platform (56% versus 17%, accord-
ing to Strubell et al.21). Lacoste et al.23 developed an
ML CO2 calculator

f that practitioners can use to esti-
mate the carbon footprints of their deployment based
on the following factors: 1) hardware type, 2) hours
used, 3) cloud provider, and 4) geographical region.
The last factor can have a significant impact on car-
bon emission, as different locations may have differ-
ent access to greener energy sources.

Most of these efforts focus on long-lived applica-
tions that may not fully exploit the potential of server-
less computing. Researchers and practitioners can try
to focus on how to optimize their deployments and
executions of ML applications. However, more funda-
mental long-term solutions are needed to automate
and optimize the sustainability of ML applications.
This could be achieved through the main features of
serverless computing and the development of suitable

dhttps://www.spec.org/cloud_iaas2018/
ehttps://www.forbes.com/sites/moorinsights/2019/05/09/
google-cloud-doubles-down-on-nvidia-gpus-for-inference/
fhttps://mlco2.github.io/impact/
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to great savings in power consumption. Figure 3 sum-
marizes the suspend/resume pattern over a window
of 6 min. The research challenge is, then, to learn and
predict messaging patterns to optimize the suspend/
resume or switch-OFF/switch-ON actions.

EFFECT OFWORKLOAD
PATTERNS

We consider machine learning workloads consisting
of deep neural networks (DNN), which comprise a
sequence of layers and is a general term that covers
all neural networks with multiple hidden layers (that is
multiple layers between the input and output layers).

Connectivity between the layers and propagation of
an error function differentiates the different types of
DNN architectures. Overall, a DNNmay include: 1) fully
connected layers, where each node in the network is
connected to nodes at layerþ1 and layer-1. A DNN
may also include nodes that are not fully connected,
or where connections may skip layers; 2) convolution
layers convolve the input to produce feature maps of
inputs to learn features. This is generally undertaken
by identifying X-by-Y windows that are moved over a
stride of Z. A convolution filter is chosen to identify
key properties observed within the input dataset;
3) pooling layers apply a predefined function (maxi-
mum or average) to downsample the input; 4) an acti-
vation layer applies nonlinear functions and the most
commonly used is the rectified linear unit (ReLu); and
5) a Softmax layer is generally used for classification to
generate a probability distribution over the possible clas-
ses. The complexity of the DNN model is dependent on
the number of nodes, the interconnectivity structure,
and the choice of hyperparameters (such as X, Y, Z for
convolution layers and learning rate).

Two different ML deployment scenarios can be
considered: 1) workloads that are distributed and
2) workloads that are miniaturization. Traditionally, a
DNN is trained at a data center and, then, deployed as
a monolithic application on other resources where
they need to be trained. More recently, it has been
demonstrated that DNNs can be partitioned and
deployed across different tiers of resources spanning
the cloud, edge, and user devices to preserve privacy

FIGURE 2. Sustainability approaches for Internet-wide control of device states and virtualized runtime lifecycle based on server-

less event processing.

FIGURE 3. Event-driven suspend/resume patterns leading to

power consumption savings.
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management techniques and cost models that can
promote greener computation.

In Figure 4, we display our proposed approach for
enabling serverless computing for AI-intensive work-
loads. As major energy requirements for AI workloads
are due to inference (i.e., during usage rather than
training—where training is only needed occasionally
or once), we also focus our attention on the actual
operation of deep learning algorithms versus their
training. A key observation is that DNNs do not need
to run as monolithic structures; instead, we propose
that each layer of a DNN be segmented into a function
suitable for fine-grain deployment and scheduling—
which can achieve improved computational density
both on cloud and on edge servers. As such, consider
for simplicity a multilayer DNN.24 Each layer will have
outputs u 2 Rm, weightsW 2 Rm�n, biases b 2 Rm, acti-
vation function g, and connected with inputs u 2 Rn

will execute the following function:

�DNN :¼ y ¼ gðW � uþ bÞ:

Thus, a DNN with depth k can be recursively split
into independent functions that can be stacked as fol-
lows, considering that �DNN

0 describes the raw data
inputs to whole DNN:

�DNN
k :¼ g ¼ gðW � �DNN

k�1 þ bÞ:

Consequently, from a serverless perspective, the
instructions required to be transmitted to execute
one of these lDNN functions reduces to the weights,
biases, and type of activation function. From a cluster
management perspective, the serverless provider can
now make more informed decisions on where and
when each lDNN instance should run, taking into con-
sideration data locality to minimize network energy,
renewable, and off-peak power availability to reduce
the stress on the grid, depending on their sparsity,
place them on machines with the appropriate level of
hardware parallelism (e.g., CPU versus GPU), as well
as existing utilization of computing resources to maxi-
mize utilization of power-on resources while keeping
as many machines as possible powered OFF. Addition-
ally, smart reusable algorithms could be created that
easily combine existing structures to efficiently deploy
novel DNN architectures by essentially leveraging this
microservice-oriented design of DNNs.

Furthermore, on the actual device that executes
one of these lDNN functions, an autonomic manager
operated by the serverless platform can enable run-
time-specific energy-aware optimizations. For example,
consider multitenancy of DNN lambdas, i.e., the secure
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management techniques and cost models that can
promote greener computation.

In Figure 4, we display our proposed approach for
enabling serverless computing for AI-intensive work-
loads. As major energy requirements for AI workloads
are due to inference (i.e., during usage rather than
training—where training is only needed occasionally
or once), we also focus our attention on the actual
operation of deep learning algorithms versus their
training. A key observation is that DNNs do not need
to run as monolithic structures; instead, we propose
that each layer of a DNN be segmented into a function
suitable for fine-grain deployment and scheduling—
which can achieve improved computational density
both on cloud and on edge servers. As such, consider
for simplicity a multilayer DNN.24 Each layer will have
outputs u 2 Rm, weightsW 2 Rm�n, biases b 2 Rm, acti-
vation function g, and connected with inputs u 2 Rn
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sharing of equal lDNN functions used by multiple ten-
ants—the statelessness of these functions allows for
this optimization—which can save energy costs by
reducing unneeded context switches or thrashing the
hardware caches. Additionally, if users are willing to sac-
rifice a bit of accuracy for improved energy efficiency,
even slightly different lDNN could be shared, for exam-
ple, by using the average weights of the multitenant
users or one user accepting to uselDNN of another.

CONCLUSIONS
The serverless computing paradigm enables abstract-
ing away hardware resource management and
resource operations, which transfers the burden of
energy innovation to the serverless platform provider.
With an urgent call for worldwide sustainable develop-
ment, serverless platforms must also be designed to
be energy- and power-aware.

We highlight the need for sustainable serverless
computing, which we posit can be achieved via: 1)
serverless platform design and infrastructure, 2)
improved characterization of novel IoT- and AI-driven
workloads, which are bound to dominate the world’s
computing needs, paired with smarter decision-mak-
ing at the application-design level, and 3) automated
methodologies that assess the sustainability efficacy
of such power and energy-aware methods.

Finally, people, developers and end-users must
also contribute to this effort of sustainable serverless
computing! For instance, a user might need to con-
sider turning ON the “eco-mode” for their functions,
relaxing the requirements just enough so that the
serverless provider has enough time to schedule them
during an off-peak time or can keep that extra server
in reserve turned OFF. “Human brains can do amazing
things with little power consumption. The bigger ques-
tion is how can we build such machines.”25
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We present a conceptual framework for the development of visual interactive
techniques to formalize and externalize trust in machine learning (ML) workflows.
Currently, trust in ML applications is an implicit process that takes place in the
user’s mind. As such, there is no method of feedback or communication of trust
that can be acted upon. Our framework will be instrumental in developing
interactive visualization approaches that will help users to efficiently and
effectively build and communicate trust in ways that fit each of the ML process
stages. We formulate several research questions and directions that include: 1) a
typology/taxonomy of trust objects, trust issues, and possible reasons for (mis)
trust; 2) formalisms to represent trust in machine-readable form; 3) means by
which users can express their state of trust by interacting with a computer system
(e.g., text, drawing, marking); 4) ways in which a system can facilitate users’
expression and communication of the state of trust; and 5) creation of visual
interactive techniques for representation and exploration of trust over all stages
of an ML pipeline.

The last two decades have been marked by the
explosion of data sources ranging over virtu-
ally all application types, such as multimedia

collections (images, text, sound, videos), data tables
from databases having increasing diversity and size,
and measurements from the physical world, such as
GPS and trajectory data. As the size, diversity, and

complexity of the data increased, so did the aware-
ness that higher level information can be extracted
from these sources. A particularly successful man-
ner to infer such information from raw data is pro-
posed by machine learning (ML). ML applications
construct models of the phenomena from which
data are acquired and aim to generate predictions
related to these phenomena in the presence of new,
unseen, data. ML applications covering classifica-
tion and prediction are increasingly present in
diverse contexts of decision support and task auto-
mation by generating outputs relevant to a human
user in the given context.
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As ML models become increasingly powerful, so
does their engineering and inherent complexity. As
such, an increasingly important research direction
targets explainable AI (XAI) (i.e., the creation of
methods and tools that shed light on the functioning
of such models to their various users). However,
while such techniques help users to understand how
a model is structured and works, they currently do
not directly cover building trust in the model (and/or
the process leading to it). We consider XAI and trust
to be loosely related but independent topics. Provid-
ing explanations may help to increase trust, but not
necessarily: even if a system provides a perfect
explanation of how its model works, the user may still
not trust the system, due to, e.g., wrong model deci-
sions. The reverse also holds: although XAI might
show a model’s flaws, users might still have high
trust in the system, due to, e.g., faith in the authority
or organization behind it, or because they simply lack
(domain) knowledge to understand the explanation.
As such, in current systems trust is typically repre-
sented implicitly, lacking, e.g., explicit interaction and
support feedback mechanisms. In this article, we
argue that trust (or the lack thereof) in ML applica-
tions is an aspect as important as—if not more
important than—understanding the operation of
such applications.

