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Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics rang-

ing from software design and computer graphics to Internet computing and security, from scientific appli-

cations and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

Dynamic Assurance 
Cases: A Pathway to 
Trusted Autonomy

The authors of this article from the 

December 2020 issue of Computer

propose a system architecture 

that facilitates dynamic assurance 

of autonomous systems embed-

ding machine learning-based com-

ponents. They also introduce 

dynamic assurance cases as a 

generic framework to provide jus-

tified confidence in these systems.

Optimal Kernel Design for 
Finite-Element Numerical 
Integration on GPUs

This article from the November/

December 2020 issue of Comput-

ing in Science & Engineering pres-

ents the design and optimization 

of the GPU kernels for numerical 

integration, as it is applied in the 

standard form in finite-element 

codes. The optimization process 

employs auto-tuning, with the 

main emphasis on the placement 

of variables in the shared mem-

ory or registers. OpenCL and the 

first-order finite-element method 

(FEM) approximation are selected 

for code design, but the tech-

niques are also applicable to the 

CUDA programming model and 

other types of finite-element dis-

cretizations (including discontin-

uous Galerkin and isogeometric). 

The auto-tuning optimization is 

performed for four example graph-

ics processors and the obtained 

results are discussed.

Olivetti ELEA Sign System: 
Interfaces Before the Advent 
of HCI

This article from the October–

December 2020 issue of IEEE 

Annals of the History of Comput-

ing uses the case of ELEA 9000, 

the first Olivetti computer series, to 

demonstrate the close relationship 

between industrial design, semiot-

ics, ergonomics, and the history of 

computing. A focus on the Olivetti 

ELEA series invites scholars to 

reconsider the history of computer 

interface design well before the 

emergence of HCI as a widely rec-

ognized field of research. The con-

sole and racks of the mainframe 

computer were designed by Ettore 

Sottsass Jr. (1917–2007) along with 

Andries van Onck (1928–2018) 

at the end of the 1950s. Aiming 

to launch the ELEA computer on 

the international market, Olivetti 

developed the idea of a visual lan-

guage for human–computer inter-

action that could be learned by any 

operator, regardless of their native 

language. The task of designing 

this sign system was assigned to 

Tomás Maldonado (1922–2018). 

Together with Gui Bonsiepe (b. 

1934), Maldonado designed a visual 

language that incorporated gram-

matical and syntactic reasoning. 

Later discarded, the sign system for 

ELEA prefigured the contemporary 

use of icons in computer interfaces.

Move&Find: The Value of 
Kinaesthetic Experience in a 
Casual Data Representation

The value of a data representation 

is traditionally judged based on 

aspects like effectiveness and effi-

ciency that are important in util-

itarian or work-related contexts. 

Most multisensory data represen-

tations, however, are employed in 

casual contexts where creative, 

affective, physical, intellectual, 
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and social engagement might be 

of greater value. The authors of 

this article from the November/

December 2020 issue of IEEE Com-

puter Graphics and Applications 

introduce Move&Find, a multisen-

sory data representation in which 

people pedaled on a bicycle to 

exert the energy required to power 

a search query on Google’s serv-

ers. To evaluate Move&Find, they 

operationalized a framework suit-

able to evaluate the value of data 

representations in casual con-

texts and experimentally com-

pared Move&Find to a correspond-

ing visualization. With Move&Find, 

participants achieved a higher 

understanding of the data. 

Parallel Urban Rail Transit 
Stations for Passenger 
Emergency Management

In this article from the November/

December 2020 issue of IEEE Intel-

ligent Systems, a parallel urban 

rail transit station (URTS) system 

for passenger emergency man-

agement is presented based on 

the artificial systems, computa-

tional experiments, and parallel 

execution (ACP) approach. The 

agent-based modeling technol-

ogy is applied to build the artifi-

cial URTS system, which contains 

the models of people, trains, facil-

ities, events, environments, and 

center control and decision units. 

The computational experiments 

are performed on the artificial sys-

tem to analyze and evaluate emer-

gency management strategies. 

The mechanism of parallel execu-

tion between the actual system 

and artificial system is presented 

to manage and optimize the emer-

gency strategy, which is capable 

of guiding the actual URTS system 

through real-time online supervi-

sion and adjustment and of provid-

ing an active optimization of pas-

senger emergency management. 

Signing Blockchain 
Transactions Using  
Qualified Certificates

Blockchain technology is increas-

ingly being considered among both 

private enterprises and public ser-

vices. However, it poses a challenge 

with regard to aligning its identity 

management scheme with the pub-

lic key infrastructure and the qual-

ified digital certificates issued by 

qualified trust service providers. 

To solve this challenge, the authors 

of this article from the November/

December 2020 issue of IEEE Inter-

net Computing present an architec-

ture reference model that enables 

enterprises and public services 

to leverage blockchain technol-

ogy by integrating qualified elec-

tronic signatures with blockchain 

transactions. The evaluation of the 

architecture reference model is pro-

vided through the design of a block-

chain-based trusted public service 

and a use-case scenario example. 

The proposed architecture refer-

ence model is based on the CEF 

building blocks EBSI, eSignature, 

and eID compliant with eIDAS.

History of IBM Z  
Mainframe Processors

IBM Z is both the oldest and among 

the most modern of computing 

platforms. Launched as S/360 in 

1964, the mainframe became syn-

onymous with large-scale comput-

ing for business and remains the 

workhorse of enterprise comput-

ing for businesses worldwide. Most 

of the world’s largest banks, insur-

ers, retailers, airlines, and enter-

prises from many other industries 

have IBM Z at the center of their IT 

infrastructure. This article from the 

November/December 2020 issue 

of IEEE Micro presents an over-

view of the evolution of the IBM 

Z microprocessors over the past 

six generations. It discusses some 

of the underlying workload char-

acteristics and how these have 

influenced the microarchitecture 

enhancements driving the per-

formance and capacity improve-

ments. The article then describes 

how the focus shifted over time 
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from speeds and feeds to new fea-

tures, functions, and accelerators.

WarpClothingOut: A Stepwise 
Framework for Clothes 
Translation From the Human 
Body to Tiled Images

With the increasing popular-

ity of online shopping, searching 

for products with images for item 

retrieval has gradually become an 

effective approach. This trend is 

especially evident in the fashion 

industry. In common media, cloth-

ing items are usually worn on the 

human body. They can be straight-

forwardly segmented from the 

source media by utilizing detection 

or parsing algorithms. However, 

this may be deleterious to retrieval 

performance due to distortion, 

occlusion, and different back-

grounds. In this article from the 

October–December 2020 issue of 

IEEE MultiMedia, a stepwise trans-

lation framework using a genera-

tive adversarial network and thin 

plate spline is developed to transfer 

human body images to tiled cloth-

ing images, which can be directly 

used for clothing retrieval. Exper-

imental results demonstrate the 

effectiveness of the resultant tiled 

images produced from the frame-

work compared to other methods.

Edge Computing for  
Legacy Applications

Edge computing was motivated 

by the vision of new edge-native 

applications that are compute-

intensive, bandwidth-hungry, and 

latency-sensitive. The authors 

of this article from the October–

December 2020 issue of IEEE Per-

vasive Computing show how 

infrastructure deployed for such 

futuristic applications can also 

benefit virtual machine (VM)-

encapsulated Windows or Linux 

closed-source legacy applications. 

They present a new capability for 

legacy applications called edge-

based virtual desktop infrastruc-

ture (EdgeVDI) and discuss exam-

ple use cases that it enables. 

End-to-End Verifiable 
E-Voting Trial for Polling 
Station Voting

On 2 May 2019, during the United 

Kingdom’s local elections, an e-vot-

ing trial was conducted in Gates-

head using a touchscreen, end-to-

end verifiable system. This was the 

first test of its kind in the United 

Kingdom, and it presented a case 

study to envisage the future of 

e-voting. Read more in this article 

from the November/December 2020 

issue of IEEE Security & Privacy.

Information Needs: Lessons 
for Programming Tools

Why is programming some-

times so frustrating and annoy-

ing and other times so fast and 

painless? This article from the 

November/December 2020 issue 

of IEEE Software surveys a few of 

the important lessons emerging 

from studies of programming and 

the new programming tools they 

motivate.

The IT Challenges in Disaster 
Relief: What We Learned From 
Hurricane Harvey

This article from the November/

December 2020 issue of IT Profes-

sional explores the information 

systems involved in disaster relief 

supply chain for Hurricane Har-

vey survivors. The authors inter-

viewed three organizations—the 

United Way, the BakerRipley, and 

the American Red Cross—on how 

information systems were used in 

this concerted effort of long-term 

recovery. They found that data 

sharing is the major challenge, and 

it is further constrained and com-

plicated by legal concerns. They 

also observed that organizations 

used ad hoc technology solutions 

to accommodate different relief 

project needs; an integrated open-

source system would not only 

save cost but also improve overall 

productivity. 

Join the IEEE 
Computer 
Society
computer.org/join
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Editor’s Note

Who’s Doing What with 
Your Data?

The Internet and Internet-

connected devices enhance 

our lives in myriad ways, but they 

can also expose us to surveillance 

and data collection that put our 

privacy at risk. While some govern-

ments have enacted privacy-pro-

tecting regulations—most notably 

the European Union’s General Data 

Protection Regulation—policymak-

ers can do more to safeguard pri-

vacy in the digital age. Two articles 

from IEEE Security & Privacy take 

on contemporary privacy concerns 

and recommend related policies.

The first article, “Buying Your 

Genetic Self Online: Pitfalls and 

Potential Reforms in DNA Testing,” 

discusses privacy issues related to 

direct-to-consumer genetic test-

ing, a popular service provided by 

companies such as Ancestry and 

23andMe. The article proposes 

regulations and standardization 

that could help mitigate the risks 

of companies obtaining genetic 

information. The second article, 

“Policies on Privacy,” invites read-

ers to consider the ethical impli-

cations of various types of data 

collection and use. The author 

asserts that societies should cre-

ate privacy regulations to reflect 

their values. 

Another ethical issue in tech-

nology today is explainability in 

machine learning (ML). IEEE Inter-

net Computing’s “Knowledge 

Graph Semantic Enhancement of 

Input Data for Improving AI” dis-

cusses an iterative-optimization 

approach to knowledge graphs 

that helps improve ML explain-

ability. IT Professional ’s “Towards 

Explainability in Machine Learning: 

The Formal Methods Way” argues 

for using formal methods in ML to 

discover precise reasons behind 

algorithmic decisions and actions.

ML-based systems are impor-

tant parts of autonomous vehi-

cles. Computer’s “Disruptive Inno-

vations and Disruptive Assurance: 

Assuring Machine Learning and 

Autonomy” presents a framework 

for better dependability in auton-

omous systems such as self-driv-

ing cars. The authors of IEEE Soft-

ware’s “Validation of Autonomous 

Systems” argue that employing 

intelligent validation and testing 

will help build public trust in auton-

omous vehicles.

The final two articles in this 

ComputingEdge issue celebrate 

women in software engineering 

and encourage gender diversity in 

the field. “Queens of Code,” from 

IEEE Annals of the History of Com-

puting, highlights 12 female pro-

grammers who worked for the US 

National Security Agency in the 

1950s through the 1980s. In “Mom, 

Where Are the Girls?,” from IEEE 

Software, the author describes 

how she came to recognize the 

gender diversity problem in soft-

ware engineering and encourages 

individuals and organizations in 

the software community to advo-

cate for diversity. 
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EDITORS: Khaled El Emam, kelemam@cheo.on.ca 
Katrine Evans, k.evans@haymanlawyers.co.nz

DEPARTMENT: PRIVACY INTERESTS

Buying Your Genetic Self Online:
Pitfalls and Potential Reforms in DNA Testing

Andelka M. Phillips, University of Waikato

Today’s world is one of constant monitoring and 
tracking—sometimes driven by us, sometimes 
driven by others. Developments in the field of 

health and identity are no exception. New technolo-
gies, such as wearable devices, and other technologies 
in consumer-centered health care allow us to track 
our fitness and health data, and they connect us with 
others.

Similarly, the rise in direct-to-consumer (DTC) 
genetic testing services, sometimes known as per-
sonal genomics or commercial genomics, can be 
viewed both as an example of emerging technology 
and also as disruptive innovation. These services have 
created a commercial market for genetic tests, allow-
ing people to buy their own DNA tests online without a 
medical intermediary.

However, as with wearable health devices, DTC 
potentially affords opportunities for other entities 
to access and compile those data and subject us to 
profiling. Consumers, therefore, need to understand 
what’s involved when we buy our so-called genetic self 
online.

This article provides a brief introduction to the 
world of DTC and its potential traps for the unwary. 
It discusses some short- and longer-term regulatory 
measures that may help to iron out the most serious 
risks to consumer privacy. In particular, it concludes 
that the industry needs more oversight and consum-
ers need more control of their genetic data and per-
sonal data in the DTC context.

THE GROWTH OF DTC  
GENETIC TESTING

The market for DTC has experienced significant 
growth in the last couple of years with some promi-
nent DTC companies having databases with several 
million consumers’ samples.

Ancestry testing is particularly popular, but the 
industry varies widely with a broad spectrum of avail-
able services. The best-known ancestry and health 
tests are provided by prominent companies, such as 
23andMe, AncestryDNA, Orig3n, MyHeritage, and 
FamilyTreeDNA. However, there are also companies 
offering lesser-known tests that are often more dubi-
ous, including assessing child talent, peace-of-mind 
paternity, and infidelity (often dubbed surreptitious 
testing). Several of these tests raise privacy and ethi-
cal concerns.

The proliferation and variety of services offered 
are increasingly attracting attention from research-
ers. My own research (due to be published as a book 
later this year) included a review of the online con-
tracts of 71 DTC companies providing tests for health 
purposes. It found that a number of terms commonly 
included in these contracts were problematic from a 
consumer protection standpoint. Some companies, 
such as Soccer Genomics, have also raised concern 
from research scientists, with Stephen Montgomery 
at Stanford University launching a parody Yes or No 
Genomics website in response. Another parody web-
site, DNA Friend, is a useful resource to highlight the 
sensitive nature of these services. However, these 
parodies do, to some extent, assume a level of knowl-
edge about genetics, and we really need more efforts 
to assist the public in understanding the risks here.

While there is increasing public awareness of 
ancestry and health tests, what is less well understood 
is that these tests are generally not standardized and 
that any entity collecting genetic data could poten-
tially use that data for secondary research or share it 

This article originally  
appeared in 

 

vol. 17, no. 3, 2019

Digital Object Identifier 10.1109/MSEC.2019.2904128 

Date of publication: 14 May 2019
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with third parties, such as law enforcement. This arti-
cle explores the problems that can arise as a result. It 
also discusses the existing and potential mechanisms 
that might help to resolve those problems.

A LACK OF STANDARDIZATION
In relation to DTC tests for health purposes, many tests 
for common complex diseases are not harmonized, 
and the validity of their findings is open to dispute.

In particular, DTC companies often do not provide 
whole genome scans and instead focus on portions 
of an individual’s genome. Also, they can focus on 
different genetic variants and also frame their popu-
lations differently. As a result, it is possible to get 
contradictory disease-risk estimates from different 
companies.

The more common ancestry tests have also not 
been standardized, and it is similarly possible to 
obtain contradictory ethnicity estimates from dif-
ferent companies. There have even been instances 
of DTC companies providing DNA test reports on 
canine samples without distinguishing them from 
human samples. For example, in their article “Hered-
ity or Hoax?” Barrera and Fox1 discussed an example 
where a man had sent a dog DNA sample to a com-
pany (under a human name) and received an estimate 
of 20% First Nations ancestry.

This means that consumers need to be cautious 
about these services. At the very least, the public 
needs to be provided with more information about the 
limitations of testing because the utility of the service 
being sold may be less than expected.

