
Envisioning software engineer training needs in the
digital era through the SWEBOK V4 prism

Hironori Washizaki1,*, Maria-Isabel Sanchez-Segura2,*, Juan Garbajosa3, Steve Tockey4, Kenneth E Nidiffer5

1Waseda University, Tokyo, Japan washizaki@waseda.jp
2Universidad Carlos III de Madrid, Madrid, Spain misanche@inf.uc3m.es

3Universidad Politécnica de Madrid, Madrid, Spain juan.garbajosa@upm.es
4Construx Software, Bellevue, WA, United States steve.tockey@construx.com

5George Mason University, Fairfax, VA, United States knidiffe@gmu.edu

Abstract—Our world’s needs have evolved dramatically since
the origins of software engineering in the 1960s. The future
software engineer must be able to anticipate our needs and
desires in an era where complex challenges continually emerge,
and adaptive solutions must be delivered on the fly. This paper
addresses the evolution of the IEEE Computer Society’s Guide to
the Software Engineering Body of Knowledge (SWEBOK Guide)
and its impact on software engineering higher education and
professional training that should prepare engineers to fulfill their
mission in this dynamic digital future.

Index Terms—Education, professional training, SWEBOK

I. INTRODUCTION

This is the world that software engineers must be able
to address to anticipate the needs and desires of an era of
emerging and complex challenges where solutions will have
to be delivered on the fly. The question is, are we training
software engineering professionals capable of dealing with the
demands of the digital era in the coming years?

In this paper, we outline how and why the new IEEE
Computer Society’s Guide to the Software Engineering Body
of Knowledge (hereafter “SWEBOK V4”) [1] takes into con-
sideration the needs of digital era software engineers immersed
in an industry demanding visionary solutions and proposes
how to train these engineers in the skills that they need to fulfill
their mission. In the following, we first present SWEBOK V4
and the evolution point of each Knowledge area. And then, we
give the impact of each knowledge area on higher education
and training through the prism of SWEBOK V4.

II. SWEBOK V4 AT A GLANCE

SWEBOK represents the current state of generally accepted,
consensus-based knowledge emanating from the interplay
between software engineering theory and practice [2], [3].
Its objectives include the provision of guidance for learners,
researchers, and practitioners to identify and share a common
understanding of “generally accepted knowledge” in software
engineering, defining the boundary between software engineer-
ing and related disciplines, and providing a foundation for
certifications and educational curricula.

The origins of SWEBOK go back to the early 2000s.
Much like the software engineering discipline, SWEBOK has

* Corresponding authors

Requirements

Design

Construction

Testing

Maintenance

Configuration Management

Engineering Management

Process

Models and Methods

Quality

Professional Practice

Economics

Computing Foundations

Mathematical Foundations

Engineering Foundations

Requirements

Architecture

Design

Construction

Testing

Operations

Maintenance

Configuration Management

Engineering Management

Process

Models and Methods

Quality

Security

Professional Practice

Economics

Computing Foundations

Mathematical Foundations

Engineering Foundations

SWEBOK V3 SWEBOK V4

Agile,

DevOps

・・・

Agile testing

・・・

・・・

Agile security

・・・

AI for SE,

SE for AI

Fig. 1. From SWEBOK V3 to SWEBOK V4

continued to evolve over the last 20 years to reflect the educa-
tional, industrial, social, technical, and technological changes
in society. A significantly updated SWEBOK V4 will be
released in 2023 to improve the guide’s currency, readability,
consistency, and usability. The current draft public version
of SWEBOK V4 can be reached at [1]. The guide contains
18 knowledge areas (KAs), followed by several appendices.
A KA is an identified area of software engineering defined
by its knowledge requirements and described in terms of
its concepts, component processes, practices, inputs, outputs,
tools, and techniques. SWEBOK has been adopted well as
a fundamental basis for continuously developing software
engineering curricula and industrial training programs. For
example, [4] proposed a process for assessing and enhancing
curricula against SWEBOK and reported the result of a case
study targeting multiple universities.

Figure 1 summarizes the transition from SWEBOK V3,
published in 2014, to V4. KAs have been updated to reflect
the broad acceptance of agile methodologies and DevOps in
many differently sized software-intensive organizations and
acknowledge the rise of artificial intelligence (AI). Tables I,
II, and III collect the main factor of the evolution of each of
the SWEBOK KAs. There are three new KAs: Software Ar-
chitecture, Software Operations, and Software Security. These
additions better reflect contemporary software engineering
practice, the pressing need to address cybersecurity as early

TABLE I
SWEBOK EVOLUTION AND IMPACTS ON HIGHER EDUCATION AND TRAINING: KA1–KA6

KA Point of evolution Impact on higher education Impact on professional training
KA1.
Soft-
ware
Re-
quire-
ments

The importance of requirements documen-
tation for long-term maintenance is added.
The whats and hows of work on software
requirements in a project should be deter-
mined by the type of constructed software
and not by the project life cycle. And also
it included a deeper, broader coverage of re-
quirements specification techniques, including
model-driven requirements specification and
acceptance criteria-based requirements speci-
fication.