Currently, visual analytics (VA) and ML applica-
tions lack an interface for expressing trust and/or
distrust. What is missing from current interfaces is
both 1) ways for the user to express and explain
(dis)trust, and 2) ways to capture and manage such
(dis)trust in an explicit manner such that it can
directly affect the visual interactive ML process.
We believe that in complex systems, expressing
trust (beyond a superficial overall level of trust)
requires exploratory, interactive visualization sup-
port to discover the areas of trust and distrust
along with their reasons.

As a first step, to create awareness, and to work
toward treating trust as a first-class citizen in designing
and reasoning about VA applications that use ML, we
introduce a conceptual framework that captures the
flow of trust. This framework lays a foundation for
externalization, exploration, and explanation of trust
using interactive visualization techniques during devel-
opment of ML and VA applications and helps with post
hoc analysis of existing systems. The framework guides
researchers and tool creators in making trust explicit
by considering different trust elements: 1) content—
what needs to be captured and explicitly represented;
2) target form of the content; 3) communication
media (e.g., text, drawing, marking); 4) facilitation

(e.g., prompting, templates); and 5) visualization tech-
niques. Our contributions are:

› a conceptual framework that enhances the ML
pipeline with a model that captures the flow of
trust, and,

› guides the construction of VA solutions that sup-
port and explicitlymanage trust development;

› the application of our framework to examples of
current ML models extended with interactive
visualization support for evolution of trust;

› identification and discussion of research direc-
tions concerning trust.

MOTIVATING EXAMPLE
To corroborate the need for a framework for external-
izing, exploring, and explaining trust and to illustrate
the presentation of the framework, we introduce a
real-world example. It involves our experiences gained
during the creation and usability testing of an optimi-
zation model for flight scheduling.

Domain Problem
The airspace (particularly, in Europe) is divided into com-
partments, called sectors, within which the traffic is
supervised by air traffic controllers. The sectors have lim-
ited capacities defined as the maximal safely manage-
able number of flights that can cross a sector in one
hour. Flights are conducted according to plans. Initial
flight plans are prepared by airlines intending to conduct
the flights. It often happens that the demand for a sector
(i.e., the number of flights that need to cross it within an
hour) exceeds the sector capacity and thus creates a so-
called hotspot. For safety reasons, it is necessary to elim-
inate the hotspots by modifying parts of the flight plans.
The most common modification is delaying a flight. It is
sometimes possible to modify flight routes so that over-
loaded sectors are avoided while the route lengths do
not increase significantly. The task of an optimization
model is to create a daily flight schedule such that no
hotspots will emerge. The input data consist of a set of
initial flight plans; the output is a set of final flight plans.2

Solution Development
The model for solving the problem was built using his-
torical data D for a large region of Europe and a time
span of one year. For each day, there were sets of ini-
tial and final flight plans. A flight plan in D has the
form of a trajectory consisting of geographic positions
(waypoints) and time stamps. This format was not
suitable for model development. The model develop-
ers (MD) defined a set of features (i.e., numeric
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attributes) derivable from the original data and suit-
able for model building and thus transformed D to D0.
Later on, it turned out that the derived features were
not easily understandable to the domain users (DU).
Also, the selection of these particular features was
not properly justified.

MD built the model M by means of a reinforce-
ment learning algorithm. The flights were modeled as
agents taking decisions to delay for X minutes. Later
on, this approach to modeling was questioned as the
behavior of the resulting model did not match users’
way of reasoning. Assuming that reinforcement learn-
ing was the right method to create a model, a better
idea might be to model sectors as agents.

The built modelM (a neural network) was not inher-
ently explainable; therefore, MD created a surrogate
modelM 0 to explain the behavior of M .M 0 was a com-
bination of decision trees with a depth up to 35 levels.
The amount of information was far beyond the human
capability to comprehend it. Although visualization
developers (VD) invented some tricks to present M 0 in
a simplified and aggregated form, it was not enough for
a good understanding of themodel behavior.

The execution of M is an iterative process of modi-
fying an original flight schedule. Each step results in a
version of the flight schedule that differs from the pre-
vious one in terms of flight delays and sector loads. VD
created a visualization that presented an overview of
the process with summarized changes from step to
step and allowed us to explore the details and compare
different versions of the schedule. The visualization
showed how hotspots were resolved at the cost of
flight delays. At the overall level, the delays appeared
to be justified; still, DU were not convinced that the
delays were not longer than necessary, and there was
no good way to check this. At the detailed level, DU
questioned the choice of the flights to be delayed.
Although XAI methods were used, and the explana-
tions could be explored, trust in themodel was still low.

The output of M was viewed and explored by means
of a visualization showing the final flight schedule and
enabling its comparison with the original schedule. M 0

was used for providing explanations formodifications of a
particular user selected flight plan. The explanationswere
presented with decision rules. DU found them unsatisfac-
tory: excessively long, hard to understand due to compli-
cated nonintuitive features, and failing to explain the
choice of the flights to be delayed. DU concluded that
they are not convinced that the model operates properly
and thus cannot adopt such amodel for use in practice.

This project provided a number of lessons con-
cerning possible trust issues along the process of
model development and use. In brief, the MD put too

high trust in the chosen modeling method and in the
capability of a surrogate model to explain the logic of
the trained model. DU, in turn, did not trust the model
as a whole due to a lack of understanding of its behav-
ior, and they did not trust the proposed solutions due
to a lack of evidence of the solutions being optimal.

RELATEDWORK
The importance of users’ trust in ML and the ways in
which visualizations affect it have been discussed and
summarized in a few survey papers in recent years. For
instance, Endert et al.13 identified enhancing trust and
interpretability as one of the open challenges and
opportunities for ML and VA. According to the authors,
analysts can build mental models of how ML models
work via interactive visualization, which will increase
trust. This happens in two different levels of cognition:
a qualitative level, where the most important goal is to
communicate information about the model in the most
intuitiveway, such as using classical visualizationmeth-
ods; and a quantitative level, to provide sound evidence
to confirm the insights obtained in the previous level.

Sperrle et al.14 provided a systematic analysis of how
evaluations are carried out in human-centered machine
learning papers, with trust as one of the important
focuses of the survey. They identify trust issues in rela-
tion to the interaction between the performance and
the presentation: even VA systems with the highest
usability must consider the performance of their under-
lying ML models in order to remain useful, while, on the
other hand, well-performing ML models might not be
used to their full potential if users do not trust them.
Trustworthiness is considered an important dimension
of analysis of both model properties (“A model can be
considered trustworthywhenusers believe it is correct”)
and the explanations themselves (“The ability for the
explanation to be believed in or accepted by the user as
an honest representation or correct description”). The
authors indicate, however, that only a small percentage
of the analyzed papers actually evaluate such charac-
teristics: 10% for trustworthiness as a model property
and 6% for trustworthiness in explanations.

Probably the most related work to ours is the sur-
vey by Chatzimparmpas et al.15 where a comprehen-
sive mapping of the currently available literature on
using visualization to enhance trust in ML models is
provided. The authors discuss which visualization
techniques are used, how effective they are, and the
domain areas they are applied to, including a concep-
tual discussion of what trust means in ML and what
challenges are still open. However, the issue of explic-
itly expressing and/or managing trust within the VA
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while such techniques help users to understand how
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sented implicitly, lacking, e.g., explicit interaction and
support feedback mechanisms. In this article, we
argue that trust (or the lack thereof) in ML applica-
tions is an aspect as important as—if not more
important than—understanding the operation of
such applications.

Currently, visual analytics (VA) and ML applica-
tions lack an interface for expressing trust and/or
distrust. What is missing from current interfaces is
both 1) ways for the user to express and explain
(dis)trust, and 2) ways to capture and manage such
(dis)trust in an explicit manner such that it can
directly affect the visual interactive ML process.
We believe that in complex systems, expressing
trust (beyond a superficial overall level of trust)
requires exploratory, interactive visualization sup-
port to discover the areas of trust and distrust
along with their reasons.

As a first step, to create awareness, and to work
toward treating trust as a first-class citizen in designing
and reasoning about VA applications that use ML, we
introduce a conceptual framework that captures the
flow of trust. This framework lays a foundation for
externalization, exploration, and explanation of trust
using interactive visualization techniques during devel-
opment of ML and VA applications and helps with post
hoc analysis of existing systems. The framework guides
researchers and tool creators in making trust explicit
by considering different trust elements: 1) content—
what needs to be captured and explicitly represented;
2) target form of the content; 3) communication
media (e.g., text, drawing, marking); 4) facilitation

(e.g., prompting, templates); and 5) visualization tech-
niques. Our contributions are:

› a conceptual framework that enhances the ML
pipeline with a model that captures the flow of
trust, and,

› guides the construction of VA solutions that sup-
port and explicitlymanage trust development;

› the application of our framework to examples of
current ML models extended with interactive
visualization support for evolution of trust;

› identification and discussion of research direc-
tions concerning trust.

MOTIVATING EXAMPLE
To corroborate the need for a framework for external-
izing, exploring, and explaining trust and to illustrate
the presentation of the framework, we introduce a
real-world example. It involves our experiences gained
during the creation and usability testing of an optimi-
zation model for flight scheduling.