SECONDARY USE OF  
GENETIC DATA

The potential for genetic data to be used in ongo-
ing research is high. A number of the most promi-
nent DTC companies have begun to partner with the 
pharmaceutical industry, and we have also begun to 
see investment by the insurance industry from these 

companies. One challenge here is that it is not pos-
sible to truly anonymize genetic data. (See, for exam-
ple, the works by Erlich and Narayanan2 and Gymrek 
et al.3). If something goes wrong, we cannot change 
our stored genetic data in the same way that we 
could change our bank password. So, it is particularly 
important that where DTC companies engage in such 
research, they implement strong security practices 
and infrastructure.

It is important for consumers to understand the 
potential for secondary use here. The source of profit 
for DTC companies will often be partnerships and 
mergers with other entities, and there is a significant 
level of uncertainty here in relation to the variety 
of ways in which genetic data could be used in the 
future.

Use for law enforcement is also attracting 
increasing attention. In the last year, there was much 
media coverage of the genetic genealogy database 
GEDmatch’s involvement in the investigation of the 
Golden State Killer case, where law enforcement 
accessed its database to find a potential suspect, 
through the process of familial DNA matching.4 
Since this revelation, it has emerged that more 
than 100 other DNA profiles from cold cases have 
been uploaded to GEDmatch.5 In early 2019, it also 
emerged that the DTC company FamilyTreeDNA has 
been working with the U.S. Federal Bureau of Investi-
gation to investigate violent crime (see, for instance, 
the work by Haag6).

IN RELATION TO DTC TESTS FOR 
HEALTH PURPOSES, MANY TESTS FOR 
COMMON COMPLEX DISEASES ARE 
NOT HARMONIZED, AND THE VALIDITY 
OF THEIR FINDINGS IS OPEN TO 
DISPUTE.
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GENETIC DATA ARE SENSITIVE  
IN NATURE

Genetic data are generally viewed as sensitive and 
can do real harm in the wrong hands. It is also much 
more than a method of identification in criminal pro-
ceedings. Genetic data have certain characteristics, 
which means that it can pose long-term privacy risks 
for individuals and their relatives.

Once you have a genetic test, your genetic code 
is digitized and that digital data can be stored poten-
tially indefinitely and used for purposes beyond the 
primary purpose for which you gave it. It can also 
serve as a unique identifier for you, and since you 
share much of your DNA with your genetic relatives, it 
can also be used to trace those relatives. The impact 
of a data leak may be substantial, and it does not 
decrease over time.

The industry also operates internationally. Typi-
cally, consumers can purchase a test through a web-
site, and then they will receive a sample collection kit 

in the mail. This is normally used for the collection of a 
saliva sample or a cheek swab, which is then sent back 
to the company for processing. Although services 
vary, companies will generally provide results through 
a web interface.

From a regulatory perspective, the international 
nature of the industry creates complexity. The physi-
cal sample may be sent overseas and processed and 
stored by a company in a different country from where 
the consumer resides. The sequenced genetic data 
generated from this physical sample may or may 
not be stored in that same country. Also, DTC com-
panies may collect other forms of personal data 
from their consumers through surveys and other 
research activities. Where this is stored may also 
vary, and again, it may be different from where the 
consumer resides.

These features, among others, affect how we need 
to think about regulation of businesses that handle 
genetic data.

THE IMPACT OF THE  
GENERAL DATA PROTECTION 
REGULATION ON DTC

Europe’s data protection law, the General Data Protec-
tion Regulation (GDPR), is supposed to put users back in 
control of their data. It has direct relevance to the DTC 
industry: any company that sells or provides services 
directly to consumers based in the European Union 
(EU) needs to ensure that it complies with the GDPR.

Genetic data are included in the prohibition on 
processing of special categories of data in article 9 of 
the GDPR. Consequently, to comply with the GDPR, 
companies should be obtaining explicit and informed 
consent from their consumers for a DNA test. A more 
traditional notice-and-choice model is insufficient. In 
my research to date on the regulation of DTC, it seems 
likely that many businesses will need to alter their con-
sent mechanisms to meet this higher standard.

Part of the problem is that e-commerce-based ser-
vices have relied on their online information (including 
contracts and privacy policies) to govern relationships 
with consumers. However, providing clear online infor-
mation about complex subjects can be a challenge. 
Also, we have all grown accustomed to ignoring terms 
and conditions and privacy policies on websites. This is 
due to a number of factors. One of the most significant 
problems is that people often lack the time to read 
these documents, and even where they do take the 
time, they may struggle to understand the contents. 
Many businesses have created longer contracts and 
privacy policies that are heavily skewed in favor of their 
interests, rather than those of their consumers. There 
has also been a lack of oversight of these documents. 
Consumers are deterred from reading them and may 
believe that they are not capable of challenging or 
changing the use of their information in any case.

However, under the GDPR, a high standard of con-
sent is required for data processing, and it is not going 
to be acceptable to bury consent in a lengthy contract 
or to only make company policies accessible after a 
consumer has registered for a service. Under both 
the GDPR and EU consumer protection legislation, 
there are requirements for these documents to be in 

UNDER BOTH THE GDPR AND 
EU CONSUMER PROTECTION 
LEGISLATION, THERE ARE 
REQUIREMENTS FOR THESE 
DOCUMENTS TO BE IN PLAIN AND 
INTELLIGIBLE LANGUAGE.
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plain and intelligible language. Because contracts and 
privacy policies are often linked together, problematic 
terms in contracts, which could be challenged on 
consumer protection grounds, may also be found to 
be problematic from a data protection perspective as 
well. EU consumer protection legislation also restricts 
the inclusion of terms that may be deemed to be unfair 
and limits their enforceability.

As the GDPR beds in, consumers are also start-
ing to realize that they have genuine mechanisms to 
challenge what companies are doing with their data. 
The recurring and self-serving rhetoric expressed 
by some key players in big tech who say “privacy is 
dead” is changing. We are starting to see a shift with 
wide-reaching laws, such as the GDPR, together with 
growth in mega data breaches, resulting in calls for 
further regulation. Privacy is not only still alive—it is 
kicking. For example, the most recent annual report 
released by the Irish Data Protection Commissioner7 
(which is the first line of regulation for many tech com-
panies in Europe) demonstrates that people do care 
about their privacy and that complaints lodged under 
the GDPR are likely to increase.

Many countries outside the EU are also reform-
ing their privacy and data protection laws to cater for 
new developments. Simply stopping marketing DTC 
services to EU consumers, to avoid coverage by the 
GDPR, is therefore unlikely to be a viable solution. DTC 
companies will increasingly need to meet similar legal 
requirements for consumers based outside of the EU.

SUGGESTIONS FOR REFORM
The DTC industry has grown in the last two decades 
with relatively little oversight, during which time the 
potential of the technology has grown considerably. 
A number of policy documents have been released by 
diverse bodies, which could be drawn upon in improv-
ing industry governance. For example, the Science and 
Technology Committee of the United Kingdom has 
recently begun an inquiry into Commercial Genomics 
and is seeking public submissions. There is hope that 
this inquiry will lead to improved oversight of the DTC 
industry in the United Kingdom and may provide use-
ful guidance for other countries considering how to 
regulate the industry. The disbanded Human Genetics 
Commission from the United Kingdom also previously 
developed a Common Framework of Principles, which 

could be drawn upon in developing new legislation or 
industry codes of conduct.

More suggestions for both short-and long-term 
strategies are provided next. There is no perfect solu-
tion, but a number of steps could lead to significant 
improvements for consumers and for improving stan-
dards across the industry.

Short-Term Strategies
›› The public needs more independent infor-

mational resources to assist them in making 
informed decisions about whether or not to 
utilize DTC services. Data protection authorities 
and privacy regulators as well as consumer 
regulators could release statements in relation to 
the industry. The Office of the Canadian Privacy 
Commissioner has already begun to take steps in 
this direction. It has released a number of docu-
ments in relation to DTC, including recommenda-
tions for questions that consumers could ask 
DTC companies and questions that they should 
ask themselves when considering purchasing a 
test. This example could provide a useful model 
for other regulators exploring these issues.

›› Existing regulators should also consider develop-
ing industry codes of conduct and model privacy 
policies and consumer contracts. One potential 
foundation for such a code is the Future of 
Privacy Forum’s paper,8 which was developed in 
collaboration with some prominent DTC compa-
nies. This document makes a number of positive 
commitments in relation to privacy, but it is 
voluntary. It remains to be seen how businesses 
will adhere to this. Unlike the Future of Privacy 
Forum paper, though, any code should make it 
clear that American companies selling genetic 
tests to consumers based in the EU should still 
be complying with the GDPR.

THE DTC INDUSTRY HAS GROWN 
IN THE LAST TWO DECADES WITH 
RELATIVELY LITTLE OVERSIGHT, 
DURING WHICH TIME THE POTENTIAL 
OF THE TECHNOLOGY HAS GROWN 
CONSIDERABLY.
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›› Another model is to make codes of conduct 
mandatory for the industry to follow. There 
may be reasonable support for such a move: 
DTC companies that wish to engage in health 
research and maintain consumer trust have an 
interest in showing that they comply with the 
law and support improvement of industry stan-
dards. They will wish to distance themselves 
from more dubious types of tests.

›› Businesses should rethink their drafting of 
contracts and privacy policies. In relation to 
contracts, clauses that significantly limit con-
sumers’ rights should be avoided. For example, if 
businesses wish to be compliant with the GDPR 
and applicable consumer protection legislation, 
then they should not include clauses that allow 
them to change their terms at any time without 
notice to the consumer.

›› Businesses should also think about their inter-
face design. Given the sensitive nature of genetic 
data and the complex nature of some health test 
results, consumers should not be rushed into 
making a purchase. Putting speed bumps into 
the process, which encourage reflection and 
allow consumers to change their minds, could 
help to achieve compliance with the GDPR. It 
would be beneficial for businesses to allow for a 
cooling-off period as well in between purchase 
and processing of the sample.

›› Businesses should also improve their practices 
in relation to deletion and destruction of physi-
cal samples and data. It should be possible for 
any company performing a genetic test to pro-
vide their consumers with the option of deleting 
the data and destroying the sample after send-
ing the consumer their test results. Guardiome 
is an interesting example here because they 
offer consumers their whole genome sequence 
on a device, and their approach seems to be 
more privacy centric.

›› Businesses should also keep in mind the GDPR’s 
principles in relation to data processing. In the 
context of DTC, adhering to the data minimiza-
tion principle could be particularly beneficial.

›› At the national level, privacy and data protec-
tion regulators as well as consumer protection 
regulators should play a role in improving 

industry governance. Compliance reviews of 
privacy policies, contracts, and personal data 
practices, particularly in relation to security 
practice, would all be beneficial for improving 
industry governance.

Longer-Term Strategies
›› We need more specific oversight of the industry 

to improve standards and ensure the protection 
of privacy and consumer rights more generally. 
One possibility is the creation of new regulatory 
bodies with a mandate to regulate all businesses 
that handle genetic data. This could draw upon 
existing models of data protection authorities and 
financial services regulators, and in some coun-
tries, this could be a new body that was under 
the oversight of the data protection authority.

›› Tests of more dubious validity, such as surrepti-
tious tests and child talent, should be banned, 
and regulators should help to alert the public 
about the most problematic services. In the 
United Kingdom, the Human Tissue Act makes it 
an offense to analyze DNA without appropriate 
consent, and it is likely that any company offer-
ing surreptitious tests to U.K. consumers will be 
in breach of this.

›› New legislation is needed that deals more specif-
ically with individual rights in genetic data. The 
recent Canadian Genetic Non-Discrimination 
Act could provide a useful model for other 
countries considering how to strengthen the 
rights of citizens in their genetic data.

›› New industry-specific legislation should also be 
introduced at a national level, and international 
collaboration to develop more universal stan-
dards that could be followed globally could also 
help consumers given the international nature 
of these services.

This article has provided an introduction to the 
world of DTC and the challenges the industry 

poses for privacy. It is vital to understand that there 
is also a lot of uncertain risk in this context. We do not 
know all of the ways that our genetic data could be 
used in the future, but reform is needed given that we 
cannot change our genetic data and that it can always 
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potentially be linked back to us, can be used for many 
different purposes, and can also be used to trace our 
family members. People do need protection of their 
rights in this space and businesses should also view 
this as an opportunity to do things differently. 
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COLUMN: LAST WORD

Policies on Privacy
Steven M. Bellovin, Columbia University

P rivacy is a hotly debated topic. But there 
isn’t just one question—“Should we have 
more privacy?”—to answer. Rather, there 

are many, and until we reach consensus on the 
answers—and their consequences—we cannot 
agree on what regulation, if any, is appropriate. Bear 
in mind that the answers can be different for govern-
ments and for the private sector, and that this ques-
tion in particular will be answered very differently by 
different people or different cultures.

The first set of questions concerns what sort 
of information can be used. Can an entity obtain 
information from others about a subject, or is it 
restricted to information it directly collects? Note 
that this interacts very directly with the issue of 
use controls: should collected data be used only 
for the specified purposes, or can it be repurposed? 
Secondary use of data—using data for something 
other than the reason it was originally collected—
is one of the biggest sources of privacy problems. 
This is especially true if multiple datasets are 
combined.

What, though, constitutes direct collection? If I 
tag an online picture with someone else’s name, is 
the site entitled to make the association between 
that person and the picture? Between me and the 
person I tagged? Between that person and me?

Direct collection is even murkier when it comes 
to web advertising. Is an on-page advertiser a direct 
collector? Is it the site hosting the page? Both?

If we want use restrictions, how do we define the 
categories of uses? What if someone changes his or 
her mind? Do we want exceptions for, e.g., medical 
research if identities are protected by contracts?

These questions are common. Two less common 
issues are the existence of dossiers and the existence, 
in essence, of time machines.

A dossier is a large compilation of data about a par-
ticular individual, similar to what is compiled by credit 
bureaus and data brokers. These dossiers can be very 
powerful, but they’re what Paul Ohm has referred to 
as databases of ruin. Note, too, that these databases 
need not contain personally identifiable information 
to be dangerous; a pseudonymous TiVo account can 
be just as violative to privacy as one with a real name, 
since the viewing history can often be deanonymized 
and linked to a real person.

Dossiers can enable time machines, the ability to 
see what someone did in the past, before they were 
of interest to someone else. Governments, of course, 
love that—but so do marketers. Should such dossiers 
be allowed to exist? Who should be allowed to query 
them? Should the information in them “expire” after a 
while? After how long?

Perhaps, for dossiers, we need revocable anonym-
ity, so that law enforcement can get at the informa-
tion, but not marketers. That, too, involves a policy 
decision, albeit a more legalistic one: what are the 
constraints on police?

It is important for society, not marketers, to 
answer the questions. For most answers, there are 
privacy-preserving cryptographic techniques that 
can at least approximate today’s abilities where 
needed, but without endangering privacy or creat-
ing databases of ruin. There are already schemes for 
things like privacy-preserving targeted ads, verifiable 
income reporting with anonymous accounts and 
payment schemes, age verification credentials that 
don’t show a name but are demonstrably valid, and 
more. I strongly suspect that most other necessary 
functions can be handled the same way, as soon as 
the requirements are agreed upon.

This article originally  
appeared in 
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   There are certainly other important components 
to privacy, such as a requirement for clear and 

precise privacy policies by businesses—no more 
weasel words like  sometimes, may , and  business 
partners . But the important thing is to start by mak-
ing explicit choices about the many different aspects 
of privacy. 
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DEPARTMENT: KNOWLEDGE GRAPHS

Knowledge Graph Semantic 
Enhancement of Input Data for 
Improving AI
Shreyansh Bhatt, Amazon*

Amit Sheth, University of South Carolina

Valerie Shalin, Wright State University

Jinjin Zhao, Amazon

Intelligent systems designed using machine learning algorithms require a large number 
of labeled data. Background knowledge provides complementary, real-world factual 
information that can augment the limited labeled data to train a machine learning 
algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, 
it is convenient and useful to organize this background knowledge in the form of a graph. 
Recent academic research and implemented industrial intelligent systems have shown 
promising performance for machine learning algorithms that combine training data 
with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance 
the input data for two applications that use machine learning—recommendation 
and community detection. The KG improves both accuracy and explainability.