Students should be confronted with a variety of
realistic cases where they can experience and
practice diverse (e.g., acceptance criteria-based
and model-driven) requirements techniques in
various project-based situations that address
not only new development but also the role of
appropriate requirements in ongoing software
maintenance.

Practicing professionals have the advantage of
real-world experience where the critical re-
quirements knowledge and skills can possibly
be applied retroactively to project situations
that they have already worked on.

KA2.
Soft-
ware
Archi-
tecture

As software tends toward larger, evermore
complex systems, architecture concerns move
beyond construction to connectivity while as-
suring new levels of quality for safety, security,
and dependability. Therefore, it is now a new
KA. Software architecture aims to “satisfice”
all stakeholders, while the focus of software
design is on the transformation of that vision
into a feasible implementation.

As software engineering technologies become
increasingly powerful while maturing at record
speed, things formerly taught abstractly can
now be taught practically: students will have to
deal with larger systems than ever before and
need exposure to the underlying fundamental
principles and practices of the discipline.

Architecture has increased in importance as
today’s cyber-physical systems are pervasive.
At the same time, demands for agile, just-
in-time solutions accelerate the need to “get
things right” early and often. Practitioners,
therefore, depend upon knowledge of funda-
mental principles to survive.

KA3.
Soft-
ware
Design

Software is pervasive and critical in all aspects
of modern life. The success of pervasive soft-
ware depends on broadening the background
of people with design skills, especially as
emerging technologies, faster delivery times,
and emphasis on agile, lean, and incremental
design impact the development process.

In an era of agile, DevOps, cloud, and other in-
novations, it is worth remembering that despite
huge changes, design is governed by basic
principles that apply across the board.

Industry is inhabited by many senior program-
mers promoted to designers. There is a need
for a sound curriculum to ensure practitioners
are comfortable with all the key aspects of
software design.

KA4.
Soft-
ware
Con-
struc-
tion

The following sections were added to reflect
modern construction techniques and practices:
managing dependencies, cross-platform devel-
opment and migration, feedback loop for con-
struction, and visual programming and low-
code/zero-code platforms. Furthermore, major
updates were made to some of the existing sec-
tions, especially about reuse, life-cycle models,
construction languages and environments.

Students must be aware that software con-
struction is not just programming functioning
code but creating and maintaining readable and
verifiable code through coding, verification,
testing, and debugging with consideration of
related areas such as Software Design KA.
Students should learn and practice construction
basics through coding tests and good examples,
as well as construction fundamentals, including
complexity, change, reuse, coding standards,
and the proper support of tools and platforms
with a particular focus on modern development
processes such as Agile and DevOps.

In addition to construction fundamentals, prac-
titioners need to strengthen the knowledge and
capability of cloud-based software develop-
ment and deployment, the understanding of
DevOps and continuous integration/delivery,
and the awareness of complex open-source
and commercial software ecosystems and their
impact on software development in training.
Furthermore, practitioners should understand
industrial practices in construction manage-
ment and the spread of reliable construction
technologies (such as error handling) as well
as modern tools (such as low-code/zero-code
platforms).

KA5.
Soft-
ware
Testing

The chapter structure has been revised to align
with the shift left testing movement. In partic-
ular, this KA provides new content about soft-
ware testing in recent development processes
(like Agile, DevOps, and Test-Driven Devel-
opment), application domains (like automotive,
healthcare, mobile, legal, and IoT), emerging
technologies (such as AI, blockchain, cloud)
and quality attributes (like security and pri-
vacy).

It is essential to address the followings: (1)
Promote knowledge about quality and its value
to raise awareness about the product and pro-
cess trustworthiness by incorporating specific
testing aspects such as automation, machine
learning, cloud computing, DevOps, continu-
ous testing, and security into the curriculum.
(2) Round out student knowledge with hands-
on experiences in laboratory and industrial
contexts to raise appreciation of the importance
of quality and promote awareness of product
and process trustworthiness. (3) Incorporate
into the curriculum specific testing aspects
such as automation, machine learning, cloud
computing, DevOps, continuous testing, and
security. (4) Increase student knowledge and
skills about emerging software testing tech-
nologies and tools.

This KA increases professional knowledge
about the risks and consequences of poor
software testing. It promotes learning pro-
grams and specific courses for addressing crit-
ical aspects of software testing and knowl-
edge about emerging testing technologies and
tools. It promotes learning-by-doing practices
and experience-based learning to improve the
awareness of testing and the connected risks.

KA6.
Soft-
ware
Engi-
neering
Opera-
tions

This is a new knowledge area that addresses
the evolution of the role of software engineers
to include DevOps and infrastructure as code
activities while eliminating the organizational
silos between development, maintenance, and
operations. This new KA describes operations
fundamentals, planning, delivery and control
activities, and techniques. It also presents prac-
tical considerations and tools.