Domain Problem
The airspace (particularly, in Europe) is divided into com-
partments, called sectors, within which the traffic is
supervised by air traffic controllers. The sectors have lim-
ited capacities defined as the maximal safely manage-
able number of flights that can cross a sector in one
hour. Flights are conducted according to plans. Initial
flight plans are prepared by airlines intending to conduct
the flights. It often happens that the demand for a sector
(i.e., the number of flights that need to cross it within an
hour) exceeds the sector capacity and thus creates a so-
called hotspot. For safety reasons, it is necessary to elim-
inate the hotspots by modifying parts of the flight plans.
The most common modification is delaying a flight. It is
sometimes possible to modify flight routes so that over-
loaded sectors are avoided while the route lengths do
not increase significantly. The task of an optimization
model is to create a daily flight schedule such that no
hotspots will emerge. The input data consist of a set of
initial flight plans; the output is a set of final flight plans.2

Solution Development
The model for solving the problem was built using his-
torical data D for a large region of Europe and a time
span of one year. For each day, there were sets of ini-
tial and final flight plans. A flight plan in D has the
form of a trajectory consisting of geographic positions
(waypoints) and time stamps. This format was not
suitable for model development. The model develop-
ers (MD) defined a set of features (i.e., numeric
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pipeline itself is not discussed in any of these surveys
or their analyzed papers. While most of the related
works mention the increase of trust in ML as one of
their most important goals, they do not discuss how
to directly achieve (or manage) that in a concrete
manner. We intend, in this article, to bridge this gap by
proposing and discussing the design decisions behind
a concrete framework where trust is a first-class citi-
zen within the VA workflow itself.

TRUST AS FIRST-CLASS CITIZEN
Based on the motivating example and related work, we
argue that trust should be considered a “first-class citi-
zen” throughout the entire process of constructing and
using ML applications, much like data provenance has
become a first-class citizen in visualization pipelines.3

For this, we propose a conceptual framework to repre-
sent, express, explore, communicate, and develop
trust. Table 1 lists the key requirements this framework
aims to comply with, based on the authors’ own experi-
ence in building VA and ML applications. This list is not
exhaustive but shows the requirements we believe are
minimally needed.

To build this framework, we start bottom-up by
first considering the traditionalML process. Figure 1 (bot-
tom) depicts this as a data flow pipeline (data ¼ sharp-
corner boxes, operations ¼ rounded-corner boxes). It
starts by (1) acquiring training data T for the intended
ML application. Using T , (2) ML professionals build and
train an ML model M for the problem at hand. The
model is next evaluated by its intended customers (3).
Eventually, these decide to deploy and execute it (4) on
post-training data D (also called “unseen” data in ML).
Finally, the model produces a set of results O ¼ MðDÞ,
which are then used for the application at hand (5). By
externalizing trust, we connect the different user roles

(for more details, see the “Flow of Trust” section). Note
that we do not explicitly show model monitoring and
retraining, as we consider these reiterations of (parts of)
the pipeline.

Each step of the ML pipeline can be characterized
by five key elements (Figure 1 markers (i)–(v), shown
only for pipeline step 1 to limit drawing clutter): Users
consider their object of interest in the ML pipeline (i).
This can be either a tangible object (training data T ,
trained model M , or model output O) or a process
(model building, model execution). To assess the
object, they next change its various parameters (ii)
and observe their effect, i.e., how the object responds
to parameter changes (iii). Based on this, they reach a
trust conclusion (iv), which they next detail and docu-
ment by providing feedback (v). These elements are
described in the following (with additional examples in
Table 2).

User roles: A role models the types of activities per-
formed by a user involved in a given pipeline step. These
can be taken by different, or the same, persons, depend-
ing on the application context, much like roles in the
classical software engineering pipeline.12 For instance, in
a production setting, scientists or field researchers col-
lect the training data (1); ML engineers construct the ML
model (2) which is then deployed by IT professionals (3)
and used in applications by the general public (4–5). In
contrast, in a research or prototyping setting, all roles
are often assumed by the same person.

Parameters: These describe how users interact
with their object of interest (purple arrows marked P in
Figure 1). For instance, training data can be resampled
or transformed in various ways (1); training tunes vari-
ous model hyperparameters (2); a trained model is
deployed on platforms having different computing
power provisions (3–4); and the model’s outputs are
shown to the end user via various parameterized visu-
alizations (5).

Effect: This captures how the object under study
reacts to changes of its parameters P and is shown in
Figure 1 by the orange arrows marked E. Effects can
range from simple numerical results (e.g., accuracy
scores during training) to complex visualizations that
depict the changing activations of units in a neural
network during inference. Note that E also includes
XAI techniques appropriate at each pipeline step.
Exploring E allows users to form a mental model of
the studied object and ultimately explain its behavior.

Trust: As users iteratively repeat the change-
parameters-explore-results loop (ii)–(iii) outlined previ-
ously, they build an increasingly clearer trust (or lack
thereof, with all in-between nuances possible) of the
objects under study. The actual trust conclusion

TABLE 1. Proposed trust framework key requirements.

Key
requirement

Detailed explanation
(“The framework should...”)

Tasks Support trust expression, explanation,
development, and communication.

Coverage Apply to all steps of the ML pipeline (model
design, training, execution, and result

usage).

Generality Support any type of ML application (e.g.,
classification, regression) and technique
(e.g., feature engineering, deep learning,

supervised/unsupervised learning).

Versatility Address a broad class of users (e.g.,
scientists, ML professionals, nonspecialist

users).

March/April 2023 IEEE Computer Graphics and Applications 81

VISUALIZATION VIEWPOINTS



www.computer.org/computingedge� 51

VISUALIZATION VIEWPOINTS

43mcg02-vandenelzen-3237286.3d (Style 7) 12-03-2023 14:4

formed by users is shown by the green boxes Ti in
Figure 1 top. These conclusions can be simplistically
represented by values on a binary (yes/no) or on an
ordinal (low to high) scale, but the trust state may be
more complex and nuanced (e.g., not equal for differ-
ent components or aspects of the object). Impor-
tantly, this trust forms up in the mind of the users
(arrows marked C in Figure 1). As different user roles
exist, it follows that trust has different meanings for
the various pipeline steps (Ti, 1 � i � 5, Figure 1 top).
For example, a model engineer will trust a model M if
it shows a good training convergence and it scores
highly during ML testing scenarios; these aspects are
not relevant for end users who will trust the output O
of an ML pipeline if O is in line with their common
expectations of what the pipeline should do.

Feedback: As explained, trust forms in the mind of
a user. Modeling trust as basic ordinal values (see the
previous section) offers a simple way to communicate
a user’s conclusion trustwise, but does not further
explain why the user has reached that conclusion.
This is important since both when trust Ti is high or
low one needs to understand the reasons to react
accordingly. Also, users may have unequal trust to dif-
ferent parts or aspects of the object of interest. We
propose to solve this by making the abovementioned
aspect explicit: A so-called feedback mechanism,
denoted by the green arrows marked F in Figure 1,

enables users to annotate their object of interest to
explain what they (mis)trust and why. For example,
end users can mark specific outputs O of a pipeline as
untrustworthy (e.g., too many delayed flights); model
engineers can mark aspects of a training process as
suspicious (e.g., poor convergence curves or nonmo-
notonic changes of performance indicators); and data
scientists can mark samples of a training set as poten-
tially incorrectly acquired or labeled.

Flow of Trust
Wehave described so far how individual user roles arrive
at achieving their own views of trust and how they can
externalize these. In practice, this per-step formed trust
next travels along theML pipeline to connect user roles.
We model this in Figure 1 by the diagonal arrows at the
top. Arrows marked (vi) indicate trust provisions given
by earlier pipeline steps to later ones (e.g., an ML engi-
neer providing statistical metrics of model performance
and representation of the distribution ofmodel errors to
justify their trust in the model engineering they per-
formed). Simply put, trust “flows forward” in the pipeline
to convince subsequent users that the objects they are
provided with are trustworthy enough. Trust also propa-
gates backward: arrows marked (vii) indicate trust
requirements set by later pipeline steps to earlier ones
(e.g., an end user telling his smart-driving car provider

FIGURE 1. Trust modeling and flow throughout the construction and use of ML applications (see the “Trust as First-Class Citizen”

section).
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pipeline itself is not discussed in any of these surveys
or their analyzed papers. While most of the related
works mention the increase of trust in ML as one of
their most important goals, they do not discuss how
to directly achieve (or manage) that in a concrete
manner. We intend, in this article, to bridge this gap by
proposing and discussing the design decisions behind
a concrete framework where trust is a first-class citi-
zen within the VA workflow itself.

TRUST AS FIRST-CLASS CITIZEN
Based on the motivating example and related work, we
argue that trust should be considered a “first-class citi-
zen” throughout the entire process of constructing and
using ML applications, much like data provenance has
become a first-class citizen in visualization pipelines.3

For this, we propose a conceptual framework to repre-
sent, express, explore, communicate, and develop
trust. Table 1 lists the key requirements this framework
aims to comply with, based on the authors’ own experi-
ence in building VA and ML applications. This list is not
exhaustive but shows the requirements we believe are
minimally needed.

To build this framework, we start bottom-up by
first considering the traditionalML process. Figure 1 (bot-
tom) depicts this as a data flow pipeline (data ¼ sharp-
corner boxes, operations ¼ rounded-corner boxes). It
starts by (1) acquiring training data T for the intended
ML application. Using T , (2) ML professionals build and
train an ML model M for the problem at hand. The
model is next evaluated by its intended customers (3).
Eventually, these decide to deploy and execute it (4) on
post-training data D (also called “unseen” data in ML).
Finally, the model produces a set of results O ¼ MðDÞ,
which are then used for the application at hand (5). By
externalizing trust, we connect the different user roles

(for more details, see the “Flow of Trust” section). Note
that we do not explicitly show model monitoring and
retraining, as we consider these reiterations of (parts of)
the pipeline.