Machine learning algorithms trained with 
a large labeled data have shown promis-
ing performance in solving problems 

from various domains.1 One of the most challenging 
aspects associated with using such algorithms is the 
availability of training data. On the other hand, sym-
bolic knowledge representation has been a key area 
of Artificial Intelligence research since the mid 1970s, 
yielding a number of vetted background knowledge 
bases. The AI community started to use the term 
“Ontology” in the 1980's to refer to such background 
knowledge.2 A patent filed in 2000 described the use of 
background knowledge to power commercial faceted 
and semantic search, semantic browsing, semantic 

personalization, and semantic advertisement.3 Subse-
quently, background knowledge has played a key role 
in various tasks ranging from search and classification 
to personalized recommendations. In this decade, sev-
eral researchers have explored the role of background 
knowledge to enhance the natural language process-
ing and machine learning.17

In this article, we first describe the history of 
KGs and their application in research and industry, 
and introduce the problem of augmenting training 
data with the contents of a KG. We then review the 
most common approaches to augmenting data with 
knowledge, contrasting simple, explicit association 
of graph content with input data and approaches that 
depend on deep learning to combine separate KG 
and input content. We list the challenges associated 
with these and provide an overview of an alternative 
joint optimization-based approach for KG enhanced 
machine learning. We report four case studies in dif-
ferent domains that used this approach.

This article originally  
appeared in 
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HISTORY
Google introduced its “Google Knowledge Graph” 
in 2012, acknowledging its central role in their entity 
search1. Although a number of knowledge representa-
tion alternatives have been used, the graph has been 
one of the most popular formats to represent domain 
knowledge2. Apart from Google Search, a number of 
commercial products, such as Apple Siri and Amazon 
Alexa, are powered by a Knowledge Graph (KG).

A KG is a collection of facts where entities (nodes) 
are connected with typed relationships. The scope 
of the knowledge captured by a KG can vary with 
broad-based coverage that may involve many generic 
domains (e.g., DBpedia and Yago), a specific domain 
(e.g., Bio2RDF and UMLS for aspects of biomedical or 
medical domains), an industry or an enterprise.18 To 
extract a KG for a domain of interest4 domain spe-
cific KG creation approaches start from one or more 
entities (concepts) in the KG. The graph of interest is 
then created by traversing from those initial entities. 
However, the method does not gener as even a 2-3 
hop traversal may end up including more than 50% of 
the source content.4 To control traversal for generic 
sources, traversing is restricted through relevant 
relationships (edges) that can be identified by comput-
ing a specificity score of relationship to the domain. 
Research in creating domain specific sub-KGs has 
shown promising applications.4

KGs have potential applications in augmenting 
training data for machine learning algorithms. Training 
data augmented by a KG has been shown to enhance 
performance of applications that have limited training 
data, such as sentiment analysis, named entity rec-
ognition, recommendation, question answering, and 
object detection.5–7, 16 However, the training data may 
not be available in the same form as the KG, hindering 
a facile augmentation of training data.

SIMPLE DATA ELABORATION  
USING A KG

KGs provide auxiliary factual information about the 
entities that are present in the training data. A simple 
approach to augmenting training data is to enhance 
the training data with auxiliary information extracted 
from the KG.18 Consider a sentiment classification 
task on Tweets. If a Tweet mentions the president of 
the USA, a KG, such as DBpedia has the information 

that Donald Trump is the current president of the USA. 
The input data augmentation approach enhances the 
Tweet representation with concepts associated with 
the president of the USA in DBpedia. One of the early 
approaches for sentiment analysis used this strategy 
and reported an F1-score improvement with Tweets. 
Specifically, for each extracted entity (e.g., iPhone) 
from Tweets, this approach adds its semantic anno-
tation (e.g., “Apple product”) as an additional feature, 
and measures the correlation of the added concept 
with negative/positive sentiment.5 Treating the con-
cepts obtained from the KG as one of the Tweet fea-
tures results in a 6.5% increase in the F1-score for sen-
timent classification.

KGs provide rich information that not only includes 
a type associated with the concept but also other 
related concepts. Training data augmentation with 
the KG content requires relative weighting of the 
following.

1.	 Concepts present in the training data.
2.	 KG concepts that map to the concepts in the 

training data, e.g., Tweet about Donald Trump 
maps to the dbpedia:Donald Trump in the 
DBpedia KG.

3.	 KG concepts that are associated with different 
types of relationships with the concept in the 
training data. E.g., dbpedia:President of the 
United States is associated with Donald Trump 
in DBpedia with dbpedia:type relationship.

AUGMENTED DEEP LEARNING 
WITH KGS

Separate training data, knowledge concepts, and 
related concepts from KGs can be the input to the neu-
ral network, which finds the appropriate importance 
of these different modalities. Artificial neuron pat-
terns or neural network architectures that compound 
training data, KG concepts, and related concepts can 
differ depending on the nature of the training data 
(text or user-item interaction and time series or static). 
Most of the approaches use the first input layer of the 
deep neural network architecture as the layer that 
augments training data with the KG. The remaining 
layers are application and task specific with loss com-
puted at the last layer of the deep neural network. The 
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end-to-end training of such a network results in learn-
ing the relative weighting between the training data 
and different concepts from the KG to solve the appli-
cation or task, such as sentiment analysis, machine 
reading, recommendation etc. A key advantage of 
using the neural network to augment the training 
data with the KG is that a neural network can handle 
the nonlinearity involved in merging the training data 
and the KG. A set of artificial neurons, so-called neu-
ral network layer, considers the input from different 
modalities of data. Each neuron on this layer combines 
these different inputs and applies a (nonlinear) activa-
tion function. Hence, deep network with multiple lay-
ers can learn the appropriate nonlinear combination of 
the training data and the KG. This approach has shown 
promising results for various applications, such as 
sentiment analysis, recommendation, machine read-
ing, and collaborative filtering.

Augmented deep learning for sentiment analysis: 
Kumar  et al. proposed an approach to sentiment 
analysis that augments an input text word with con-
cepts from WordNet KG.6 The proposed model takes a 
sentence as input to a BiLSTM that computes a hidden 
representation of words in the sentence. The hidden 
representation is then passed through an attention 
layer along with the KG concepts related to the word. 
The attention layer then computes a weighted vector 
of the hidden representation of the input word and KG 
concepts. Weighted vectors of a sentence are passed 
through another attention layer, the output of which 
predicts sentiment. The whole network is trained to 
predict the correct sentiment of a given sentence in 
the training data.

Personalized news recommendation using KG: 
Wang  et al. reported that a KG plays a key role in 
personalized news recommendation.7 During the 
inference, the model predicts a click through rate for 
a given user and a given news story. The model gener-
ates user representations from their prior history of 
news click. The user representation is then concate-
nated with a given news story's representation to gen-
erate a user context vector. The resulting user context 
vector predicts the click through rate. For training, 
authors represented each news story with the entities 
found in the news story and context (neighborhood 
of the entity in the KG) of each entity. A multichannel 
representation is used for each word of a news story 

that corresponds to an entity in the KG. For example, 
one channel corresponds to the KG's representation 
for the entity and another channel corresponds to 
a representation of related entities. A convolutional 
neural network is then applied on such representation 
that combines word level information with the KG's 
information. Such a representation of each news story 
is then combined using an attention network to gener-
ate a user representation, which in turn is combined 
with the candidate news story representation to pre-
dict the click through rate.

Machine translation using KG: One of the chal-
lenges in using concepts from a KG to augment text 
data is a relative weighting of the actual word in the 
sentence and the word's representation from the 
KG. Yang  et al. reported that while using background 
knowledge for machine reading, it is crucial to have 
both the relative weighing of word in the text and its 
KG-based representation, as in some cases the text 
context properly overrides the context-independent 
background knowledge available in KG.8 They use 
a sentinel vector that combines the word and its 
related concepts in the KG. Their model uses a BiL-
STM where the hidden representation from each 
BiLSTM unit is combined with related concepts from 
the KG corresponding to that word using the sentinel 
vector. The resulting vectored representation is used 
as the BiLSTM cell's hidden representation. Training 
this network results in learning the weights for the 
sentinel vector.

KG for recommendation: Zhang  et al. showed that a 
KG can be used to solve the data sparsity issue arising 
from collaborative filtering for item recommendation.9 
They use an item's representation computed from the 
KG in user-item feedback matrix. This item's represen-
tation is computed by concatenating the visual and 
textual item's representation available in a KG. They 
showed that such a combined item's representation 
in the user-item matrix can improve collaborative fil-
tering for recommendation. Other work on augment-
ing training data with a KG in recommendation, such 
as the Personalized Entity Recommendation10 and 
Factorization Machine with Group lasso,11 treat KG 
as a heterogeneous information network, and extract 
meta-path/metagraph-based latent features to repre-
sent the connectivity between users and items along 
different types of relation paths/graphs.
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CHALLENGES FOR KG AUGMENTED 
MACHINE LEARNING

As noted above, the data format of the input data and 
KG are often different from each other and require dif-
ferent processing algorithms and architectures. For 
example, most NLP tasks have sentences as the input 
data while background knowledge bases are available 
in graph form. To augment the input data with a KG 
requires either converting the knowledge into the for-
mat of input data or representing input data in the KG.

Differences in processing algorithm and architec-
tures mean that augmenting the input data with a KG 
and converting into a common format may not lead 
to the best representation. KGs represent different 
kinds of information about a concept indicated by dif-
ferent types of relationships. For example, in DBpedia 
the concept dbr:ohio is connected with the concept 
dbr:USA by a hierarchical relationship dbo:country, 
whereas dbr:Ohio is connected to columbus with 
dbo:Capital relationship. The algorithms exploiting 
the KG must be cognizant of the different types of 
relationships. Moreover, these algorithms should find 

weights appropriate for the different relationships for 
the given task instead of using a generic relationship 
weighting of learned for a KG completion task.

Moreover, as the knowledge is fused with the 
training data before applying a machine learning 
algorithm with nonlinearity, the KG may not facilitate 
explainability.

To address these challenges, recent approaches 
propose specialized algorithms or neural network 
architectures for the input data and for the KG. We 
review these approaches as iterative optimization for 
enhanced machine learning using a KG.

ITERATIVE OPTIMIZATION FOR 
KNOWLEDGE ENHANCED 
MACHINE LEARNING

In order to augment input data effectively with 
a KG and to preserve the explainability poten-
tial of the KG, recent approaches iteratively opti-
mize the task specific objective for the input data 
and for the KG representation of the data.12, 13 As 
shown in Figure 1, these approaches start with an 

FIGURE 1. Iterative optimization for knowledge enhanced machine learning. Training data is linked/augmented with 
the KG. The learning algorithm is applied on the augmented data to find the results. The results then drive the anno-
tated KG-based learning to identify the updated KG. The updated KG is then used in the training data augmentation.
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initial KG representation. The input data are aug-
mented with the initial KG representation. Opti-
mizing the application-specific objective on such 
input data provides application-specific results. The 
knowledge graph is updated based on the results 
and the application-specific objective optimiza-
tion is then run for a KG, which leads to an improved 
(application-specific) representation of the KG. The 
whole process is repeated until convergence or a pre-
defined number of epochs. The initial generic KG rep-
resentation augments the input data and iteratively 
updates the KG representation. Next, we review four 
approaches designed based on this concept.

KG enhanced recommendation: Wang  et al. 
proposed a multitask feature learning approach for 
the KG enhanced recommendation.12 For a given 
user-item interaction matrix, the item's representa-
tion is initially computed from the KG. A collaborative 
filtering technique is then applied on such a user-item 
interaction matrix. As a second step, the user-item 
interaction is represented in the KG with a concept 
specific to the item in KG and the other related item 
based on user-item matrix. The KG-based recommen-
dation is then solved for predicting item similarity. 
Iterative optimization of these two objectives leads 
to learning an application specific KG representation 
that can be used for explanation and also to enhance 
performance for collaborative filtering. Wang  et al. 
proposed to use “cross and compress” units for com-
bining a KG's representation to item and user-item 
representation to KG.

KG enhanced community detection and charac-
terization: KGs can also help improve our understand-
ing of networked structured data (graph structured 
data), such as social networks. An attributed graph 
consists of nodes, attributes associated with nodes, 
and relationships (links) that connect nodes. For 
example, in a social network, users are nodes, loca-
tion or user posts are attributes, and users are con-
nected with friendship relationships. A group of users 
form a community when the number of relationships 
within a group exceeds the number of relationships 
across a group. It is often hard to divide a graph in 
communities. Node attributes can help explain cer-
tain communities. However, communities are often 
formed because a group of users share a generic 
concept. For example, a group of users may be friends 

with each other as they live in the same county. Read-
ily apparent user attributes, such as a city name may 
not inform the county characterization for the group. 
The Crowdsourced KGs, such as DBPedia, have the 
information that connects cities to a county.

Bhatt  et al. proposed the KG enhanced community 
detection.13 They used iterative optimization over an 
attributed social network graph and a hierarchical 
KG to detect and characterize communities. The 
hierarchical KG can represent real-world communi-
ties or clusters. For example, a hierarchical KG for the 
geolocation domain represents the United States of 
America as a root concept with California and Ohio as 
subsuming concepts. Attributes on the nodes of the 
social network graph are mapped to the KG. Hence, 
each node is represented in the KG. Initially, each node 
is considered to be in its own community with a rela-
tionship weight computed according to the distance 
between nodes in the hierarchical KG. In each iteration, 
first the community detection objective is applied on 
the graph. Depending on the communities identified in 
the graph, the hierarchical KG is broken into multiple 
hierarchical KG representing each community. Hence, 
the communities identified in the graph inform KG 
representation of nodes and the input graph is modi-
fied based on the distance of nodes in the modified 
hierarchical KGs.

Unknown relevant domain: The initial mapping of 
the input data to the KG may represent multiple, or 
unknown domains. However, the objective optimi-
zation for the input training data may only depend 
on a certain domain or an intersection of multiple 
domains. Hence, if we augment the KG with the train-
ing data prior to optimizing the application specific 
objective, we may miss the appropriate background 
knowledge domain.

Social media-based wisdom of crowd analysis is 
one of the application domains where the objective 
optimization on the input data depends on the appro-
priate domain in the KG. Recent research shows that 
diverse crowds bring diverse perspectives in decision 
making.14 Such a decision results in a more accurate 
forecast than a decision made by a randomly selected 
or homogeneous crowd. As users share their opinion 
on social media, we can use social media data to infer 
diverse crowds. Diverse crowd selection can be solved 
as subset selection, maximizing diversity within the 
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subset. As we want to measure diversity in perspec-
tives in the given domain of interest, we can use data 
on individual users' attribute and augment it with the 
KG. However, it is hard to identify the domain of inter-
est from the KG in the context of selecting a diverse 
crowd. Hence, we can find the diverse crowd by start-
ing with a generic KG-based user attribute augmenta-
tion, and then find the appropriate domain of interest 
for the given set of diverse crowds. For example, 
a crowd may be diverse in the domain of politics, 
whereas it may not be diverse in the domain of sports. 
This results in the new domain of interest for diverse 
crowd selection and helps identifying the appropriate 
diverse crowd.