Each step of the ML pipeline can be characterized
by five key elements (Figure 1 markers (i)–(v), shown
only for pipeline step 1 to limit drawing clutter): Users
consider their object of interest in the ML pipeline (i).
This can be either a tangible object (training data T ,
trained model M , or model output O) or a process
(model building, model execution). To assess the
object, they next change its various parameters (ii)
and observe their effect, i.e., how the object responds
to parameter changes (iii). Based on this, they reach a
trust conclusion (iv), which they next detail and docu-
ment by providing feedback (v). These elements are
described in the following (with additional examples in
Table 2).

User roles: A role models the types of activities per-
formed by a user involved in a given pipeline step. These
can be taken by different, or the same, persons, depend-
ing on the application context, much like roles in the
classical software engineering pipeline.12 For instance, in
a production setting, scientists or field researchers col-
lect the training data (1); ML engineers construct the ML
model (2) which is then deployed by IT professionals (3)
and used in applications by the general public (4–5). In
contrast, in a research or prototyping setting, all roles
are often assumed by the same person.

Parameters: These describe how users interact
with their object of interest (purple arrows marked P in
Figure 1). For instance, training data can be resampled
or transformed in various ways (1); training tunes vari-
ous model hyperparameters (2); a trained model is
deployed on platforms having different computing
power provisions (3–4); and the model’s outputs are
shown to the end user via various parameterized visu-
alizations (5).

Effect: This captures how the object under study
reacts to changes of its parameters P and is shown in
Figure 1 by the orange arrows marked E. Effects can
range from simple numerical results (e.g., accuracy
scores during training) to complex visualizations that
depict the changing activations of units in a neural
network during inference. Note that E also includes
XAI techniques appropriate at each pipeline step.
Exploring E allows users to form a mental model of
the studied object and ultimately explain its behavior.

Trust: As users iteratively repeat the change-
parameters-explore-results loop (ii)–(iii) outlined previ-
ously, they build an increasingly clearer trust (or lack
thereof, with all in-between nuances possible) of the
objects under study. The actual trust conclusion

TABLE 1. Proposed trust framework key requirements.

Key
requirement

Detailed explanation
(“The framework should...”)

Tasks Support trust expression, explanation,
development, and communication.

Coverage Apply to all steps of the ML pipeline (model
design, training, execution, and result

usage).

Generality Support any type of ML application (e.g.,
classification, regression) and technique
(e.g., feature engineering, deep learning,

supervised/unsupervised learning).

Versatility Address a broad class of users (e.g.,
scientists, ML professionals, nonspecialist

users).
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that they do not trust the car’s behavior in certain condi-
tions). Upon receiving such signals, users of earlier steps
need to adapt their objects.

The flow of trust occurs by first passing the key
conclusions between user roles (a Ui trusts object i

this much, i.e., to level Ti). Next, additional information
on why the respective trust level was reached can be
passed along to justify the conclusion. Such informa-
tion can also include details, such as particular com-
ponents or aspects of the object, or conditions this

level of trust refers to. The communication of trust
takes the form of passing the annotated objects
(obtained via the feedback F ) that motivate the
respective trust conclusion. Also, note that trust typi-
cally flows over multiple layers and multiple times dur-
ing the lifetime of an ML pipeline, e.g., from the final
users back to the scientists preparing the training
data T . This is similar to the lifetime of software sys-
tems: the forward execution of the pipeline (and for-
ward trust flow) is analogous to forward software

TABLE 2. Examples of user roles, exploration parameters, explanation of ML behavior, trust aspects, and trust feedback

mechanisms for the five steps of a generic ML pipeline.

Training
data T

User role Collects and curates training data from a given application area.

Parameters Affect the data representation (e.g., sampling and reconstruction parameters).

Effect Shows data properties (outliers, clusters) and potential problems (errors, missing values,
duplicates).

Trust Data are sufficient, of good quality, and capture well the modeled phenomenon.

Feedback User determines unfit training data (e.g., missing, wrong, or duplicate values or poorly samples
the intended distribution).

Model
building

User role ML practitioner involved in architecting, coding, training, and testing the modelM .

Parameters Feature selection and engineering; problem decomposition; hyperparameters tuned during
model engineering.

Effect ShowsM ’s behavior in data and parameter spaces during training.

Trust Model works well for all applicable data and parameters and its sensitivity to data/parameters
is understood.

Feedback Indicates that some ofM ’s decisions (e.g., for specific samples) do not look correct and need
improvement.

ModelM

User role ML practitioner; model evaluator (domain expert or certification body) determining model
suitability for adoption.

Parameters Users explore model behavior by, e.g., applying it to different inputs, which act as parameters
changed by the user.

Effect Model specific methods versus model agnostic methods. Depends on whetherM is inherently
interpretable or not.9

Trust Model is sound—works correctly, is efficient, well explained, and suitable for its intended
usage.

Feedback Some model blocks are not needed or too complex;M is (not) understandable/(not) applicable
to user’s context.

Model
execution

User role Domain expert/integrator building an end-to-end solution using a given model.

Parameters Control the model’s execution (e.g., memory and processor time available for a run).

Effect How the model modifies the solution during its execution process.

Trust Solution improves as the model runs; process converges fast enough; model avoids local
minima.

Feedback The solution is evolving (in)appropriately.

Model
output O

User role End user of the ML pipeline (scientist, domain expert, ML engineer, nonspecialist).

Parameters Control how the outputs are shown (e.g., which text-based or visualization method is used).

Effect Bring insight how themodel produces the output; XAImethods (LIME, SHAP, counterfactuals, local
surrogatemodels).

Trust Based on domain knowledge, the output ofM is plausible and in line with the users’mental
model(s).

Feedback Selection of data items that comply to the users’mental model or not (continuous scale).
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engineering from requirements gathering until the first
deployed version. The backward trust flow is analo-
gous to the collection and processing of change
requests during software maintenance.11

Role of Interactive Visualization
Visualization plays a crucial role in our framework.
First, it enables the exploration of the ML objects of
interest by varying parameters P and observing
effects E, since these objects are large, abstract, and
complex. Second, interactive mechanisms allow users
to select parts of these objects and annotate them to
express their trust conclusions, thus to create the
feedback F . Third, visualization enables an explicit
representation of the trust (e.g., to track over time).

Tens of such visualization mechanisms exist—for a
recent survey, see Garcia et al.’s work.4 Figure 2 shows
five such examples, one per pipeline stage. We
selected techniques using dimensionality reduction
(DR) as an underlining mechanism for ease of presen-
tation and to demonstrate the model- and visualiza-
tion-agnostic pipeline.

Training data: DR is the tool of choice in unsuper-
vised learning to display large collections of high-
dimensional samples to observe how these group (or
not) into multiple clusters. In semisupervised learning,
labeled samples are colored by their labels [see
Figure 2(a)], enabling users to determine where in the
training data to next perform annotations to enrich
otherwise poorly labeled training sets,5 and, thereby,
improve their trust in such training sets.

Train/build model: DR can be used to visualize the
evolving activations in the last hidden layer of a deep
model (latent space). Figure 2(b) shows such evolu-
tions as class-colored trails in a projection space,
which increasingly diverge as training progresses. The
visual separation of trails allows users to gauge their
trust in the training and also spot outlier samples for
which training did not perform well.6

Model: Classifiers can be assessed beyond typical
aggregate metrics, such as accuracy by plotting so-
called decision boundary maps [see Figure 2(c)]. These
enrich a classical scatterplot-like DR projection of the
input data space by coloring every pixel of the pro-
jected space to show the label (and its confidence)
inferred by the model at that location.7 Bright areas
indicate regions of low confidence where the classifier
is to be less trusted.

Model execution: To understand how large deep
models process unseen input data, one can use DR to
cluster their neuron activations and next depict the
most salient input-data patterns that these respond
to.8 Figure 2(d) shows such patterns overlaid atop a
clustered network architecture, which helps users
gain trust by understanding how such black-box mod-
els actually operate.

Model output: Similar to the first stage, DR can be
used to depict the output of a model (e.g., inferred
classes) along with the input data [see Figure 2(e)].
This enables users to, e.g., mark in which regions of
the data space (i.e., for which kinds of inputs) they
trust the model or not.10

INTENDED USE OF THE TRUST
FRAMEWORK

The purposes of this conceptual framework are to define
a new research area in VA and to guide future research
in this area. It is generally believed that VA can poten-
tially help users to develop trust in MLmodels and, more
generally, in various kinds of computational artifacts.
However, the supposed help is currently limited to pro-
viding tools for interactive exploration of the artifacts
(e.g., with XAI techniques). Our framework states that
trust formation depends not only on the information
users can gain by exploring an object but also on the
flowof trust along the pipeline of the object construction
and use. Referring to Figure 1, previous research has
been focused on supporting the operations ii

FIGURE 2. Examples of using interactive visualization in the trust modeling and flow. (a) Training data. (b) Train/build model.

(c) Model. (d) Execute model. (e) Model output.
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that they do not trust the car’s behavior in certain condi-
tions). Upon receiving such signals, users of earlier steps
need to adapt their objects.

The flow of trust occurs by first passing the key
conclusions between user roles (a Ui trusts object i

this much, i.e., to level Ti). Next, additional information
on why the respective trust level was reached can be
passed along to justify the conclusion. Such informa-
tion can also include details, such as particular com-
ponents or aspects of the object, or conditions this

level of trust refers to. The communication of trust
takes the form of passing the annotated objects
(obtained via the feedback F ) that motivate the
respective trust conclusion. Also, note that trust typi-
cally flows over multiple layers and multiple times dur-
ing the lifetime of an ML pipeline, e.g., from the final
users back to the scientists preparing the training
data T . This is similar to the lifetime of software sys-
tems: the forward execution of the pipeline (and for-
ward trust flow) is analogous to forward software

TABLE 2. Examples of user roles, exploration parameters, explanation of ML behavior, trust aspects, and trust feedback

mechanisms for the five steps of a generic ML pipeline.