Generative applications: Domain specific short- 
text generation suffers from limited training data. 
Short and diverse text generation can benefit from 
the domain knowledge. Recent research shows that 
domain knowledge captured in the form of word2vec 
vectors improves text generation quality.15 Here, the 
specific training data can be limited, whereas the data 
to generate word2vec vectors can consist of signals 
related to generic text generation, such as grammar 
and sentence structure. The use of domain specific 
KGs can further improve diverse text generation qual-
ity as it captures words and rules associated with 
the domain. However, it is challenging to identify the 
appropriate domain in the KG that helps the particular 
text generation. Iterative optimization can help such 
diverse text generation.

CONCLUSION
KGs play a key role in machine learning. Crowdsourced 
KGs can complement the available training data for 
machine learning algorithms and improve perfor-
mance for a number of applications. Iterative opti-
mization can further improve accuracy and also help 
explain the data in the context of the application. This 
approach is particularly useful when the entities pres-
ent in the input data are associated with a concept 
in knowledge graph that is present in the multiple 
domains. An iterative approach can identify the appro-
priate domain in the context of the application. 
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COLUMN: FORMAL METHODS IN INDUSTRY

Towards Explainability in  
Machine Learning:  
The Formal Methods Way
Frederik Gossen, Tiziana Margaria, and Bernhard Steffen

C lassification is a central discipline of machine 
learning (ML) and classifiers have become 
increasingly popular to support or replace 

human decisions. We encounter them as email spam 
detectors, as decision support systems, for example in 
healthcare, as aid in interpreting X-rays in breast can-
cer detection, or in the financial and insurance sector, 
for financial and risk analysis. For example, Facebook 
uses classifiers to predict the likelihood that users will 
navigate or click in a certain way, at scale, for millions 
and millions of users every day [9]. They also play a sig-
nificant role in various areas of computer vision, where 
traffic signals and other objects need to be identified 
in order to “read” a situation during assisted or autono-
mous driving. Because we rely on classifiers not only 
for ease and comfort but also in business or safety 
critical systems, they need to be precise and reliable.

Classifiers foot on a wide variety of techniques: 
neural networks, statistical learning like Bayesian 
networks, instance leaning like in K-Nearest Neigh-
bor, separability of classes in a vector space like in 
support vector machines, or logics, like in decision 
trees, random forests, and rule-based classifiers. ML 
classifiers were traditionally judged mostly in terms of 
precision, ease of training and fast response. In many 
cases, however, small differences in the sample led to 
spectacularly wrong decisions. Meanwhile, AI failure 
stories populate various sites1 including fails by popu-
lar AI platforms like IBM's Watson.

When something goes wrong, it is good to know 
why. In cases where legal action follows a misclas-
sification, as in the recent CervicalCheck cancer 
scandal* that rocked Ireland's Health Service,2 it is 
important to be able to find out exactly why a certain 
classification verdict was issued. Ease of explanation 

*	The CervicalCheck cancer misdiagnosis was human, and 
not due to machine learning.

is also particularly important when the proposed clas-
sification is correct, but apparently counter-intuitive. 
This is why Explainability is now a new hot topic in ML, 
and this is where formal methods can play an essential 
role. Let us show the power of the formal methods way 
in combination with random forests.

Random Forests are one of the most popular 
logic-based classifiers in ML. The larger they are, the 
more precise the outcome of their predictions. Figure 1 
shows a random forest with 100 tree elements that 
was learned from the Iris Classification3 problem of the 
popular UCI dataset.4 The dataset lists dimensions of 
Iris flowers’ sepals and petals for three different species 
of flowers: iris setosa, iris virginiana, and iris versicolor. 
These are our classes. Random Forests are a collection 
of many decision trees, each learned from a random 
sample of the training dataset. All trees have different 
structure, represent different decision functions, and 
can produce different decisions for the same input 
data. The training method is easy to understand and to 
implement, and at the same time achieves impressive 
classification accuracies in many applications.

Once we have the random forest, to classify previ-
ously unseen input data every decision tree is evalu-
ated separately, potentially in parallel. The overall 
decision of the random forest is then typically derived 
as the most frequently chosen class, an aggregation 
commonly referred to as majority vote. Key advantage 
of this approach is the reduced variance compared to 
single decision trees. But can we explain how and why 
this decision was taken?

EXPLAINABILITY
Neural networks and random forests are considered 
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black-box models because of their highly parallel 
nature: following the execution of neural networks 
means following sequences of parallel execution steps 
that result from a complex interplay of the value of all 
neurons (or nodes). The execution of a random forest 
is simpler, but it still requires to aggregate the results 
of each of its often many hundreds trees after having 
executed all of them individually. The results of such 
black-box executions are hard to explain to a human 
user even for very small examples.

In contrast, decision trees are considered white-box 
models because of their sequential evaluation nature. 
Even if a tree is large in size, a human can easily follow 
its computation step by step by evaluating (simple) 
decisions at each node from the root to a leaf. Indeed, 
the set of decisions along such an execution path pre-
cisely explains why a certain choice has been taken.

Popular methods towards explainability try to 
establish some user intuition. For example, they may 
hint at the most influential input data, like highlighting 
or framing the area of a picture where a face has been 
identified. Such information is very helpful, and it helps 
in particular to reveal some of the “popular” drastic 
mismatches incurred by neural networks: if the framed 
area of the image does not contain the “tagged” object, 
the identification is clearly incorrect. However, even in 

a correct classification, the tag by itself gives no rea-
son why the identification is indeed correct.

More ambitious are methods that try to turn 
black-box model into white-box models, ideally pre-
serving the semantics of the classification function. 
For random forests this has been achieved for the 
first time using algebraic transformations.5 In fact, 
the proposed method is based on Algebraic Decision 
Diagrams (ADDs)6 and Binary Decision Diagrams. An 
ADD is essentially a decision tree where redundant 
subparts are merged. A Binary Decision Diagram is 
an ADD over the algebra of Boolean values, i.e., the 
leaves are Boolean (true/false, yes/no). The method 
solves the following three explainability problems with 
absolute precision.

The Model Explanation Problem is solved in terms 
of an ADD that specifies precisely the same classifica-
tion function as the original random forest.

The Class Characterizations Problem is solved 
in terms of a BDD that precisely characterizes all 
samples that the original random forest will classify as 
the considered class.

The Outcome Explanation Problem is solved in 
terms of a minimal conjunction of (negated) decisions 
that are sufficient to guide the sample into the consid-
ered class.

FIGURE 1. Excerpt from the considered Random Forest, which contains 100 trees with a total of 1312 nodes. Evaluation means 

majority vote-based aggregation of the evaluation results of the individual trees. Even only trying to understanding the reason 

for a certain classification on this basis is considered hard (outcome explanation problem).
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We will now illustrate this approach and the three 
forms of explainability starting from the random forest 
with hundred trees for the Iris classification shown in 
Figure 1.

The black box character of this forest is obvious: 
given a sample, how can a human follow the 100 
individual trees evaluations, grasp their essence and 
then understand the impact of the following majority 
vote-based classification? In the next section, we will 
see that this is an inherently hard task, because also 
the canonical white box model with its more than 
thousand nodes we are able to construct is still quite 
hard to understand.

MODEL EXPLANATION PROBLEM
The canonical white box model corresponding to the 
random forest of Figure 1 can be constructed compo-
sitionally by taking the individual trees of the random 
forest and successively “adding” their corresponding 
ADDs. This solves the Model Explanation Problem.

Figure  2 sketches the result of this construction: 
A canonical white box model with 1077 nodes. Admit-
tedly, this model is still frightening, but given a sample, 
it allows one to easily follow the corresponding clas-
sification process, and in this case it may require at 

most twenty individual decisions based on the petal 
and sepal characteristics. This decision set is our set 
of predicates. The conjunction of these predicates is 
a solution to the Outcome Explanation Problem. How-
ever, more concise explanations are derived from the 
class characterization BDD discussed in the “Class 
Characterization Problem” section.

This construction exploits algebraic properties: 
intuitively, we “add” the entire decision trees. This 
is technically possible because ADDs inherit the 
algebraic structure of their leaf set. In this case, the 
algebra of the leaf set is the set of vectors that have 
one component for each class that counts how often 
this particular class has been chosen under the con-
ditions represented by the paths to this very leaf. To 
add two ADDs of this set, we use the component-wise 
addition of the underlying vector structure.5

CLASS CHARACTERIZATION 
PROBLEM

The class characterization problem is particularly 
interesting because it allows on to “reverse” the 
classification process. While the direct problem 
is “given a sample, provide its classification,” the 
reverse problem sounds “given a class, what are the 

FIGURE 2. Model Explanation. This graph with its 1077 nodes is considered a white-box model for the Random Forest as 

individual classifications can be explained simply by looking at the corresponding classification path whose lengtt, in this case, 

never exceeds 20. Note that there are individual trees in the original Random Forest with paths of length 10.
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characteristics of all the samples belonging to this 
class?” The BDD shown in Figure 3 is a minimal char-
acterization of the set of all the samples that are 
guaranteed to be classified as Iris Setosa.

Being able to reverse a learned classification func-
tion has a major practical importance. Think, e.g., of 
a marketing research scenario where data have been 
collected with the aim to propose best-fitting product 
offers to customers according to their user profile. 
This scenario can be considered as a classification 
problem where the offered product plays the role of 
the class. Now, being able to reverse the customer → 
product classification function provides the market-
ing team with a tailored product → customer promotion 
process: for a given product, it addresses all custom-
ers considered to favor this very product as in the cor-
responding patent.7

OUTCOME EXPLANATION 
PROBLEM

The path highlighted in Figure 3 defines an outcome 
classification formula for the sample

	 petallength = 2,49
	 sepalwidth = 2,45
	 sepallength = 7,15
As the conjunction of the following 13 predicates:
	 NOT petallength < 2.45
		  petalwidth < 1.65
		  petalwidth < 1.45
	 NOT sepallength < 7.05
		  sepalwidth < 2.65
		  petalwidth <1.35
		  petalwidth < 0.8
		  petalwidth < 0.7
	 NOT sepalwidth < 2.25

FIGURE 3. Class characterization. This Class Characterization Model has only 53 nodes, a size that can be considered compre-

hensible by humans. Its maximal path length is 18. The path for our sample is 14, and the corresponding reduction leads to an 

outcome explanation with only 4 predicates. Note that with four classification parameters the outcome explanation can never 

have more than 4 predicates.
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		  petallength < 5.0
		  petallength < 2.7
		  petallength < 2.6
		  petallength < 2.5
The classification formula expresses the collec-

tion of “conditions” that this sample satisfies, and 
it provides therefore a precise justification why it is 
classified in this class.

Despite the fact that the class characterization 
BDD is canonical, it is easy to see that there are some 
redundancies in the formula. For example, a petal-
length < 2.5 is also inherently smaller than 2.6 and 2.7; 
therefore, for this specific sample those two predi-
cates are redundant. This is the result of the imposed 
predicate ordering in BDDs: all the BDD predicates 
are listed, and they are listed in a fixed order. After 
eliminating these redundancies, we are left with the 
following precise minimal outcome explanation: this 
sample is recognized as belonging to the class Iris 
Setosa because it has the properties

	 2.45 < petallength < 2.45
	 petalwidth < 0.7
	 7.05 < sepallength
	 2.25 sepalwidth < 2.65

CONCLUSIONS AND PERSPECTIVES
Explainable AI is a new direction aiming at the matu-
ration of a field that has experienced a boost in partic-
ular because of its fancy heuristics and correspond-
ing breakthroughs in specific applications like the 
AlphaGo program for the game Go. In this context, the 
typical concept of “explanation” is still comparatively 
weak. For example, highlighting the most important 
pixel for a certain image classification is not really a 
comprehensive explanation, but rather a hint, an indi-
cation that helps pinpoint situations where things 
went drastically wrong. In contrast we take a formal 
methods-based path, originally established in STTT,5 
where the concept of “explanation” is interpreted as a 
precise characterization of the considered phenome-
non. Our illustration on how much information about 
the how and why can be extracted with exact meth-
ods from a random forest consisting of 100 trees indi-
cates that such characterization may indeed turn out 
to be practical.

The concise class characterization has a particu-
larly high application potential, e.g., when reversing 

the learned classification function for tailored prod-
uct presentations in order to obtain an optimized cus-
tomer list for a product campaign. Moreover, the size 
and therefore the comprehensibility of class char-
acterization seem to hardly explode. In our example 
with only three classes, the model characterization 
ADD had more than 1100 nodes, while all the class 
characterization ADDs have less than 60 nodes, a 
size still within the range of a visual investigation.

Of course, these are first steps in a very ambi-
tious new direction and it has to be seen how far the 
approach carries. Scalability will probably require 
decompositions methods, perhaps in a similar fash-
ion as illustrated by the difference between model 
explanation and the considerably smaller class 
characterization. More work is needed also on tech-
niques that aim at limiting the number of involved 
predicates.

Promising results reported in sttt2 lift the 
approach we illustrated from random forests to binary 
neural networks. They indicate that true explainability 
may well be in reach even for neural networks, on the 
formal methods way. 
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Disruptive Innovations and 
Disruptive Assurance: Assuring 
Machine Learning and Autonomy
Robin Bloomfield, Adelard LLP and City University of London

Heidy Khlaaf, Philippa Ryan Conmy, and Gareth Fletcher, Adelard LLP

Autonomous and machine learning-based systems are disruptive innovations and 
thus require a corresponding disruptive assurance strategy. We offer an overview of 
a framework based on claims, arguments, and evidence aimed at addressing these 
systems and use it to identify specific gaps, challenges, and potential solutions.

The advancement and adoption of machine- 
learning (ML) algorithms constitute a crucial 
innovative disruption. However, to benefit from 

these innovations within security and safety-critical 
domains, we need to be able to evaluate the risks and 
benefits of the technologies used; in particular, we 
need to assure ML-based and autonomous systems.

The assurance of complex software-based sys-
tems often relies on a standards-based justification. 
But in the case of autonomous systems, it is difficult to 
rely solely on this approach, given the lack of validated 
standards, policies, and guidance for such novel tech-
nologies. Other strategies, such as “driving to safety,” 
that use evidence developed from trials and experi-
ence to support claims of safety in deployment are 
unlikely to be successful by themselves,1,2 especially 
if the impact of security threats is taken into account. 
This reinforces the need for innovation in assurance 
and the development of an assurance methodology 
for autonomous systems.

Although forthcoming standards and guidelines 
will eventually have an important, yet indirect, role in 
helping us justify behaviors, we need further devel-
opment of assurance frameworks that enable us to 
exploit disruptive technologies. In this article, we 
focus on directly investigating the desired behavior 

(e.g., the safety property or reliability) of a system 
through an argument- or outcome-based approach 
that integrates disparate sources of evidence, whether 
from compliance, experience, or product analysis. We 
argue that building trust and trustworthiness through 
argument-based mechanisms, specifically the claims, 
arguments, and evidence (CAE) framework (see “The 
Assurance Framework”), allows for the accelerated 
exploration of novel mechanisms that would lead to 
the quality advancement and assurance of disruptive 
technologies (see Figures S1 and S2 in the “The Assur-
ance Framework” sidebar).

The key advantage of a claim-based approach is 
that there is considerable flexibility in how the claims 
are demonstrated since different types of arguments 
and evidence can be used as appropriate. Such a flex-
ible approach is necessary when identifying gaps and 
challenges in uncharted territory, such as the assur-
ance of ML-based systems. Indeed, CAE is commonly 
used in safety-critical industries (such as defense, 
nuclear, and medical) to assure a wide range of systems 
and devices and support innovation in assurance.

We are developing a particular set of CAE struc-
tures that is generically applicable and helps identify 
how to construct trustworthy ML-based systems by 
explicitly considering evidence of sources of doubt, 
vulnerabilities, and mitigations addressing the behav-
ior of the system. In doing this, we not only assure and 
determine challenges and gaps in behavioral proper-
ties but also self-identify gaps within the assurance 
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framework itself. In the remainder of this article, we 
describe our systematic approach to identifying a 
range of gaps and challenges regarding ML-based sys-
tems and their assurance.

IDENTIFYING  
ASSURANCE CHALLENGES

The decision to trust an engineering system resides in 
engineering argumentation that addresses the eval-
uation and risk assessment of the system and the 
role of the different subsystems and components 
in achieving trustworthiness. Although previous 
abstractions, models, and relationships have been 
constructed in CAE for the assurance of traditional 
software systems, it is not clear if the said existing 
blocks are sufficient to provide compositional argu-
mentation enabling trustworthiness in ML-based sys-
tems. For example, domain-specific abstractions and 
arguments may need to be developed in CAE to specif-
ically target ML subcomponents.

To develop a detailed understanding of such assur-
ance challenges, we use CAE to create an outline of 
an overall assurance case, proceeding from top-level 
claims, concerning an experimental autonomous vehi-
cle and its social context, down to claims regarding 
the evaluation of subsystems, such as the ML model 
(Figure 1). The case study autonomous vehicle, as is 
typical with similar state-of-the-art vehicles, contains 
a heterogeneous mixture of commercial off-the-shelf 
(COTS) components, including image recognition, lidar, 
and other items. Apportioning the trustworthiness, 
dependability, and requirements of each component 
to consider the real-time and safety-related nature of 
the system is challenging. In traditional safety-critical 
engineering, there would be diversity and defense 
in depth to reduce the trust needed in specific ML 
components; yet we do not know whether this is 
practicable for ML-based systems. Argumentation 
blocks may need to be further developed within CAE 
to determine how experimental data can allow for the 

comparison and assessment of diverse subsystems’ 
contribution to defense in depth. This, in turn, can also 
inform future architectures of autonomous systems.

Beyond the study of the applicability of CAE to 
assure ML-based systems, the lens of the assurance 
case is used to identify gaps and challenges regarding 
techniques and evidence aimed at justifying desired 
system behaviors. This is further informed by a review 
of literature, a case study-based assessment of the 
experimental vehicle, and an investigation of our 
industry partners’ development processes to assess 
the current state of the vehicle and the short- to 
medium-term future vision of its use case (approxi-
mately two years). To see how and whether security 
is addressed in the product lifecycle, we used the new 
U.K. Code of Practice PAS 11281, Connected Automo-
tive Ecosystems—Impact of Security on Safety.4

In the subsequent sections, we discuss some of 
the gaps identified regarding technical capabilities 
that may enable trust of system behaviors. We high-
light three areas: requirements, security, and verifica-
tion and validation (V&V). There are also issues of eth-
ics, advanced safety analysis techniques, defense in 
depth, and diversity modeling that we do not address.

GAPS AND CHALLENGES

Innovation, trust, and requirements
There is a need to address the realities of the innova-
tion lifecycle and progressively develop requirements, 
including those for trustworthiness and assurance. 
In this innovation approach, the vehicle is gradu-
ally developed from a platform to trial technologies 
to the final product (Figure 2). There is an assurance 
gap in that, when analyzing how much the technolo-
gies need to be trusted, there must be an articulated 
vision of what they will be used for. If the vision of how 
something will be used is not clearly formulated, we 
cannot assess how much we need to trust it or what 
the risks are.
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THE ASSURANCE FRAMEWORK

T he claims, arguments, and evidence (CAE) frame-
work supports the structured argumentation for 

complex engineering systems. It is based on an explicit 
claim-based approach to justification and relates 
back to earlier philosophical work by WigmoreS6 and 
ToulminS7 as well as drawing on theory and empirical 
research in recent years in the safety and assurance 
cases areas (see John Rushby’s analysisS4 for a rigorous 
review of the field).

At the heart of the CAE framework are three key 
elements (Figure S1). Claims are assertions put forward 
for general acceptance. They are typically statements 
about a property of the system or some subsystem. 
Claims asserted as true without justification are as-
sumptions, and claims supporting an argument are sub-
claims. Arguments link evidence to a claim, which can 
be deterministic, probabilistic, or qualitative. They con-
sist of “statements indicating 
the general ways of arguing 
being applied in a particular 
case and implicitly relied on 
and whose trustworthiness 
is well established“ (see 
ToulminS7), together with 
validation of any scientific 
laws used. In an engineering 
context, arguments should 
be explicit. Evidence serves 
as the basis for justifica-
tion of a claim. Sources of 
evidence can include the 
design, the development 
process, prior experience, 
testing (including statistical 
testing), or formal analysis.

In addition to the basic 
CAE concepts, the framework 
consists of CAE blocks that 
provide a restrictive set of 
common argument fragments 
and a mechanism for separat-
ing inductive and deductive 
aspects of the argumentation 
(Figure S2). These were identi-
fied by empirical analysis of 
actual safety cases.S5 The 
blocks are as follows:

Argument

Claim

Subclaim 2 Subclaim 1 

Evidence 1 Evidence 2 

FIGURE S1. The CAE notation.

Top-Level Claim

Concretion

Claim (X)

Decomposition,
Substitution, or

Calculation

Application of
Argument
Justified

Claim (A) Claim (B) Side Claims
Validate the

Argument

Evidence
Incorporation

Results R
Directly Support

Claim (A)

Results R

Claim (A) is now
precise enough to

be directly
supported/rebu�ed

by evidence.

The claim cannot be
directly shown by

evidence, so one of the
CAE blocks is selected

to define subclaims.

The top-level claim
is made precise with a
concretion argument.

FIGURE S2. An example of CAE block use.
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This is particularly important for security and sys-
temic risks, where the scale and nature of the deploy-
ment (such as a key part of an urban transport system) 
will lead to more onerous requirements that have to 
be reflected in the earlier technology trials and evalu-
ations. Alternatively, more agile approaches would be 
to progressively identify these trust requirements as 
the innovation proceeds. But this might lead to solu-
tions that do not scale and, in the extreme, could not 
be deployed. We believe that the innovation lifecycle 
subsequently presented is typical for many players in 
the industry and will be increasingly adopted as the 
ML components become more productized.

Security
Security is a fundamental and integral attribute of the 

technical themes of the project, in the requirements, 
V&V, and assurance research. While the requirements 
of the new PAS 11281 Code of Practice may be met in 
a mature implementation of the vehicle being stud-
ied, on the whole, the security will be challenging for 
industry, and advice must be provided on partial and 
project-specific implementation of the PAS that allows 
for maturity growth.

The security aspects need to be integrated into 
the entire lifecycle: systems are not safe if they are 
not secure. This applies to the vehicle as a whole 
as well as to the ML subsystems; most ML systems 
have not been designed with a systematic attention 
to security.10 The PAS clauses address the following 
areas and are equally applicable to the vehicle and its 
components:

»» Decomposition: There is partition of some aspect of 
the claim, or divide and conquer.

»» Substitution: A claim about an object is refined into 
a claim about an equivalent object.

»» Evidence incorporation: Evidence supports the 
claim, with an emphasis on direct support.

»» Concretion: Some aspect of the claim is given a 
more precise definition.

»» Calculation or proof: Some value of the claim can be 
computed or proved.

The framework also defines connection rules to 
restrict the topology of CAE graphical structures. The 
use of blocks and associated narrative can capture 
challenges, doubts, and rebuttals and illustrates how 
confidence can be considered as an integral part of the 
justification.

The basic concepts of CAE are supported by an in-
ternational standard,S1 IAEA guidance,S3 and industry 
guidance.S2 To support CAE, a graphical notation can 
be used to describe the interrelationship of evidence, 
arguments, and claims.S3,S5 In practice, top desirable 
claims, such as “the system is adequately secure,” are 
too vague or are not directly supported or refuted by 
evidence. Therefore, it is necessary to create subclaim 
nodes until the final nodes of the assessment can be 
directly supported or refuted by evidence.
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1.	 security policy, organization, and culture
2.	 security-aware development process
3.	 maintaining effective defenses
4.	 incident management
5.	 secure and safe design
6.	 contributing to a safe and secure world.

As we noted previously, the deployment of autono-
mous technologies may follow an innovation lifecycle 
that first focuses on functionality and seeks to pro-
gressively add additional assurance and security. This 
will make the development of the assurance and safety 
cases and associated security and safety risk assess-
ments particularly challenging. From our experience, 
we recommend the following:

1.	 Explicitly define the innovation cycle and 
assess the impact and feasibility of adding 
assurance and security.

2.	 Address the approach to security-informed 
safety at all stages of the innovation cycle. If 
safety, security, and resilience requirements 
are largely undefined at the start of the 
innovation cycle, the feasibility of progressively 
identifying them during the cycle should be 
assessed, together with the issues involved in 
evolving the architecture and increasing the 
assurance evidence.

3.	 Apply PAS 11281 to systematically identify the 
issues. Use a CAE assurance case framework 
and map PAS clauses to this to provide a 

Supply Chain
Deployed

Vehicle Adheres
to Safety

Requirements

Safety
Requirements

Functional
Decomposition

Sensors Meet
Requirements

VisionMeet
Requirements

Robo Vision
Meet

Requirements

Sensor Fusion
Meet

Requirements

Localization
Meet

Requirements

Route
Planning Meet
Requirements

Concretion

FIGURE 1. A high-level example of an assurance subcase in CAE.
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systematic approach to applying the PAS.
4.	 Consider a partial and project-specific imple-

mentation of the PAS to meet the innovation 
cycle.

5.	 Collect experience in developing a 
security-informed safety case and integrating 
security issues into the safety analyses needed 
to implement the PAS.

V&V
We use the assurance case in CAE top-down to iden-
tify the claims we wish to support and bottom-up 
to evaluate the evidence that could be provided by 
them and, hence, systematically assess gaps, chal-
lenges, and solutions. This is shown schematically 
in Figure 3. As part of this analysis, we assessed 
state-of-the-art formal methods for autonomous sys-
tems and observed that their maturity and applicabil-
ity are lacking for sufficiently justifying behavioral and 
vulnerability claims.

Consider the issue of adversarial attacks and 
perturbations,5,6 which has been particularly chal-
lenging with regard to the robustness of ML algo-
rithms. Verification researchers have focused on the 
property of pointwise robustness, in which a classi-
fier function f ’ is not robust at point x if there exists 
a point y within  such that the classification of y is 
not the same as the classification of x. That is, for 
some point x from the input, the classification label 
remains constant within the neighborhood  of x, 
even when small-value deltas (i.e., perturbations) are 
applied to x. A point x would not be robust if it were at 
a decision boundary, and adding a perturbation would 
cause it to be categorized in the next class. Generally 

speaking, the idea is that a neighborhood  should be 
reasonably classified as the given class.

However, proposed pointwise robustness veri-
fication methods8–10 suffer from the same set of 
limitations.

›› There is a lack of clarity on how to define mean-
ingful regions  and manipulations. 
○	 The neighborhoods surrounding a point x   
	 that are currently used are arbitrary and  
	 conservative.
›› We cannot enumerate all x points near which 

the classifier should be approximately constant; 
that is, we cannot predict all future inputs.

Furthermore, researchers have been unable to find 
compelling threat models that required perturbation 
indistinguishability,12 and it has been demonstrated 
that lp, which defines the neighborhood region , is 
a poor proximity for measuring what humans actu-
ally see.13 Finally, adversarial perturbations can be 
achieved by much simpler attacks that do not require 
ML algorithms (e.g., covering a stop sign). Thus, the 
extent to which these techniques can provide us with 
any level of confidence is not very high.

Other verification techniques7,9 aim to verify more 
general behaviors regarding ML algorithms, instead of 
just pointwise robustness. Such techniques require 
functional specifications, written as constraints, to 
be fed into a specialized linear-programming solver to 
be verified against a piecewise linear constraint model 
of the ML algorithm. However, the generalization of 
these algorithms is challenging, given the require-
ment of well-defined and bounded traditional system 
specifications, devoid of specifications regarding the 
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FIGURE 2. The typical stages of development from innovation to products.
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behavior of the ML algorithm itself. These techniques 
are thus applicable to well-specified deterministic 
ML algorithms and cannot be applied to perception 
algorithms, which are notoriously difficult to specify, 
let alone verify.

Apart from the ML algorithm, the assurance of the 
non-ML supporting components of an autonomous 
system is challenging, given that the use of COTS or 
open source components leads to uncertain prov-
enance. Errors within non-ML components can propa-
gate and affect the functionality of the ML model.14 It 
is, therefore, important to explore how traditional V&V 
methods—in particular, static analysis of C code—
can provide assurance for the larger ML system, 
offering confidence beyond the component level. In 
the following, we provide a preliminary list of results 

from analyzing YOLO, a commonly used open source 
ML vision software, and a number of different run-time 
errors that were identified:

›› a number of memory leaks, such as files opened 
and not closed, and temporarily allocated data 
not freed, leading to unpredictable behavior, 
crashes, and corrupted data

›› a large number of calls to free where the validity 
of the returned data is not checked [this could 
lead to incorrect (but potentially plausible) 
weights being loaded to the network]

›› potential “divide by zeros” in the training code 
(this could lead to crashes during online training, 
if the system were to be used in such a way)

›› potential floating-point divide by zeros, some of 
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FIGURE 3. The use of CAE to assess V&V gaps.
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which were located in the network cost calcula-
tion function (as noted above, this could be an 
issue during online training).

These errors would be applicable only to languages 
such as C and C++. Not all errors would be relevant to 
a language such as Python, used in the implementa-
tion of numerous ML libraries and frameworks, as the 
semantics and implementation of the language itself 
do not enable overflow/underflow errors, defined by 
Hutchison et al.14 However, Python is a dynamically 
typed language, bringing about a different set of 
program errors not exhibited by statically typed lan-
guages (such as type errors). Unfortunately, no static 
analysis techniques or tools exist to allow for the 
analysis of Python code. Furthermore, it is unclear how 
potential faults arising from dynamic languages could 
affect the functionality of an ML model itself. This is a 
large gap within the formal methods field that needs 
to be addressed immediately, given the deployment of 
autonomous vehicles utilizing Python.

There is a need for disruptive innovation in the 
assurance of autonomous and ML-based systems. 

We provided a summary of the outcome-focused, 
CAE-based framework we are evolving to address 
these systems and used it to identify specific gaps 
and challenges; we also discussed some solutions. 
We demonstrated the feasibility of deploying the best 
of existing work (e.g., advanced static analysis tech-
niques) and identified the need for new approaches.

Overall, there is a need for stronger evidence and 
techniques to assure the dependability of ML compo-
nents and for autonomous systems as a whole. Indeed, 
there is common good in sharing techniques and 
strategies regarding development lifecycles, diver-
sity, security, and V&V algorithms in sufficient detail 
for independent analysis and research. We hope to 
play our part in this by sharing our generic developed 
assurance case and providing, in the public domain, 
the more detailed report this article is based on. If we 
can achieve our goal of disruptive assurance, this can 
have a positive impact on innovation in a wide range of 
industries and technologies, not just ML-based ones. 
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Validation of  
Autonomous Systems
Christof Ebert and Michael Weyrich

Society today depends on autonomous sys-
tems, such as intelligent service systems, 
self-driving trains, and remote surgeries.1 The 

ultimate validation of the Turing test is that we often 
do not recognize autonomous systems. This growing 
usage poses many challenges, such as how to provide 
transparency, which rules or learning patterns are 
applied in a complex situation, and if these rules are 
the right ones. Validation is the key challenge, of which 
we will provide an overview in this article.

With machine learning and continuous over-the-air 
upgrades and updates, a core tenant of any quality 
strategy is continuous verification and validation. Cor-
rections and changes must be deployed in a fluid and 
continuous scheme, reliably over the air. We will face 
future scenarios where software-driven systems, and 
maybe whole infrastructures, must not be started if 
they do not include all of the latest software upgrades. 
Automobiles and manufacturing processes that 
are safety critical fall into that category. Even more 

demanding are medical devices, which must provide 
a hierarchical software assurance because there is no 
room for failure.