Training
data T

User role Collects and curates training data from a given application area.

Parameters Affect the data representation (e.g., sampling and reconstruction parameters).

Effect Shows data properties (outliers, clusters) and potential problems (errors, missing values,
duplicates).

Trust Data are sufficient, of good quality, and capture well the modeled phenomenon.

Feedback User determines unfit training data (e.g., missing, wrong, or duplicate values or poorly samples
the intended distribution).

Model
building

User role ML practitioner involved in architecting, coding, training, and testing the modelM .

Parameters Feature selection and engineering; problem decomposition; hyperparameters tuned during
model engineering.

Effect ShowsM ’s behavior in data and parameter spaces during training.

Trust Model works well for all applicable data and parameters and its sensitivity to data/parameters
is understood.

Feedback Indicates that some ofM ’s decisions (e.g., for specific samples) do not look correct and need
improvement.

ModelM

User role ML practitioner; model evaluator (domain expert or certification body) determining model
suitability for adoption.

Parameters Users explore model behavior by, e.g., applying it to different inputs, which act as parameters
changed by the user.

Effect Model specific methods versus model agnostic methods. Depends on whetherM is inherently
interpretable or not.9

Trust Model is sound—works correctly, is efficient, well explained, and suitable for its intended
usage.

Feedback Some model blocks are not needed or too complex;M is (not) understandable/(not) applicable
to user’s context.

Model
execution

User role Domain expert/integrator building an end-to-end solution using a given model.

Parameters Control the model’s execution (e.g., memory and processor time available for a run).

Effect How the model modifies the solution during its execution process.

Trust Solution improves as the model runs; process converges fast enough; model avoids local
minima.

Feedback The solution is evolving (in)appropriately.

Model
output O

User role End user of the ML pipeline (scientist, domain expert, ML engineer, nonspecialist).

Parameters Control how the outputs are shown (e.g., which text-based or visualization method is used).

Effect Bring insight how themodel produces the output; XAImethods (LIME, SHAP, counterfactuals, local
surrogatemodels).

Trust Based on domain knowledge, the output ofM is plausible and in line with the users’mental
model(s).

Feedback Selection of data items that comply to the users’mental model or not (continuous scale).
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(parameters) and iii (effects). Our framework shows the
need to support also passing findings downstream (vi)
and receiving upstream feedback (vii). The key challenge
that needs to be solved for developing this kind of sup-
port is to enable and facilitate explicit expression of trust.
In terms of Figure 1, the task is to enable the operation v
(expressing trust feedback) so that its results can be
passed through the links vi and vii.

The framework shows that the meaning and struc-
ture of trust may not be the same for the different kinds
of objects along the pipeline. Consequently, it is neces-
sary to consider the specifics of each kind of object for
understanding what contributes to the formation of
trust in it. Table 2 includes our initial ideas concerning
the possible meanings of the trust. This understanding,
in turn, enables researchers to think how the essential
ingredients of trust can be expressed explicitly. In other
words, for a given kind of object, researchers will define,
first, a conceptual model of the object-specific trust
and, second, a suitable language to represent the trust.
On this basis, researchers should work on developing
interactive visual interfaces to facilitate externalization
of the trust by the user (using the conceptual model to
guide the user) and representation of the externalized
trust bymeans of the language.

Solving the problem of trust externalization ena-
bles further research on supporting the trust flow
along the pipeline. Typically, uncertainty also plays a
role here. Appropriately representing uncertainty and
its propagation along the pipeline is important infor-
mation for users to make conclusions about the
degree of trust. However, like explanations in XAI,
representation of uncertainty and evaluation of its
impact on trust building is an established research
topic.16 In our framework, we assume that users
receive all relevant information, including uncertain-
ties, for making trust decisions. Our focus is trust
expression and communication.

The key question is how to support users with
different roles to use trust feedback from the previ-
ous and next steps of the pipeline in fulfilling their
roles. A related question is how to capture the evo-
lution of the trust of each user resulting from the
trust flow. We would like to emphasize that the
purpose of this framework is to define research
directions and pose research questions but not yet
to give answers to these questions. Let us recon-
sider our motivating example from the air traffic
domain to ponder how the trust issues could be
addressed according to the proposed framework
with a post hoc analysis.

In our motivating use case, the MD played the
roles U1, U2, and U3. The roles U4 and U5 belonged to

the DU helped by VD. Based on our framework, MD
would be expected to pass their trust in the model
they built further along the ML pipeline (i.e., to VD and
DU). MD would need to provide explicit trust feedback
showing the reason for their trust (i.e., they would
need to present evidence that the model operates
appropriately). This would motivate them to explore
the model carefully in order to create annotated visu-
alizations for the following users. Thus, to verify and
express their trust in the model, MD could apply it to
test cases and visualize the characteristics of model
performance across the cases: how the counts of
delayed flights, unresolved hotspots (if any), and the
average and maximal delay duration depend on the
original number of the hotspots and the number of
involved flights. This would demonstrate to DU that
the model performance is good.

In reality, MD were not used to doing visual explo-
rations. Therefore, their trust was communicated
implicitly without being supported by evidence. DU
with the help of VD explored the model behavior and
its solutions and found a number of reasons for mis-
trust, as described earlier. They provided their feed-
back orally and in written form. Since there was no
convenient way for DU to complement their feedback
with annotated illustrations, the comments were
rather general and insufficiently informative for MD to
understand and address the problems. If DU were
enabled to interactively explore the visualization
received from MD, in particular, consider details of
selected test cases, they could mark the flights
deemed to be excessively delayed and ask MD to pro-
vide justifications. In response, MD might visually
demonstrate to DU how a decrease in the delays of
the marked flights would lead to the appearance of
unresolved hotspots. We believe that explicit expres-
sion and appropriate representation of the trust feed-
back would allow MD to better adapt the model to the
needs of DU and also increase the DU’s level of trust
by communicating well-substantiated trust of MD for-
ward along the ML pipeline.

Another example of the intended use of the frame-
work (in a different domain) is sketched next. Assume
an image classification model is built to predict item
production faults. The end user, who is responsible for
picking out the faulty products from the assembly line,
uses a VA system to identify faulty products. Imagine
the following scenario. 1) The VA system reports a
fault in the production. However, after inspection, it
turns out that the product contains no faults and the
user concludes that the ML model produced a mis-
classification. 2) After multiple misclassifications, the
trust in the model decreases. The user expresses trust
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through direct manipulation of the trust object in the
VA system (e.g., a slider ranging from no trust to full
trust). 3) Next, after some iteration, the trust drops
below a predefined threshold. As a result, the misclas-
sified items are annotated and passed downstream to
the model stage where the responsible user role (the
MD) is notified. 4) The developer (visually) tests the
generalization of the involved class, and unfortunately,
the model does not generalize well for this class. Now,
the trust in the data is lowered. The user passes the
data distrust to the previous stage, along with (a visu-
alization of) the data items of interest. 5) The responsi-
ble user role for the training data stage then inspects
if the involved class labels are correct. This user con-
cludes the labels are correct and expresses a high
trust that is passed forward, along with the findings,
to the MD again. 6) The MD can now trust that the
data labeling is correct and starts improving the model
by adding more instances of the problematic class to
the training data.

This example is kept simple to demonstrate the
main concepts; in reality the objects, models, and
interactions are more complex.

DISCUSSION
Explicitly modeling, interacting with, and visualizing
trust in ML applications generates new questions and
open areas for research. From the conceptual frame-
work we derive and discuss the following five research
directions for future work.

1) Trust objects: taxonomy of trust objects, trust
issues, and possible reasons for (mis)trust.

2) Formalisms: to represent trust in machine-read-
able form.

3) Expression: ways for users to express their state
of trust by interacting with a computer system.

4) Flow of trust: ways to explore and develop trust
over all stages of an ML pipeline using visual
interactive techniques.

5) Guidance: ways to facilitate users’ expression
and communication of the state of trust using
visual interactive techniques.

Trust objects: In this article, we identified and focused on
the five trust objects of a traditional (classification/
regression)MLpipeline: data,model development,model,
model execution, and model output (see Figure 1, blue
boxes). We believe our framework covers all main ele-
ments of the traditional ML pipeline at a high level of
abstraction. The framework can be refined and applied to
a broad range of ML model classes (classification,

regression, optimization) as well as different methods of
model buildingwhere trust objects are also likely involved
(e.g., reinforcement learning, active learning, and self-
supervised learning). As a first step toward development
of applications with explicit trust, all trust objects should
be identified and categorized using taxonomy. For each
trust object in this taxonomy, different trust challenges
play a role (e.g., for the data object, trust in the data gath-
ering/collection and subsequent labeling of the data
plays a role); for the model output, trust in the model as
well as (subsets of) the output is formed by the user. For
a system that fully supports trust as intended with the
conceptual framework (within andbetween eachpipeline
step), an identification and understanding of reasons for
trust, or the lack thereof is needed.

Formalisms: Currently, trust is not expressed explic-
itly, but rather it implicitly forms in the mind of the user.
As argued in this article, we believe trust should be
expressed externally (for storage, interaction, communi-
cation, and to act upon). Trust can be expressed in
many ways (e.g., through interactive widgets, emails
from one user role to another, oral communication, or
bug-reporting systems). To be able to reason about the
most effective and efficient manner of externalizing
trust, we need to devise generic formalisms to represent
trust inmachine-readable form.

Expression: An open area of research is the explora-
tion of which visualization and interaction mechanisms
are most effective to express trust. Next to visualization
and interaction, the coarseness of trust needs to be
researched—how many levels are appropriate, are they
similar for each trust object, and is their scale linear?
Also, we believe the expression of trust depends on the
stage, user role, and task. A related question is how to
support both expert and novice (non-ML) users. Further-
more, future research should focus on creating a conve-
nient language for users to express their state of trust
through interactions.