Autonomous systems have multiple complex 
interactions with the real world. They perceive and act 
in the environment, based upon the reflections of an 
intelligent control system, and they have an increas-
ing impact on our lives as they implement and execute 
high-level tasks without detailed programming or 
direct human control. Unlike automated systems, 
which execute a carefully engineered sequence of 
actions, they are self-governing their course of action 
to independently achieve their goals.

Figure 1 indicates the five steps from automation 
to autonomy as we know them from human learn-
ing, where we advance from novice to expert. Those 
steps exemplify the progress of a simple and “assisted 
behavior” from low-level sensing and control toward 
“full cognitive systems” with a very high degree auton-
omy. Automated systems are gradually enhanced 
to develop a skilled behavior along with enhanced 
mission planning and control and execution capa-
bilities that will eventually lead to the full cognitive 
actions of an autonomous system. It is expected that 
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an intelligent behavior can be identified by acquiring 
knowledge and understanding, which entails system 
functionalities such as perception, reflection, and 
action in terms of a cognition.

A completely autonomous car on level 5 is sup-
posed to drive with no human intervention, even in dire 
situations. This implies that the car must have intel-
ligence on par with or better than humans to handle 
not just regular traffic scenarios but unexpected ones. 
Although several players, such as Google and Uber, 
are granted permission to operate their self-driving 
services, deadly incidents put our faith in these cars 
to a test.2 It is quite apparent that existing validation 
measures aren’t enough.3 We need new test methods 
that can envision fatal traffic situations that humans 
haven’t encountered yet. In addition, testing cannot 
simply be isolated to the final development stages. It 
must be part of every phase in the product lifecycle. A 
sensible engineering process must be adopted in the 
development of autonomous cars that lays enough 
emphasis on testing and validation.

Unlike an automated system, which cannot reflect 
on the consequences of its actions and cannot change 
a predefined sequence of activities, an autonomous 
system is meant to understand and decide how to 
execute tasks based on its goals, skills, and a learning 
experience. While contemplating the deficiencies of 
autonomous systems, we should acknowledge that 
humans have natural limits, in terms of processing 
speed, repeatability of tasks, handling complexity, 
and so forth. In fact, in aerospace, we already trust 
autonomous flying, and for automotive applications, 

automation is forecast to reduce deadly accidents by 
90%.4 Autonomous systems can become an aid in the 
future, in areas such as automated and autonomous 
driving, flying, and production robotics.

VALIDATION OF  
AUTONOMOUS SYSTEMS

Autonomous systems provide efficiency and safety 
as they relieve human operators from tedious man-
ual activities. For instance, the widespread use of 
self-driving cars could eliminate as much as 50% of a 
person’s daily commuting time.4 As exciting as this may 
sound, the question “Can we trust the autonomous 
systems?” will grow for years to come. Public confi-
dence in autonomous systems depends heavily on 
algorithmic transparency and continuous validation.

Recently, we have seen several dramatic accidents, 
such as an automated car misinterpreting a white 
truck as a white cloud, and another one overlooking 
pedestrians on a road, thus, killing people. One spec-
tacular accident happened when an automated vehicle 
continued along while its driver had a heart attack and 
could not supervise it. Within a few seconds, the auto-
mated vehicle killed a mother and child as it tried to 
avoid colliding with a tree. Hitting the tree might have 
killed the driver, but innocent people in the surround-
ing environment would have been safe.

There are many open questions about the valida-
tion of autonomous systems: How do we define reli-
ability? How do we trace back decision making and 
judge it after the fact? How do we supervise these sys-
tems? How do we define liability in the event of failure?
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FIGURE 1. The five steps from automation to autonomy.
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Figure 2 provides an overview 
of validation technologies for 
autonomous systems. We distin-
guish, horizontally, the transpar-
ency of the validation. Black box 
means that we have no insight 
to the method and coverage, 
while white box denotes trans-
parency. The vertical axis classi-
fies the degree to which we can 
automate validation techniques 
and, for instance, facilitate regres-
sion strategies through software 
updates and upgrades.

Let us look at traditional test-
ing techniques (see Figures 1 and 
2) and evaluate their behaviors. 
Table 1 provides the complete 
evaluation of static and dynamic 
validation technologies for auton
omous systems. Negative require-
ments (such as safety and cyber-
security) are typically implied and not explicitly stated 
in the system specifications.5 The following sections 
explain how these methods are applied to validate 
autonomous cars.

Fault Injection
Fault injection techniques make use of external equip-
ment to insert faults into a target system’s hardware, 
with or without direct contact. By having direct con-
tact, faults, such as forced current addition, forced 
voltage variations, and so forth, can be injected to 
observe the behavior of the system. Faults can be 
introduced without making physical contact by using 
methods such as heavy-ion radiation, exposure to 
electromagnetic fields, and so on. Such fault injections 
can cause bit flips, hardware failure, and similar events 
that are not tolerated in safety-critical systems.

Functionality-Based Testing
Functionality-based test methods categorize the 
intelligence of a system into three classes: 1) sens-
ing, 2) decision, and 3) action functionalities. The idea 
behind such methods is that an autonomous vehicle 
should be able to retrieve various functionalities for a 
given task analogous to human beings. For example, 

a vehicle should be able to recognize other cars and 
trucks, pedestrians, and so forth for vision-based func-
tionality. Combinations of these recognized objects 
can act as inputs to decision functionality, and sev-
eral decisions can lead to actions. Functionality-based 
testing breaks down the scenarios into various opera-
tional components that can be tested individually.

Hardware in the Loop
Although simulation tries to encapsulate the real 
world as closely as possible, inherent limitations 
invariably create a void between the two. Hardware 
in the loop (HIL) closes this gap a little by using phys-
ical components for certain aspects of simulation. 
For example, a camera model in a simulation tech-
nique can be replaced by an actual camera. The input 
to the camera can be fed by means of a computer 
screen where videos of various real-time traffic condi-
tions are played to validate the behavior of car. A more 
advanced technique has been proposed for autono-
mous systems that are tested by robots, for instance, 
vehicle HIL, where the simulated vehicles in traffic 
have been replaced by moving robots. This has the 
advantage that, in addition to the camera, radar and 
lidar hardware can be tested using HIL.
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Vehicle in the Loop
Human interaction can have a drastic influence on 
the behavior of partially automated cars. The meth-
ods specified earlier fail to account for this reality. In 
vehicle-in-the-loop simulations, real cars are used, 
though in a safe environment. A driver is shown sim-
ulated feeds of the external environment to capture 
his interaction with the car. The car travels across a 
ground devoid of obstacles, simulating inertial effects 
and simultaneously responding to the external feed. 
The greatest advantage to this method is safety: Since 
there are no real obstructions involved, no harm will 
be incurred by the test drivers, even if they encounter 
dangerous situations.

Simulators
Simulators are closed, indoor cubicles that act as sub-
stitutes for physical systems. They can replicate the 
behavior of any system by using hardware and a soft-
ware model. The behavior of a driver can be captured 
by immersing him a replicated external environment. 
Since simulators employ hydraulic actuators and elec-
tric motors, the inertial effects they generate feel 
nearly the same as the real-life version. They are used 
for robots in industrial automation, surgery planning 
in medicine, and railway and automotive applications.

Brute Force
Nothing can come closer to the real world than the 
real world itself. This is perhaps the final validation 
phase, where a completely ready system is physically 
driven onto roads with actual traffic. The sensor data 
are recorded and logged to capture behavior in criti-
cal situations. They are analyzed to accommodate and 
fine-tune the system according to everyday scenarios. 
The challenge in this stage, however, lies in the sheer 
amount of test data that are generated. A stereo video 
camera, alone, generates 100 GB of data for every 
kilometer driven. In such situations, big data analysis 
becomes extremely important.

Intelligent Validation Techniques
Intelligent validation techniques tend to automate 
the complete testing process or certain aspects of 
testing. This eliminates the potential errors asso-
ciated with manual derivations of test cases, since 
humans may fail to recognize and think about certain 

scenarios. It also eradicates the enormous amount 
of time that needs to be invested to obtain the test 
cases. The “Intelligent Testing” section summarizes 
some approaches that attempt to derive such valida-
tion techniques.

Truly transparent validation methods and pro-
cesses assume the utmost relevance and will be chal-
lenged by the progress of technology through the five 
steps toward autonomous behavior that are sketched 
in Figure 1. Although they are still relevant, traditional 
validation methods aren’t enough to completely test 
the growing complexity of autonomous cars. Machine 
learning, with situational adaptations and software 
updates and upgrades, demands novel regression 
strategies. Figure 2 provides a map of the different 
testing techniques.

INTELLIGENT TESTING
With AI and machine learning, we need to satisfy 
algorithmic transparency. For instance, what are the 
rules, in a neural network that is obviously no lon-
ger algorithmically tangible, to determine who gets 
a credit or how an autonomous vehicle might react 
with several hazards at the same time? Classic trace-
ability and regression testing will certainly not work. 
Future verification and validation methods and tools 
will include more intelligence based on big data 
exploits, business information, and the processes’ 
ability to learn about and improve software quality in 
a dynamic way.4

A key question concerns which way AI can support 
the process of validation. Obviously, there are many 
AI approaches, ranging from rule-based systems, 
fuzzy logic,6 and Bayesian nets to the multiple neural 
network approaches to deep learning. However, the 
process of validating an autonomous system is multi-
layered and rich in detail. Various levels of validation 
testing can be distinguished, such as the systems 
level, the components, and the modules.

The potential for intelligent testing is manifold. 
On a system level, there are questions about which 
test cases must be executed and to what extent. This 
means that intelligent validation is required to help 
with the selection and even the creation of test cases. 
A first step in that direction would be an assistance 
functionality that helped to identify priorities in an 
existing set of cases. As a result, a validation expert 



www.computer.org/computingedge� 43

SOFTWARE TECHNOLOGY

would be able to test faster and with a better cover-
age of situationally relevant scenarios. On the level of 
a component or module,7 testing it is also required to 
identify relevant cases. This can range from a simple 
support mechanism for how to feed a system with ade-
quate inputs and checks on the outputs, to complex 
algorithms that automatically create test cases based 
on code or a user interface. Figure 3 provides an over-
view of intelligent testing as we ramp up for autono-
mous systems. Unlike brute force, intelligent testing 
considers the white-box and black-box dependencies 
and, thus, balances efficiency and effectiveness. See 
“Cognitive Testing for Autonomous Systems” for a 
concrete case study.

PERSPECTIVES
Verification and validation depend on many fac-
tors. Every organization implements its own meth-
odology and development environment, based on a 

combination of several of the tools presented in this 
article. It is important not only to deploy tools but 
to build the necessary verification and validation 
competences. Too often we see solid tool chains but 
no tangible test strategies. To mitigate these purely 
human risks, software must increasingly be capable 
of detecting its own defects and failure points. Var-
ious intelligent methods and tools will evolve that 
can assist with smart validation of autonomous sys-
tems. However, even with the support of the smart-
est intelligent algorithms, the question remains how 
to build the public’s trust that autonomous systems 
can be validated while considering ethical dilemmas, 
such as the accident when the mother and child 
were killed.

With the growing concern of users and policy 
makers about the impact of autonomous systems on 
our lives and society, software engineers must ensure 
that autonomy acts better than humans. Clearly, we 

COGNITIVE TESTING FOR AUTONOMOUS SYSTEMS

I n our industrial projects, we often face the challenge 
of how systems can be validated, and safety assured, 

when they undergo a change during operation. Updates 
over the air are commonly used for functional modifica-
tions of software-based automated systems. Be they in 
manufacturing, automotive applications, or intelligent 
building, automated systems are mostly component 
based; they consist of multiple control units that are 
distributed. Each unit is in a certain location and has 
a specific functionality that it provides to the overall 
system.

Unwanted behavior and basic functional errors might 
occur somewhere in a distributed system because of an 
alteration elsewhere. How can such a system be safe-
guarded when changes in its components occur during 
runtime? How can safety and security certifications be 
maintained after a software modification happens within 
a single module?

A test certification requires an understanding of 
the effect of a change that is triggered somewhere in a 
software module and has impacts elsewhere. How can 
this interaction be deduced and the consequences for 
all modules be verified without testing the whole system 

again from scratch? The method presented here applies 
an artificial intelligence (AI) that can ascertain the 
consequences of an individual change in all the control 
units.

From our industry experience, we recommend a 
three-step approach to assess the impacts of software 
updates and upgrades (see Figure 3). First, the alteration 
in the system needs to be identified in terms of its origin 
in a module and its localization in the network. Second, 
a logical model of the overall system is composed to 
understand the impact on other modules. However, 
this model is distributed and needs to be automatically 
processed from the multiple submodules of the compo-
nents that are available.

Third, a process of functional verification is required 
to check how the change is propagated and what it 
means with respect to potential malfunctions in the 
distributed system. This AI can be used to test and 
safeguard following a stepwise procedure for testing. It 
only requires the specification of the control models and 
their intended interaction with the other modules, upon 
which the overall functionality can be deduced and test 
certificates can be obtained on request.
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are not talking about few percentage points. To build 
trust, we need a level of quality at least one order of 
magnitude higher than human-operated systems. It 
is, above all, a question of validation to achieve trust. 
Alan Turing, who was one of the first to consider AI 
in real life, remarked wisely, “We can only see a short 
distance ahead, but we can see plenty there that 
needs to be done.” This remains true for a rather long 
transition period, and intelligent validation will play a 
pivotal role. 
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DEPARTMENT: ANECDOTES

Queens of Code
Eileen Buckholtz, Director, Queens of Code Project

INTRODUCTION TO THE QUEENS 
OF CODE

Queens of Code is a women's technology history proj-
ect—a collection of stories, experiences, and insights 
from women who worked in information technology 
at the National Security Agency (NSA) in the 1960s, 
1970s, and 1980s. NSA's computing women pro-
grammed and managed the most sophisticated sys-
tems of their day and I was one of them. I started this 
project in 2018 to collect the stories of the agency's 
women technology pioneers and recognize their con-
tributions because I believed that if we did not doc-
ument these stories now while many of us are still 
living, our history would never be told. The National 
Cryptologic Museum and NSA's historians offered 
encouragement. I reached out to women I had worked 
with, and dozens signed up. Participants were asked 
to complete a detailed questionnaire and write their 
stories. All material had to be approved through 
NSA's prepublication review. We have been network-
ing online for almost two years and have more than 75 
women in the group. The goals for the project are rec-
ognition of the Queens of Code in the history of com-
puting, expanding the understanding of how women 
worked in early computing, and inspiring more young 
women to pursue STEM careers. We are sharing our 
stories in presentations, articles, and interviews.

Because these NSA women's jobs were often 
top secret and they worked on the most sensitive 
national security programs, they could not discuss 
what they did, even with their families. In many 
cases, they could not even confirm they worked 
for NSA. They and their computing activities have 

been, for practical purposes, a secret for more than 
50 years.

Women have always been in the workforce—
although their contributions to science have often 
gone unrecognized. In the 20th century, women 
worked for the U.S. government and military, not just 
in clerical, nursing, and other “women's” positions, 
but in specialized technical fields such as cryptology, 
mathematics, and computing. The U.S. military dur-
ing World War II actively recruited educated and tal-
ented women, including those from some of the best 
colleges, to fill critical vacancies and to “free a man 
to fight.” These women often found themselves doing 
tedious work, but gained a foothold in the technical 
workplace.