Flow of trust: An important aspect of the framework
is the communication of trust between the different
user roles. To support this flow of trust between user
roles, we believe interactive visualization is crucial and
can act as common ground between the different
stages. For example, visualizations can be shared
between two subsequent stages and serve as a means
of communication between both user roles. Next to
design of interactive visualization techniques to support
the flow of trust, also provenance plays a role here. A
promising research area is how to capture, monitor, and
visualize the evolution of trust over time, for exploration,
analysis, and presentation.

Guidance: In similar spirit to exploratory visualiza-
tion, where users are guided and steered toward
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(parameters) and iii (effects). Our framework shows the
need to support also passing findings downstream (vi)
and receiving upstream feedback (vii). The key challenge
that needs to be solved for developing this kind of sup-
port is to enable and facilitate explicit expression of trust.
In terms of Figure 1, the task is to enable the operation v
(expressing trust feedback) so that its results can be
passed through the links vi and vii.

The framework shows that the meaning and struc-
ture of trust may not be the same for the different kinds
of objects along the pipeline. Consequently, it is neces-
sary to consider the specifics of each kind of object for
understanding what contributes to the formation of
trust in it. Table 2 includes our initial ideas concerning
the possible meanings of the trust. This understanding,
in turn, enables researchers to think how the essential
ingredients of trust can be expressed explicitly. In other
words, for a given kind of object, researchers will define,
first, a conceptual model of the object-specific trust
and, second, a suitable language to represent the trust.
On this basis, researchers should work on developing
interactive visual interfaces to facilitate externalization
of the trust by the user (using the conceptual model to
guide the user) and representation of the externalized
trust bymeans of the language.

Solving the problem of trust externalization ena-
bles further research on supporting the trust flow
along the pipeline. Typically, uncertainty also plays a
role here. Appropriately representing uncertainty and
its propagation along the pipeline is important infor-
mation for users to make conclusions about the
degree of trust. However, like explanations in XAI,
representation of uncertainty and evaluation of its
impact on trust building is an established research
topic.16 In our framework, we assume that users
receive all relevant information, including uncertain-
ties, for making trust decisions. Our focus is trust
expression and communication.

The key question is how to support users with
different roles to use trust feedback from the previ-
ous and next steps of the pipeline in fulfilling their
roles. A related question is how to capture the evo-
lution of the trust of each user resulting from the
trust flow. We would like to emphasize that the
purpose of this framework is to define research
directions and pose research questions but not yet
to give answers to these questions. Let us recon-
sider our motivating example from the air traffic
domain to ponder how the trust issues could be
addressed according to the proposed framework
with a post hoc analysis.

In our motivating use case, the MD played the
roles U1, U2, and U3. The roles U4 and U5 belonged to

the DU helped by VD. Based on our framework, MD
would be expected to pass their trust in the model
they built further along the ML pipeline (i.e., to VD and
DU). MD would need to provide explicit trust feedback
showing the reason for their trust (i.e., they would
need to present evidence that the model operates
appropriately). This would motivate them to explore
the model carefully in order to create annotated visu-
alizations for the following users. Thus, to verify and
express their trust in the model, MD could apply it to
test cases and visualize the characteristics of model
performance across the cases: how the counts of
delayed flights, unresolved hotspots (if any), and the
average and maximal delay duration depend on the
original number of the hotspots and the number of
involved flights. This would demonstrate to DU that
the model performance is good.

In reality, MD were not used to doing visual explo-
rations. Therefore, their trust was communicated
implicitly without being supported by evidence. DU
with the help of VD explored the model behavior and
its solutions and found a number of reasons for mis-
trust, as described earlier. They provided their feed-
back orally and in written form. Since there was no
convenient way for DU to complement their feedback
with annotated illustrations, the comments were
rather general and insufficiently informative for MD to
understand and address the problems. If DU were
enabled to interactively explore the visualization
received from MD, in particular, consider details of
selected test cases, they could mark the flights
deemed to be excessively delayed and ask MD to pro-
vide justifications. In response, MD might visually
demonstrate to DU how a decrease in the delays of
the marked flights would lead to the appearance of
unresolved hotspots. We believe that explicit expres-
sion and appropriate representation of the trust feed-
back would allow MD to better adapt the model to the
needs of DU and also increase the DU’s level of trust
by communicating well-substantiated trust of MD for-
ward along the ML pipeline.

Another example of the intended use of the frame-
work (in a different domain) is sketched next. Assume
an image classification model is built to predict item
production faults. The end user, who is responsible for
picking out the faulty products from the assembly line,
uses a VA system to identify faulty products. Imagine
the following scenario. 1) The VA system reports a
fault in the production. However, after inspection, it
turns out that the product contains no faults and the
user concludes that the ML model produced a mis-
classification. 2) After multiple misclassifications, the
trust in the model decreases. The user expresses trust
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interesting patterns, trust can also be used for guid-
ance and assisting users in the analysis process of
each stage. For example, users can focus on the sub-
groups with the most stable or highest trust by analyz-
ing how trust evolved over time for a selected output
(or group of outputs). Or if trust decreases over time,
communicate this to the previous stage, such that
this can be investigated and possibly fixed. For this,
appropriate interactive visualization techniques
should be developed. Similar to expressiveness, the
methods and techniques should support guidance of
both expert and nonexpert users.

CONCLUSION
Up until now, trust has not been considered as an
explicit element in the design and reasoning about VA
and ML applications. Rather, trust is an implicit process
that takes place in the user’s mind. We argue that trust
should be externalized and treated as a first-class citi-
zen. We present a framework that creates awareness
and helps users to efficiently and effectively build and
communicate trust in ways that fit each of the ML pro-
cess stages. The framework is based on the traditional
ML pipeline and extends this with elements of trust for-
mation and interactive visual exploration. Key to our
framework is the feedback loop within one stage
through changing parameters, witnessing the effect or
explanation, and providing trust feedback, and between
stages, through passing or receiving externalized trust
objects along the full pipeline (the flow or trust among
different user roles). In addition to the framework, we
identify and discuss five research directions for future
work including trust objects, formalisms, expression,
flowof trust, and guidance.
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interesting patterns, trust can also be used for guid-
ance and assisting users in the analysis process of
each stage. For example, users can focus on the sub-
groups with the most stable or highest trust by analyz-
ing how trust evolved over time for a selected output
(or group of outputs). Or if trust decreases over time,
communicate this to the previous stage, such that
this can be investigated and possibly fixed. For this,
appropriate interactive visualization techniques
should be developed. Similar to expressiveness, the
methods and techniques should support guidance of
both expert and nonexpert users.

CONCLUSION
Up until now, trust has not been considered as an
explicit element in the design and reasoning about VA
and ML applications. Rather, trust is an implicit process
that takes place in the user’s mind. We argue that trust
should be externalized and treated as a first-class citi-
zen. We present a framework that creates awareness
and helps users to efficiently and effectively build and
communicate trust in ways that fit each of the ML pro-
cess stages. The framework is based on the traditional
ML pipeline and extends this with elements of trust for-
mation and interactive visual exploration. Key to our
framework is the feedback loop within one stage
through changing parameters, witnessing the effect or
explanation, and providing trust feedback, and between
stages, through passing or receiving externalized trust
objects along the full pipeline (the flow or trust among
different user roles). In addition to the framework, we
identify and discuss five research directions for future
work including trust objects, formalisms, expression,
flowof trust, and guidance.
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The Secrets of Data Science Deployments
Usama M. Fayyad, Northeastern University and Open Insights, Boston, MA, 02115, USA

Much attention is paid to data science and machine learning as an effective means
for getting value out of data and as a means for dealing with the large amounts of
data we are accumulating at companies and organizations. This has gained
importance with the major waves of digitization we have seen, especially with the
COVID-19 pandemic accelerating digital everything. However, in reality, most
machine learning models, despite achieving good technical solutions to predictive
problems wind up not being deployed. The reasons for this are many and have their
origin in data scientists and machine learning practitioners not paying enough
attention to issues of deployment in production. The issues range all the way from
establishing trust by business stakeholders and users, to failure to explain why
models work and when they do not, to failing to appreciate the importance of
establishing a robust quality data pipeline, to ignoring many constraints that apply
to deployed models, and finally to a lack of understanding the true cost of
production deployment and the associated ROI. We discuss many of these problems
and we provide what we believe is a pragmatic approach to getting data science
models successfully deployed in working environments.

There is much talk about the use of artificial
intelligence (AI), machine learning (ML), and
data science in organizations and enterprises.

The reasons for this are obvious: organizations are fac-
ing huge amounts of data that are generated from
interactions with customers and from business opera-
tions. The volume and variety of these data have dra-
matically increased with digitization; accelerated by
the COVID-19 Pandemic dictating the new necessities
of remote work and digital customer interactions.
Adoption of algorithms to analyze, understand, and
utilize the data is a must as human abilities cannot
scale to the size and complexity of the data.

While the strong interest of organizations is to
leverage AI to optimize operations and customer
interactions, and almost all companies talk about
this strong interest to leverage AI, very few realize
that most working AI solutions are data driven and
thus heavily dependent on ML and data science.

AI/ML/data science have benefited from the fact
that plentiful data have helped to overcome the
limitations of AI algorithms and have led to many
AI solutions being regression or classification prob-
lems applied to labeled training data.

Ironically, most organizations and companies do
not realize the fact that practical working AI solutions
are primarily dependent on data. Most do not realize
that the data needs to be in formats that are usable
by the learning algorithms. These algorithms are obvi-
ously highly dependent on what the data represent.
The algorithms require data as follows.

1) High quality: any errors in the data lead to the
wrong models being constructed by the algo-
rithms—the often repeated motto: garbage in,
garbage out.