According to Liza Mundy's Code Girls, over 10,000 
women were a critical part of the cryptologic mission, 
some working with the early computing machines.1 
In the U.S. many women who had technical skills 
were sent home after the war to free the jobs for men 
returning from war. More generally, women's place in 
computer history has not been publicized because it 
has largely been HIStory, focusing on hardware and 
the male inventors,2 as I saw on my visit to the Com-
puter History Museum in Mountain View, California, in 
July 2018.

Fortunately, modern cryptology, in particular, 
was welcoming to women from the start. Elizebeth 
Friedman and Agnes Driscoll led the way in the 
1920s and 1930s.3 The work of the “Code Girls” dur-
ing World War II was critical for winning the war. Like 
their contemporaries at NASA, whose story was told 
in the bestselling book and hit movie Hidden Figures, 
the women at NSA, walking in the footsteps of their 
World War II sisters, have broken ground from the 
1960s on as they contributed to advances in comput-
ing in the world of cryptology.4
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Many of the Queens of Code were recruited by NSA 
right after college and worked in computing technol-
ogy for 30, 40, and even 50-year careers. I was one 
of those queens, hired in 1970, with one of the first 
undergraduate degrees in computer science in the 
country. Starting from data systems interns and rising 
to senior leaders and computer science experts, we 
were on the forefront of computer technology devel-
opment. In the 1960s, 1970s, and 1980s, our agency 
had the most sophisticated computers in the world as 
well as the most challenging information processing 
requirements. By 1968, NSA had more than 100 com-
puters spread over five acres of computer rooms.5 The 
inventory grew rapidly over the next decades as we 
and our male colleagues worked with many vendors 
to drive new system development to meet our big data 
processing needs.

Our stories may also provide some insight to com-
panies today that struggle to recruit and retain women 
in tech. In contrast to corporations and institutions 
in various other sectors, NSA did a lot right over a 
50-to-60-year period to recruit, develop, and retain 
their computing women. They had learned from previ-
ous experience with the Code Girls during World War 
II that women were a valuable asset to their mission. 
They invested in us through training, intern programs, 
and advanced degrees, paid equal starting salaries 
for men and women, gave women responsibility and 
credit, promoted many women to senior manage-
ment and technical positions, and provided a good 
work/life balance. Fortunately for us, most of the men 
we worked with were supportive as well. Of course, 
there were some struggles along the way, including a 
class-action lawsuit over fair promotion in the 1970s,6 
but we prevailed. The Queens of Code made a daring 
leap into a new career field of computer science and 
found innovative, exciting, and rewarding careers that 
contributed to the high-tech world we live in today

The rest of this article highlights some of the expe-
riences I, and many other women, shared working on 
our first computers.

FIRST ENCOUNTERS OF A  
BINARY KIND

If you grew up in the 1980s or 1990s as part of the mil-
lennial generation, your first experience on a com-
puter might have been with a personal computer at 

home or at school. You might have learned to program 
in basic using my Micro Adventure books7 on an Apple 
II, Radio Shack TRS-80, Atari, or IBM PC. If you are part 
of Generation Z, you probably played games on your 
first computer tablet or smart phone maybe as early 
as a toddler. E-books, apps, and online shopping and 
learning are things you took for granted.

That was not the case when the Queens of Code 
were young. The ARPANET (the early version of the 
Internet that had just begun to come online in 1969) 
only connected some dozens of government agencies, 
universities, and other research organizations, and 
the World Wide Web had not been invented. Back in 
the early 1970s, one of our offices did have a terminal 
that we could use a modem to dial into the National 
Bureau of Standards’ ARPANET. From NBS, we could 
connect to the Stanford Research Institute—and it 
took dozens of steps to send a line of text along with 
manually calculated checksums (a digit that was 
the sum of the other digits in a piece of data used to 
detect errors).

When we were growing up, there was little digital 
computing technology in the schools we attended 
before college. Pocket-size calculators made their 
debut in the 1970s. Before then, in high school or col-
lege, we used a slide rule (the manual device invented 
in 1620) for math, chemistry, or physics courses.

Many of us were 18-to-22-year olds when we met 
our first computer, perhaps an IBM 1620, 1401, or even 
360 (after its release in 1964) at our college or uni-
versity. Often the Queens of Code's first computing 
experiences were on their initial assignment at NSA 
or at college. These computer installations could be 
huge and expensive, especially those in NSA's exten-
sive basement sometimes taking up spaces as big as 
a couple of basketball courts, cooled by water under 
the floors to make the rooms so cold that you had to 
wear a heavy sweater or jacket when working there.

Some of our first computing experiences were on 
computers with limited capacity and programming 
done in assembly language or even octal, and that was 
not easy. We had to be crafty to make the programs 
work within the constraints. FORTRAN, the first 
commercially available computer language to use a 
compiler was released in 1957. A compiler meant that 
the code could be written with higher level and easier 
to manage commands that would automatically 
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generate the assembly language or machine code 
needed for a specific machine. FORTRAN was 
designed to provide a language for the scientific com-
munity, and NSA certainly fit in that box. As computer 
technology advanced and memory size increased and 
became less expensive, programmers could write 
code with less computer specific restrictions.

Dottie Blum, a legendary computing woman at 
our agency, was using FORTRAN as early as 1954 even 
as it was being developed by John Backus and team 
at IBM. At first, people wondered if using a compiler 
would produce code as efficient as writing in assembly 
language. But over time, computer speed and memory 
size increased and convenience won out. Another 
benefit was that programs could be ported (moved 
over) to run on other machines that had a FORTRAN 
compiler. It was a big improvement over having to 
rewrite programs in another assembly language every 
time a new computer came into our collection.8

Programming was a little like cooking. You had 
input (like your ingredients) and then steps that pro-
cessed the ingredients. If all worked well, you have 
something to eat for supper. Fortunately, I was a bet-
ter programmer than a cook.

Our first programs were either assignments at 
school or “toy” programs we were assigned to learn 
how the computer worked. On the earliest computers 
from the 1950s like the special purpose ones built in 
house, there was only the basic documentation, so 
you had to figure things out for yourself. Sarah, one 
of our first programmers, used to say that when she 
started at NSA the computers took up a whole room 
and you were lucky to find a small notebook with 
instructions. By the time she retired, the computers 
were small enough to fit on your desk, and you had a 
bookcase of manuals and online documentation.

In our environment, the programming process 
worked as follows. The first step was to define the 
problem. In our case for application programs, this 
meant talking to the analyst to understand the prob-
lem that needed solving. The problem was often to 
automate a time-intensive manual process such as 
an attack on a cryptographic code we had collected 
by analyzing signals or language translation. NSA pro-
cessed tons of data to produce intelligence reports 
for government decision makers including the Presi-
dent and the military. NSA was doing “big data,” long 

before the phrase was coined in 2005. Programs were 
written to support requirements at the time.

The programmer would then break the process 
down into small steps that would provide a solution. 
Programmers often use flowcharts to block out the 
steps that need to be taken. We used plastic tem-
plates back then to draw the flow charts.9 Now there 
are many software tools and applications to help with 
program design.

Next, we had write the code in a programming 
language like FORTRAN, PL1, or C or in assembly 
language in the earlier days. Then, we had to debug 
it, resolving all the problems that we could find. After 
that, we tested with our real-world users; and, when 
all was working, officially declared the program live. 
Of course, there would always be more bugs that 
popped up, and we had to fix those in a timely manner.

At the agency, system programmers who worked 
on the operating systems and networking were in the 
C (for Computer) Organization (which was later reor-
ganized and renamed T (for Telecommunications and 
Computer) Organization. It seemed that every three 
or four years we have a major reorganization, some-
times corresponding to a new Director's arrival. Some 
application programmers started out as part of C, but 
later moved out to sit with the users in the production 
organizations. All the reorganizations and reassign-
ments were confusing. One of my bosses had a sign 
in his office that read, “Perfect reorganization is only 
achieved by groups on the verge of collapse.”

LEGACY QUEEN'S FIRST 
ENCOUNTER WITH A COMPUTER

Dottie Toplitzky Blum, 1950
Dottie had worked with the Electronic Adding 
Machines (EAM) equipment and the Army's version 
of the BOMBE, an electromechanical device devel-
oped by Joe Desch of National Cash Register during 
WWII to decode Enigma messages. Another of Dottie 
Blum's earliest binary encounters was with the Stan-
dards Eastern Automatic Computer (SEAC), which 
was built in Washington, DC, USA, for the National 
Bureau of Standards. The SEAC was one of the first 
U.S. stored program computers. Dottie then worked 
for AFSA, the Armed Forces Security Agency, NSA's 
predecessor. AFSA did not have their own computer 
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but the support organization did manage a number of 
calculating and cipher machines including the Navy's 
and Army's BOMBEs that were used in the war effort. 
These earlier devices were not actually computers 
since they lacked memory or ability to do anything 
outside of their limited computational functions such 
as compiling and comparing text, searching for cribs 
(plain text), or calculating statistics.

It was 1950 and Dottie and Sam Snyder, one of her 
coworkers whose computer history writings docu-
mented this story, got an urgent request from the 
Navy's Communications Security Division. The job 
required the verification of a few hundred involutory 
4 x 4 matrices10 that were used in the Navy callsign 
system. The SEAC's memory was only 512 (45 bit) 
words, which was pretty limiting. Back then, they had 
to negotiate time on the SEAC to debug the program, 
and the only time NBS would allow them to purchase 
(at $24 an hour) was after midnight or on Sunday 
afternoons.

The program was written but they needed test 
data. Dottie, who was working for the Machine Pro-
duction Organization as an IBM specialist, produced 
thousands of random numbers on punched tape to be 
used to test the application. The SEAC took between 
8 and 15 seconds to process each matrix and then 
printed out the ones that met the “useful” criteria. 
With a lot of work and some late nights and weekends, 
Dottie and Sam got the information to the Navy in a 
timely manner to help solve the problem. Sam said, 
“Those who participated in this task found the experi-
ence ‘frustrating, exhilarating sense of accomplish-
ment and participation in making history.”11

MORE FIRST-HAND ENCOUNTERS 
FROM OUR QUEENS OF CODE

Carol McWilliams, 1967–1970
My first programming experience was assembly lan-
guage on a CP818 (UNIVAC 1224) for field installation. 
We “wrote” our programs on a Kleinschmidt—some-
thing like a typewriter, but it produced punched paper 
tape with one instruction per line (e.g., “clear regis-
ter”). You could fix an error by wrapping Scotch tape 
over the holes in the line and repunching the line! For-
tunately, the readers were not sensitive to the opac-
ity of the tape, just the holes. The resulting paper tape 

was wrapped butterfly style in a figure eight with a 
paper clip in the center and stored until you had time 
on the computer.12

The first programs I wrote were standalone pro-
cesses. I had data input from magnetic tape, ran the 
program, and produced data output. I scheduled 
computer time and, when it was my time, I took my 
paper tape and mag data tape to the computer room. 
After loading the paper tape into memory, I put my 
magnetic tape on the spool and initiated the program. 
When I was done, I took my program tape, mag tape, 
and results off the computer, cleaned the heads for 
the next programmer, and took everything back to 
my desk to assess the results and debug my program. 
Very much a hands-on process!

Eileen Buckholtz, 1968-1969
I had transferred to Ohio State University (OSU) as a 
math major and was taking a fourth course in calcu-
lus while struggling with the theoretical proofs in the 
class. I remember the professor covering a big black-
board with the proof of the Heine–Borel Theorem. He 
got near the end, realized that he had made a mistake 
and started to erase half his scribblings. My eyes were 
glazing over. What was I doing here?

Later that afternoon, I heard that OSU was open-
ing their computer science department and they were 
looking for students. My boyfriend Howard was in 
engineering and he heard the same thing. Turns out 
they were offering degrees in both the Arts and Sci-
ences Department, where I was enrolled as well as an 
engineering computer science degree. We both signed 
up, became OSU's first computer science graduates, 
and have been computing together for over 50 years.

There were only several dozen students in the first 
computer science classes. It was love at first byte 
for me when I took my first programming course. The 
initial assignment was a simple sort. The next was 
to use a random number generator to simulate shuf-
fling a deck of cards and a matrix for holding all the 
hands. The idea that you could learn a language like 
FORTRAN and make an enormous computer do your 
bidding with structured commands was just fun. As 
we got into more advanced programs, it became chal-
lenging as well.

An IBM 360 installation including CPU, tape drives, 
IO controllers, and other peripherals were housed in 
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a big computer room that took up much of an upper 
floor of the engineering building. We could see into 
the computer room through big windows but we were 
not allowed to go in. After class, we would design our 
programs and then punch up Hollerith cards (one line 
of code per card) on keypunch machines, submit them 
over the counter, and then wait 5 or 6 hours for them 
to run and get our output back. If we made an error, we 
had to correct that and submit again. No wonder the 
four women in the computer science program were 
all dating guys also in the program. Who else would 
want to spend Friday and Saturday nights debugging 
programs?

Elaine Mills, 1965
As part of a work-study program at Towson State Col-
lege (known today as Towson University), I was study-
ing to become an elementary school teacher. I was 
privileged to be assigned to a special project to “com-
puterize” all the records for the five Maryland state 
colleges. Using Hollerith cards and becoming profi-
cient in writing FORTRAN programs in the mid-1960s 
was a “blast” that actually proved to be a tremendous 
personal boost a few years later at NSA.

Kathleen Jackson, 1967
My orientation started with a tour of the “basement,” 
a huge area where the computer I would be using, the 
UNIVAC 1108, was located. The system was so large 
that it nearly filled the whole computer room, since 
it had several printers and other pieces of peripheral 
equipment attached to it. My job was to remove com-
puter printouts from one of the printers, review the 
data, look for data “anomalies,” and adjust the FOR-
TRAN software as needed to fix them. It seemed chal-
lenging and interesting at first but, as the days and 
weeks rolled by, reviewing rows and rows of 1s and 
0s became a little tedious to put it mildly. However, I 
persisted. After completing my tour, I looked forward 
to my next assignment. Over the years, I sometimes 
thought about that initial assignment, and how differ-
ent it was from all the other work I had done at the 
Agency.

Several years later, I came across a report that 
contained Agency historical information. It included 
information about the data that was processed on 
that UNIVAC 1108 computer I was supporting during 

my first assignment in 1967. This report identified how 
critical those data were to national security at that 
time. Suddenly, I became acutely aware that the many 
hours I had spent reviewing those 1's and 0's were 
definitely worth the challenge of the task. In the end, 
I determined that this work was probably some of the 
most significant work I did during my entire career at 
the Agency. I took pride in knowing that this work was 
very important to the security of our nation.

Kathleen Reading, 1982
“Oh great, another girl!” Imagine hearing those words 
upon meeting your supervisor for the first time. I was 
21 years old and just beginning my 34-year career in the 
Information Assurance Directorate (IAD), in the Agen-
cy's print shop. I was taken aback by my boss's com-
ment, but did not say anything as I was just starting a 
new job and did not know what to expect. I do remem-
ber thinking I was going to do everything in my power 
to change my boss's mind about what “girls” could do.

My job title was “Reproduction Worker,” and I was 
one of three women working in the shop. I found that 
job title pretty funny. I first started working in the 
bindery, and then also ran a printing press, large Xerox 
machines and printers, and eventually worked in the 
Electronic Printing and Publishing (EPP) branch. In the 
EPP branch, for the first time, documents to be printed 
were sent electronically via computer by Agency cus-
tomers; and documents also were sent electronically 
to the printers for printing. One of the documents 
printed on the night shift was a daily report that was 
couriered each day to the White House.

As it turns out, I did prove to my boss that women 
are good workers. I was promoted several times, and 
was also one of the first women selected to participate 
in the Agency's first ever production trade program.