2) High granularity: as the algorithms have to build
their models entirely fromwhat the data say. Algo-
rithms rarely have a model of the domain or other
useful knowledge—they must induce all knowl-
edge from what the data covers. Unfortunately,
most organizations build their data and analytical
solutions to serve human analysts. Humans need
to see data at an aggregated level and rarely make
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use of detailed granular data. Unfortunately, this is
the opposite of what learning algorithms need.

3) Reliable labels: for data to be used to train
algorithms, the desired outcome label (the classi-
fication or outcome) needs to be recoded reliably
and systematically with the data. Since the labels
are typically obtained from human workers doing
their job, in most situations the data infrastruc-
ture does not record the valuable outcome labels.
They may be entered into other systems or noted
in some documents or notes.

4) Structured and unstructured data: much valu-
able information is contained in unstructured
data, such as text, video, audio (e.g. recordings
of customer service calls). In fact, Gartner and
other firms estimate that the majority of data in
any organization is unstructured.5 Yet most
database systems and database administrators
and developers use only SQL and thus only
structured data—leaving some 90% of the data
being stored beyond convenient use in analytics.

These abovementioned problems not only limit the
ability to build accurate data science models, but they
make it difficult to deploy models in realistic produc-
tion settings. For example, even if a data science proj-
ect invests significant resources in getting a clean,
high-quality, well-labeled dataset, with structured
attributes derived from unstructured data, how do you
get that same level of quality during the “production
use” of the data science models. A predictive model
built on clean and well-extracted data needs to be
applied to a stream of production data that goes
through the same refinements. This is often unattain-
able in most production settings. Hence all the work in
showing the power of predictive analytics and data sci-
ence becomes just a proof of concept and is not really
usable in production.

Even if the data infrastructure and quality issues
were to be solved, there is a long list of other problems
that need solving. We discuss these in the following
sections.

BEYOND JUST DATA PROBLEMS
I recently participated in a panel at the Predictive Ana-
lytics World Conference held in Las Vegas, NV in June
2022. The panel was titled “Most Models Don’t
Deploy—What Practices Are Needed to Get Them
Launched?” and discussed why most machine learn-
ing models are never deployed in production. Accord-
ing to Gartner, over 85% of machine learning models
that are built and demonstrated to solve a predictive

problem are never deployed in practice.1 The panel
was about discussing why this paradox in the age of
data and AI.

The reality is that even if we were to address the
lack of suitable data for data science purposes (both
for modeling and for use in production), many other
issues stand in the way. These issues are unfortu-
nately often ignored by ML and data science practi-
tioners.2 We list them in this section, and we provide
our advice on the best approach to mitigate these
issues and maximize the chances of data science
model deployment.

1) Understanding business realities;
2) understanding regulatory issues;
3) socializing the data science solution;
4) gaining trust and understanding of the data sci-

ence solution; and
5) proper accounting of the ROI of the solution.

With all the abovementioned hurdles in addition to
the data quality and data infrastructure issues, no won-
der that just demonstrating the accuracy of a model is
insufficient for actual production deployment.

WALK BACKWARD TOWARD
SUCCESS

The typical progression of building a data science-
based solution to a problem in volves starting from
data and demonstrating that a solution can be built
through modeling. The reason for this is typically
driven by the philosophy of the typical data science
team: let us first show that a good model can be built
from the data available. This typically involves spend-
ing time understanding what the predictive modeling
problem is about, talking to domain experts about the
importance of and desired properties of a solution,
constructing, and optimizing the data science model,
and finally evaluating the accuracy of the predictive
model on a hold-out or validation dataset. All of this is
valid and necessary work. However, it leaves us in a
situation where all the problems mentioned in the pre-
vious section create a huge risk to deployment in
production.

If we were to embark on a path that is more likely to
minimize the deployment risk, a different approach
would be suggested. This is basically starting at the busi-
ness end assuming a data science solution exists, but
assessing what is needed to make the solution work.
Many do not follow this approach because they are
keen to prove that a good data science model exists. In
my experience, solving the data science problem is
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Much attention is paid to data science and machine learning as an effective means
for getting value out of data and as a means for dealing with the large amounts of
data we are accumulating at companies and organizations. This has gained
importance with the major waves of digitization we have seen, especially with the
COVID-19 pandemic accelerating digital everything. However, in reality, most
machine learning models, despite achieving good technical solutions to predictive
problems wind up not being deployed. The reasons for this are many and have their
origin in data scientists and machine learning practitioners not paying enough
attention to issues of deployment in production. The issues range all the way from
establishing trust by business stakeholders and users, to failure to explain why
models work and when they do not, to failing to appreciate the importance of
establishing a robust quality data pipeline, to ignoring many constraints that apply
to deployed models, and finally to a lack of understanding the true cost of
production deployment and the associated ROI. We discuss many of these problems
and we provide what we believe is a pragmatic approach to getting data science
models successfully deployed in working environments.

There is much talk about the use of artificial
intelligence (AI), machine learning (ML), and
data science in organizations and enterprises.

The reasons for this are obvious: organizations are fac-
ing huge amounts of data that are generated from
interactions with customers and from business opera-
tions. The volume and variety of these data have dra-
matically increased with digitization; accelerated by
the COVID-19 Pandemic dictating the new necessities
of remote work and digital customer interactions.
Adoption of algorithms to analyze, understand, and
utilize the data is a must as human abilities cannot
scale to the size and complexity of the data.

While the strong interest of organizations is to
leverage AI to optimize operations and customer
interactions, and almost all companies talk about
this strong interest to leverage AI, very few realize
that most working AI solutions are data driven and
thus heavily dependent on ML and data science.

AI/ML/data science have benefited from the fact
that plentiful data have helped to overcome the
limitations of AI algorithms and have led to many
AI solutions being regression or classification prob-
lems applied to labeled training data.

Ironically, most organizations and companies do
not realize the fact that practical working AI solutions
are primarily dependent on data. Most do not realize
that the data needs to be in formats that are usable
by the learning algorithms. These algorithms are obvi-
ously highly dependent on what the data represent.
The algorithms require data as follows.

1) High quality: any errors in the data lead to the
wrong models being constructed by the algo-
rithms—the often repeated motto: garbage in,
garbage out.

2) High granularity: as the algorithms have to build
their models entirely fromwhat the data say. Algo-
rithms rarely have a model of the domain or other
useful knowledge—they must induce all knowl-
edge from what the data covers. Unfortunately,
most organizations build their data and analytical
solutions to serve human analysts. Humans need
to see data at an aggregated level and rarely make
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typically the easier part. While no guarantee exists that
an acceptable model can be constructed, it is usually
very likely that some model would achieve reasonable
performance. The issue is to make sure all the other
blocking issues are solvable: a much harder and mostly
non-technical set of problems.

Choose the Right Problem
When approaching domain experts in the initial effort
of problem discovery, many experts will provide prob-
lems that are nice to solve or that they believe is a
problem suitable for a data science solution. Some-
times these problems happen to be the favorite prob-
lems of the experts as opposed to the most pressing
problems for the business. The selection of the prob-
lem should be driven by the strong need of the busi-
ness and by the likely value contributed to help the
business perform and/or compete better.

Business Value of Solution
The first thing to verify is that the intended solution
(assuming the data science model works) is a high-pri-
ority solution. The question to answer here is: If the
solution is possible, does it solve a critical problem for
the business? This determines the prioritization the
project would get and the ability to implement the
necessary changes to actually deploy the solution in
production. If higher priority problems are more impor-
tant, then it would be wiser to start with one of those
that can benefit from a data science solution.

Return on Investment (ROI)
Assuming a good data science model is achievable, it
is critical to compute and verify a true ROI estimate
for the solution. The ROI should account for not only
the development costs, but the changes needed to
productionize the model, the needed effort to main-
tain the models and refresh them, and the required
data infrastructure to create the right data content
and infrastructure. Engineering or analyst-driven ROI
estimates are not sufficient. Typically, it is important
to get agreement from finance, legal, and customer
service teams to get a credible ROI. Many financial
factors in costs, operations, and service are over-
looked by data scientists performing ROI estimates.

Building Trust in the Solution
Let us say that a great solution can be derived through
a data science model, how do we make sure that the
data-driven solution will be acceptable to the stake-
holders?4 For example, if the problem is a predictive
maintenance problem where we are going to assess

whether a system will need maintenance before it
actually fails, what would be needed for operating and
managing stakeholders to accept the recommenda-
tion? An engineering manager responsible for running
a plant would need to believe that the system will
indeed need to be shut down to effect the fix. Often
this has serious business consequences and costs.
The manager would have to have trust in the data sci-
ence predictions to act on them.

One of the most effective ways to gain trust is to
have good explanations for the system’s recommenda-
tions. The explanations have to make sense to the man-
ager and have to present acceptable evidence. The fact
that amodel predicts something is typically insufficient.

A great way to build up the trust in the system, its
recommendations, and its explanations are to involve
the stakeholders in the construction of the model.
Running the model on the side and asking for feed-
back and guidance from the stakeholders ensures
they better understand how the predictive model is
working and makes them feel that they are playing a
critical role in fine-tuning and optimizing the model.
Thus it becomes their model rather than some mys-
tery box that is making predictions. Explanations can
also include examples of prior situations (data) that
preceded a system experiencing a failure. Sometimes
seeing the data will elicit great additional knowledge
from the experts, which can be very valuable in mak-
ing the predictions much more robust.

Following the Data Chain Carefully
It is critical to understand what all the needed data
inputs are, the availability of these data, their quality,
and the series of transformations needed to extract
the right attributes from the data. The fact that data
scientists can work around the data quality issues and
can perform the needed transformations to get a
good model to perform is insufficient. These data cor-
rections, transformations, and extractions have to be
automated and put into production in order for the
data science model to work appropriately. Thus
addressing issues of creating a production environ-
ment for the needed data processing and transforma-
tion is an important and critical requirement.

Regulatory and Legal Considerations
Detecting some of the possible showstoppers is best
done in advance of investing in making the data sci-
ence model work. Are there permission issues with
using the needed data? Are the risks acceptable in
terms of privacy considerations and biased decisions
by the data science models? Are there risks in markets
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typically the easier part. While no guarantee exists that
an acceptable model can be constructed, it is usually
very likely that some model would achieve reasonable
performance. The issue is to make sure all the other
blocking issues are solvable: a much harder and mostly
non-technical set of problems.

Choose the Right Problem
When approaching domain experts in the initial effort
of problem discovery, many experts will provide prob-
lems that are nice to solve or that they believe is a
problem suitable for a data science solution. Some-
times these problems happen to be the favorite prob-
lems of the experts as opposed to the most pressing
problems for the business. The selection of the prob-
lem should be driven by the strong need of the busi-
ness and by the likely value contributed to help the
business perform and/or compete better.

Business Value of Solution
The first thing to verify is that the intended solution
(assuming the data science model works) is a high-pri-
ority solution. The question to answer here is: If the
solution is possible, does it solve a critical problem for
the business? This determines the prioritization the
project would get and the ability to implement the
necessary changes to actually deploy the solution in
production. If higher priority problems are more impor-
tant, then it would be wiser to start with one of those
that can benefit from a data science solution.

Return on Investment (ROI)
Assuming a good data science model is achievable, it
is critical to compute and verify a true ROI estimate
for the solution. The ROI should account for not only
the development costs, but the changes needed to
productionize the model, the needed effort to main-
tain the models and refresh them, and the required
data infrastructure to create the right data content
and infrastructure. Engineering or analyst-driven ROI
estimates are not sufficient. Typically, it is important
to get agreement from finance, legal, and customer
service teams to get a credible ROI. Many financial
factors in costs, operations, and service are over-
looked by data scientists performing ROI estimates.

Building Trust in the Solution
Let us say that a great solution can be derived through
a data science model, how do we make sure that the
data-driven solution will be acceptable to the stake-
holders?4 For example, if the problem is a predictive
maintenance problem where we are going to assess

whether a system will need maintenance before it
actually fails, what would be needed for operating and
managing stakeholders to accept the recommenda-
tion? An engineering manager responsible for running
a plant would need to believe that the system will
indeed need to be shut down to effect the fix. Often
this has serious business consequences and costs.
The manager would have to have trust in the data sci-
ence predictions to act on them.

One of the most effective ways to gain trust is to
have good explanations for the system’s recommenda-
tions. The explanations have to make sense to the man-
ager and have to present acceptable evidence. The fact
that amodel predicts something is typically insufficient.

A great way to build up the trust in the system, its
recommendations, and its explanations are to involve
the stakeholders in the construction of the model.
Running the model on the side and asking for feed-
back and guidance from the stakeholders ensures
they better understand how the predictive model is
working and makes them feel that they are playing a
critical role in fine-tuning and optimizing the model.
Thus it becomes their model rather than some mys-
tery box that is making predictions. Explanations can
also include examples of prior situations (data) that
preceded a system experiencing a failure. Sometimes
seeing the data will elicit great additional knowledge
from the experts, which can be very valuable in mak-
ing the predictions much more robust.

Following the Data Chain Carefully
It is critical to understand what all the needed data
inputs are, the availability of these data, their quality,
and the series of transformations needed to extract
the right attributes from the data. The fact that data
scientists can work around the data quality issues and
can perform the needed transformations to get a
good model to perform is insufficient. These data cor-
rections, transformations, and extractions have to be
automated and put into production in order for the
data science model to work appropriately. Thus
addressing issues of creating a production environ-
ment for the needed data processing and transforma-
tion is an important and critical requirement.

Regulatory and Legal Considerations
Detecting some of the possible showstoppers is best
done in advance of investing in making the data sci-
ence model work. Are there permission issues with
using the needed data? Are the risks acceptable in
terms of privacy considerations and biased decisions
by the data science models? Are there risks in markets
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(customers, users, and regulators) reacting negatively
to errors in modeling and predictions?

CLIMB TO THE SOLUTION IN
SMALL STEPS

Many of the problems mentioned can be intimidating
and indeed formidable to surmount. However, the
best approach is to break them down into smaller
steps that are easier to tackle.

Climbing toward the solution not only requires
“walking backwards” as suggested previously, but also
taking smaller less risky steps so that progress is more
continuous and measurable. Figure 1 illustrates the
concept of small steps makes a more practical path
towards ascending major hurdles over time.

The continual progress in small steps is often criti-
cal to making sure that the rest of the organization,
management, and operations teams, do not perceive
the data science project as stuck. Small progress is
much more acceptable than longer waits against hard
problems. Getting timely and practical help in achiev-
ing the small steps is also significantly easier and less
risky than requesting help on more major problems.

BEYOND THE SUCCESSFUL
DEPLOYMENT

In most data science-driven projects, the data science
teams are focused on getting a predictive modeling
solution to work and demonstrating its accuracy.
These teams often forget that these models, once
they become part of the production chain, need to be
maintained, refreshed, and perhaps replaced as the
market evolves and the data and assumptions change.
Operations teams typically do not have the know-how
of detecting when models need change or attention.

Thus it is critical to have an approach to detect the
health of models in deployment.

Much like any pragmatic system, data sciencemod-
els need a built-in ability to track performance issues
and to issuewarnings that amodel is no longer working
as intended or expected. Sadly, most data science
deployments do not think about this aspect. This self-
monitoring capability is a great tool to prompt the oper-
ations team to bring in data science expertise to see
what needs to be done to keep themodels healthy.

The monitoring capability should ideally be a com-
bination of detecting reduced accuracy and built-in
checks for data changes. If the data distribution
changes, then it is likely that model performance will
become unreliable or even incorrect. Sadly, most of
the literature on the topics of building machine learn-
ing and data science models does not pay much
attention to the problem of measuring model health
over time: e.g., Lwakatare et al.’s work3 does not
address maintenance in the process.

CONCLUSION
It is critical to pay a lot more attention to many prob-
lems that do not get much attention in the machine
learning and data science literature if we are to
address the problem of lack of deployment in produc-
tion. Beyond addressing the organizational issues and
priorities in the business, attention must be paid to
building the right data infrastructure that collects the
right data at the right quality and granularity for data
science models to work. We suggested what we
believe is a better approach to pursuing data science
solutions and hopefully derisking the difficult path to
achieving production deployment.
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• SCC (IEEE Space Computing

Conf.), Mountain View, USA

• SMC-IT (IEEE Int’ l Conf. on

Space Mission Challenges

for Information Technology),

Mountain View, USA

22 July 

• ICCP (IEEE Int’l Conf. on Com-

putational Photography), Lau-

sanne, Switzerland

23 July 

• ICDCS (IEEE Int’l Conf. on Dis-

tributed Computing Systems),

Jersey City, USA

24 July 

• ASAP (IEEE Int’l Conf. on Appli-

cation-specifi c Systems, Archi-

tectures and Processors), Hong 

Kong

AUGUST
7 August 

• IRI (IEEE Int’l Conf. on Informa-

tion Reuse and Integration for

Data Science), San Jose, USA

• MIPR (IEEE Int’l Conf. on Multi-

media Information Processing

and Retrieval), San Jose, USA

19 August 

• Cybermatics (IEEE Congress

on Cybermatics), Copenha-

gen, Denmark

21 August 

• RTCSA (IEEE Int’ l Conf. on

Embedded and Real-Time Com-

puting Systems and Applica-

tions), Sokcho, South Korea

25 Aug 

• HCS (IEEE Hot Chips Sympo-

sium), Stanford, USA

27 Aug 

• SustainTech (IEEE SustainTech

Expo: Technology Solutions 

for a Sustainable Future), San 

Diego, USA

SEPTEMBER
2 September

• VL/HCC (IEEE Symposium on

Visual Languages and Human-

Centric Computing), Liver-

pool, UK

16 September 

• ACSOS (IEEE Int’ l Conf. on

Autonomic Computing and

Self-Organizing Systems), Aar-

hus, Denmark

23 September

• MASS (IEEE Int’ l Conf. on

Mobile Ad-Hoc and Smart Sys-

tems), Seoul, South Korea

24 September

• CLUSTER (IEEE Int’l Conf. on

Cluster Computing), Kobe,

Japan

• IC2E (2024 IEEE Int’l Conf. on

Cloud Eng.), Paphos, Cyprus

6 October 

• ICSME (IEEE Int’l Conf. on So� -

ware Maintenance and Evolu-

tion), Flagsta� , USA
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https://conf.researchr.org/home/icsme-2024
https://clustercomp.org
https://2024.acsos.org
https://rtcsa2024.github.io
https://ieee-cybermatics.org/2024
https://icdcs2024.icdcs.org
https://conferences.computer.org/IC2E/2024/index.html
https://sites.google.com/view/ieee-mass-2024
https://conf.researchr.org/home/vlhcc-2024
https://ieeesustaintechexpo.org
https://ieeesustaintechexpo.org
https://www.hotchips.org
https://sites.google.com/view/mipr2024
https://homepages.uc.edu/~niunn/IRI24
http://asap2024.org
https://iccp2024.iccp-conference.org
https://smcit-scc.space
https://2024.ieeeicme.org/
https://ieee-cisose-congress.org
https://smcit-scc.space
https://eurosp2024.ieee-security.org
https://csf2024.ieee-security.org
https://conferences.computer.org/services/2024
http://iolts.tttc-events.org
https://tc.computer.org/tclt/icalt-2024
www.compsac.org
https://iscaconf.org/isca2024
http://www.computer.org/conferences/
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