Mary Clulow, 1977
“I will rule these machines; they will not rule me.” Qui-
etly determined, I spoke these words late one eve-
ning at work while trying to complete a typing task. I 
was using an IBM Magnetic Card Selectric (aka Mag-
Card) typewriter. This was quite a bold statement for 
an entry level Clerical Assistant at the National Secu-
rity Agency. However, I had been challenged by this 
machine more than once since learning to use it two 
years prior, in 1977.
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For those who may not be familiar with the Mag-
Card, it was quite state of the art for its time and was 
the upgrade to its predecessor, the Magnetic Tape 
typewriter. Basically, after typing on bond paper, it 
recorded one page at a time, provided you inserted 
a magnetic card (much like an IBM card, but Mylar 
and magnetic) and pressed Record, before turning 
the machine off—or else it was not saved. Once 
recorded, the file could be edited by picking the 
related card to the desired page from the labeled 
envelope, inserting it into the card reader, and then 
pressing Read. The file then could be played back 
one page, one line, one word, or one character at a 
time. The playback was rather quick, making it easy 
to miss the mark. Sometimes, the paper ripped dur-
ing a return motion. This was one of those moments; 
blame it on user error, but I finally thought, enough 
was enough, and enrolled at the local community 
college.

This was the beginning of my journey into 
advanced learning, leading to a BS degree in informa-
tion management, but definitely not the end of using 
other machines that would enter NSA's workspaces. 
They provided more word processing technologies, 
office automation, and then advanced further into 
end user computing.

Maureen McHugh, 1969
I graduated from Marywood College in May, 1969. My 
experience with computers was limited. I was a Math 
major in a college whose curriculum focused mainly 
on training teachers. I did not want to be a teacher. It 
was obvious in 1969 that computer work would be an 
exciting field and I could get in on the ground floor. As 
a senior in college, I took a FORTRAN II class.

The teacher was a business professional who 
taught a few night classes at the college. He had a cus-
tomized van in which he had a card punch machine, a 
printer, and sorter. It was only accessible a few hours 
a week including class time. Writing and debugging 
our “toy” programs was difficult, to say the least. We 
submitted our punch card deck to the teacher, and 
he would return it the following week after running it 
on a computer back in his office. One turnaround per 
week! A single typo could set you back two weeks. I 
think I got a B in the course, but certainly did not feel 
as though I had mastered FORTRAN.

Peggy Strader, 1969
During my intern tour, I was introduced to the UNI-
VAC 494 and the SPRYE assembly language. This was 
an octal-based system so I learned and became profi-
cient in reading dumps in octal. On this system I honed 
my skills in SPRYE, FORTRAN, and ALGOL. I believe 
this group was responsible for the first Information 
Storage and Retrieval System named TIPS (Technical 
Information Processing System) and its retrieval lan-
guage named TIPS Interrogation Language. On this 
system, we were able to put our queries on model 35 
teletypes and it would search magnetic tapes of data 
or magnetic drums for the information requested. I 
became the user/customer interface for these sys-
tems, often teaching the Boolean logic and con-
structs necessary to retrieve the information needed.

Lois Gutman, 1970
I had no real computer or programming experience 
other than creating small card decks for overnight 
runs on a cardpunch machine in a summer job at 
Johns Hopkins University. NSA's high-level program-
ming language at the time was IMP,13 running on the 
operating system FOLKLORE, NSA's homegrown 
time-sharing system, developed by the Institute for 
Defense Analyses in Princeton, NJ, USA. Everyone 
in my office used CDC-6600 computers and sat in a 
large open tube room, a room full of Cathode-ray tube 
(CRT) terminals connected to a mainframe where pro-
grammers could work on their code in the NSA Head-
quarters building basement. Operators hung large 
magnetic tape reels for users. We stacked the reels 
on our desks (under sheets of black cloth for security) 
and made hanging decorations from colored plastic 
write rings.

Toby Merriken, 1970
Fresh out of college, I went to work for NSA in 1966. 
I started out in the Cryptanalysis Intern Program 
and became certified as a professional in that field. 
Shortly after that, in 1970, I joined a newly created 
branch dedicated to using computer science for the 
first time for cryptanalytic applications. With no com-
puter training or experience, I wrote programs in FOR-
TRAN and learned a lot on the job.

I wrote each program in longhand and took it to a 
staff of key punch operators to transfer to keypunch 
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cards. I then took the cards to the remote job entry 
(RJE) room housing a printer and a card reader, into 
which I manually fed the cards. The input went to 
the computer mainframe and was printed out on the 
printer in the RJE room. The computers were high tech 
for the time but not interactive. A great deal of time 
transpired between the writing of a program and the 
implementation of it. I left this branch in 1974 to return 
to cryptanalysis and eventually became a linguist.

Marie Rowland, 1970
When I started at NSA, I can honestly say I knew noth-
ing about computers. I had gone to an all-women's col-
lege and majored in math. The only exposure to com-
puters we experienced came one afternoon when 
a guest speaker explained to us that we would all 
have to learn a language called FORTRAN. So, when 
I landed at the Agency with my group of new mathe-
maticians, management decided that with my back-
ground I should start at the beginning.

I was assigned to the Research organization, 
where they handed me a small box and explained they 
were doing research on how small computers might 
one day be used to schedule jobs for large computers. 
My task was to teach the small box to tell time. Now, 
I was naïve enough to believe this and did not realize 
that it was actually a good exercise for me to learn 
about how to program computers and really under-
stand them from the inside out.

I started reading the manuals and some library 
books. Each morning I plugged in my little box and 
got it going with a paper tape from a teletype, start-
ing a heartbeat interrupt, a periodic signal that 
the hardware generated to indicate its working or 
to synchronize other parts of the system. I could 
count these beats and get up to a second, then a 
minute and so forth, and thus tell time. The little 
machine only had a few instructions such as load, 
compare, and store so it seemed much easier than 
the FORTRAN description. The biggest headache 
was working with the teletype and paper tape. An 
“all thumbs” affliction was to plague me through 
card decks and keyboards, through all my years of 
writing code.

The library books said I could name my variables 
anything I wanted. I took this to heart and called them 
names from the book I was reading, The Hobbit. Thus, 

“BILBO” became the second counter. Eventually, the 
person guiding me looked at my work and gently men-
tioned that it was traditional to name the variables 
after the function they performed so other people 
could follow the program. DUH! Later, as I was finish-
ing the project, I asked if he thought I should put in 
a routine to handle Y2K—something I had discovered 
in my library research. I do not know how he kept 
a straight face when he replied that it probably was 
not necessary for the purpose of this project. I often 
remembered this Y2K-innocence when it struck with a 
vengeance years later.

As it turned out, teaching this little machine to 
tell time was a very good introduction to the world 
of computers. Programming it illustrated the “edge” 
of the hardware and software divide and left me 
completely fearless to wade into all kinds of hard-
ware–software issues. I realized what a leap it was 
from the early computer greats made in the 1940s 
and 1950s when their research allowed them to move 
from purpose-built machines to building machines 
that kept both the instructions and the data that the 
instructions worked on in the same form. I went on to 
write many programs and eventually received an MS 
in Computer Science from Johns Hopkins, but I was 
always able to view the complexity of tasks through 
the lens of my first project.

REFLECTION
We all had memorable encounters with our first com-
puters and went on to have rewarding careers in tech-
nology. Our Queens of Code are good examples of how 
women were working with early computer technology. 
NSA gave us opportunities to excel in this exciting new 
career field.

Over the past 50 years, women have continued to 
bring their talents and skills to the technology revolu-
tion. We hope our project will encourage other women 
computer pioneers in both the public and private sec-
tors to step forward and tell their stories. While much 
has been written on the low percentage of women 
graduating with computer science degrees14 and 
problems with retaining female technical employees, 
it is critical for the future of tech that women's ideas 
and points of view be part of future developments. We 
hope our stories will inspire more women to pursue 
STEM careers.
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Look for more stories from the Queens of Code 
and follow our journey on Facebook: https://www 
.facebook.com/QueensofCode/.

Our website: https://Queensofcode.com.
On Twitter: @QueensofCode 
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DEPARTMENT: FROM THE EDITOR

Mom, Where Are the Girls?
Ipek Ozkaya

During the fall semester of 2005, I was working 
hastily on the finishing touches of my Ph.D. 
dissertation at Carnegie Mellon University. 

That semester, I also was the teaching assistant for 
the Methods of Software Development graduate 
course taught by Dr. Mary Shaw and Dr. Jim Herbsleb. 
It was a busy time, with the challenges of finishing 
graduate school; getting ready for a new job; fulfilling 
responsibilities such as grading and helping students; 
and parenting my then three-and-a-half-year-old 
daughter. Methods of Software Development was a 
demanding course with a lot of reading and reflection 
assignments. Students took abundant advantage of 
the office hours. Those meetings always went better if 
I remembered the students’ names, but with that was 
all going on, my brain did not always comply, so I had a 

hack. I had printed all of their photos and hung them 
right above my desk.

As with all graduate students, my weekends con-
sisted mostly of work. I often took my daughter into 
the office with me over the weekends to give her a 
glimpse of my work life and sneak in some tasks. It 
was during one of our “let’s play at Mommy’s office” 
visits when I first became aware of the diversity issue 
in software engineering. After staring at the photos 

of the Methods of Software Development fall class 
members of 2005 for a couple minutes, my daughter 
asked who they were. I explained that they were the 
students with whom I was working. She continued 
to study the photos, and I started to concentrate 
on my work. After a couple more minutes, I heard, 
“Mom, where are the girls?” I did not understand 
the question at first and asked her to explain. Her 
three-and-a-half-year-old observant mind was trying 
to categorize the students as at that age she was just 
starting to recognize gender.

It is my response in all of its irony that demon-
strates one of the reasons that we have the diversity, 
equity, and inclusion issues. Once I finally understood 
the question, I, without any doubt, said, “Oh, they are 
all there, let’s find them.” I put her on my lap, and we 
started studying the photos. There were two female 
students out of a total number of 27 people. At that 
age, my daughter was content with finding the two girls 
and moved on to exploring something else. She did ask 
“more” once or twice as we studied the photos, not in 
search of more girls, but simply because “more” was 
her most favorite phrase due to her daycare routines.

I do recall, however, being confused for the first 
time. Panicking, admittedly not because there were 
only two female students in the 2005 Masters of Soft-
ware Engineering class at Carnegie Mellon University, 
but because I felt like a young, tired, and inexperienced 
mom showing her daughter a bad example in my very 
own office. I was supposed to be teaching her that she 
could become anything she wanted, that she had the 
power, and that others had paved the way for her. The 
example I was supposed to set was not that we had to 
look close to find the two female students in the field 
of the future at the very university leading the way. I, 
as a female who consistently had been an underrepre-
sented minority in her field, was not aware of the issue 
until that very exchange.
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IT WAS DURING ONE OF OUR “LET’S 
PLAY AT MOMMY’S OFFICE” VISITS 
WHEN I FIRST BECAME AWARE OF 
THE DIVERSITY ISSUE IN SOFTWARE 
ENGINEERING.
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BECOME AWARE
On the one hand, this memory reflects my luck. Clearly, 
I have been fortunate enough to not have felt as under-
represented in a field where I consistently have been. I 
had worked within teams that made me feel welcome. 
I had colleagues, supervisors, mentors, and advisors 
who advocated for me, gave me timely and concrete 
feedback, motivated me, provided me with opportuni-
ties, and appreciated my contributions. On the other 
hand, it also reflects the unfortunate reality—we can-
not assume that people are aware. Even those who 
themselves are members of underrepresented groups 
may not be aware of the extent of the issues at hand. 
We cannot assume that institutions are doing their 
part, even the best of the best. Carnegie Mellon Univer-
sity has come a long way since 2005—admission com-
mittees at that time clearly were not aware or, in any 
event, aware enough. Today, Carnegie Mellon boasts 
the ability to achieve close to 50% admission rates of 
qualified female students across most of its degree 
programs at the undergraduate level, including in engi-
neering and computer science. Graduate admissions 
numbers are also definitely way better than two out of 
27. In addition, there are several university-wide initia-
tives to address other diversity, equity, and inclusion 
challenges. The road ahead to achieve a truly diverse, 
inclusive, and equitable software engineering commu-
nity is still long and not smooth as we all are aware.

Many global and national initiatives such as Girls 
Who Code, Girl Develop It, Black Girls Code, and 
countless others have also taken it upon themselves 
to empower, motivate, and educate females to enter 
careers in software engineering. Bringing more women 
into software engineering is not a solved challenge 
despite the significant amount of attention it has 
received. Overcoming challenges of retention, salary 
equity, and growth opportunities are still in the works.

But achieving diversity with enough female repre-
sentation is just the tip of the iceberg. We are finally 
learning that gender is not a binary identity; those 
who identify as lesbian, gay, bisexual, transgender, 
questioning (LGBTQ+) face a number of very different 
challenges and biases as software engineers.

Gender is one of several aspects of diversity. 
When teams are diverse, with representation from 
cultural, ethnic, economic, religious, political, and 
technical backgrounds, they are more productive 

and stronger. History has shown us again and again 
that there are many underrepresented groups that, 
when empowered, will help move a field forward. But 
this starts with awareness. Each of these diversity 
groups may demonstrate similarities; however, each 
also has its unique challenges. Becoming truly aware 
takes patience, an open mind, and learning to act the 
right way. I was fortunate enough that my awakening 
moment did not involve me being frustrated against 
an unfair situation, feeling left out, or not finding 
people like myself with whom I could identify. This is 
an exception, not the norm.

BEING AN ADVOCATE AND  
TAKING ACTION

Being an advocate for diversity, equity, and inclu-
sion takes every single one of us to drive meaningful 
change, starting at the personal level all the way up 
to organizational levels. Advocacy is any action that 
speaks in favor of, recommends, argues for, supports, 
defends, or pleads on behalf of a cause or for others. 
And the most impactful advocacy is achieved when our 
allies are diverse and show up with concrete actions 
in support. The CEO of Girls Who Code recently pub-
lished a public thank-you note to Jack Dorsey, CEO 
of Twitter, for his advocacy and financial support for 
Girls Who Code.1 She emphasized how the biggest ally 
of Girls Who Code has, in fact, been a man passion-
ate about empowering women and girls to enter soft-
ware engineering. We need examples demonstrating 
allies working together to improve diversity, equity, 
and inclusion in software engineering. Organizations 
that hire software engineers need to do their part as 
well. Large, global software engineering organizations 
like Google2 and Microsoft3 have started publishing 
yearly diversity, equity, and inclusion reports to share 
their data. Objectively understanding the state of 
the situation is one step toward improving diversity, 

WHEN TEAMS ARE DIVERSE, WITH 
REPRESENTATION FROM CULTURAL, 
ETHNIC, ECONOMIC, RELIGIOUS, 
POLITICAL, AND TECHNICAL 
BACKGROUNDS, THEY ARE MORE 
PRODUCTIVE AND STRONGER.
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equity, and inclusion in software engineering. Soft-
ware engineering research only recently has started 
to look closer at studying the implications of diversity, 
equity, and inclusion on software engineering work. In 
the guest editorial in this issue of the magazine, Albu-
says and colleagues summarize concepts and related 
current research work.4

IEEE Software has always kept diversity, equity, 
and inclusion as part of its core values. But we, too, 
need to do more. Despite our many efforts, the gender 
diversity of our magazine can improve. We have a long 
way to go to improve representation from people of 
color on our boards. While we have always strived to 
achieve global diversity, we struggle with including 
enough readers and authors from the Far East. Diver-
sity, equity, and inclusion are our board’s collective 
responsibilities. However, to bring targeted focus and 
identify actionable steps, we are also launching an ini-
tiative dedicated to this cause. We are in the process of 
establishing a workforce team and will strive to share 
our data and the steps that we take. This is one way 

we are taking action, and we will do more, including 
featuring case studies, experiences from industry, and 
empirical research results regarding improving diver-
sity, equity, and inclusion in software engineering. We 
trust that the software engineering community will 
keep us accountable. 
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