Students must be aware of the importance of
software engineering operations, including de-
ployment, configuration, operational monitor-
ing, and management in the era of continuous
software engineering. Students should learn
fundamentals and practice operation basics and
tools, particularly DevOps practices, through
exercise and project-based learning.

In addition to operations fundamentals key
practices, practitioners should grasp the entire
picture of operations, including operation plan-
ning, delivery, and control as an integral part
of system and software life cycle processes.
Furthermore, practitioners should understand
modern infrastructure practices such as Agile
Infrastructure and Infrastructure as Code (IaC),
as well as practical considerations, related
standards, and tools such as containers and
virtualization.

TABLE II
SWEBOK EVOLUTION AND IMPACTS ON HIGHER EDUCATION AND TRAINING: KA7–KA11

KA Point of evolution Impact on higher education Impact on professional training
KA7.
Soft-
ware
Main-
tenance

Maintenance categories and the software pro-
cess have been updated to align with the
2021 version of ISO14764. Also, continuous
integration, delivery, testing, and deployment
have been added as a new topic in response
to the growing popularity of regrouping devel-
opment, maintenance, and operations tasks to
improve software engineering productivity.

Maintenance has increased in cost and im-
portance in a world of continuous changes.
Although it is often hard to experience the
reality of maintenance in higher education
programs, students should learn maintenance
fundamentals by referring to textbooks, in-
dustrial maintenance project reports as well
as open-source projects. Furthermore, software
architecting and design exercises can teach
students how to handle maintainability.

In addition to software maintenance funda-
mentals, practitioners can further learn main-
tenance activities, processes, techniques, and
tools in Agile and DevOps environments where
development, maintenance, and operations are
grouped together. Learners are also expected
to increase their awareness about the need
for maintenance as well as their associated
challenges in practice.

KA8.
Soft-
ware
Config-
uration
Man-
age-
ment

Version control is the best-known facet of the
SCM process, although it is just one of many.
This helps explain past precariousness of the
process. In SWEBOK V4, SCM has been ex-
plained considering all of its facets. It stresses
that the SCM process plan must be defined
first before all the decisions and commitments
included in the plan are somehow incorporated
into existing tools for execution rather than the
other way around, as was the usual practice in
the past. Keeping track of CI relationships is
essential to visualize the potential impact of a
change on a CI over other CIs.

This process cannot be explained without
project management (estimation and planning),
quality and construction, because it has to
be developed in combination with all these
processes to guarantee the control of the con-
figuration items to be developed. Of the soft-
ware engineering teaching methods identified
by [5], there is no doubt that the SCM process
must be taught using project-based and active
learning. Both approaches force students to
address SCM integrally, because, for instance,
no configuration item can be output unless the
project is under development, and no output
product can be assessed from the quality as-
surance process perspective unless it has been
identified and cataloged as a configuration item
with the identification of its respective base-
line.

The configuration plan definition and develop-
ment have to be strongly connected to project
planning and DevOps performance.

KA9.
Soft-
ware
Engi-
neering
Man-
age-
ment

The scale of complicated and complex
software-enabled systems and services will
continue to increase exponentially with intri-
cate and often hidden interfaces and interre-
lationships operating in a dynamic and non-
deterministic world. As a result, software en-
gineering management knowledge will evolve
continuously to meet the needs of society.
Although significant progress has been made
to date, artificial intelligence/machine learning
and other technological systems are beginning
to emerge. They will unleash future challenges
for systems management.

Modern software engineering management
practices are changing to meet the needs of so-
ciety caused by increases in the size and com-
plexity of software, alongside greater pressure
to quickly release software enabling products
to market in rapidly changing environments.
There are fundamental management shifts in
how work is performed because software has
the power to cause increasing globalization,
innovations, interactions, and productivity and
the countervailing force of increasing com-
plexity. These management challenges need to
be addressed to produce and sustain future
software-enabled systems.

To meet these challenges, a higher education
program in software engineering management
needs to offer a unique combination of ad-
vanced technical knowledge and management
competencies. There is a need to develop
perspectives for (1) Understanding industrial
practices and current and future trends in
technology development, (2) Judging and im-
proving software quality, methods, processes,
and tools, (3) sustaining software systems over
long time periods, (4) innovating software
development practices and improving perfor-
mance, and (5) a project-based, collaborative
learning environment to meet the needs of the
workforce in the digital age.

KA10.
Soft-
ware
Engi-
neering
Process

The software engineering process is central
to the creation of reliable and cost-effective
software products. Software engineers face a
challenging and evolving highly technological
landscape, fast-moving technology (sometimes
to obsolescence), societal events and changes,
uncertainty, a growing complexity of systems,
and the trend towards digitalization of many
and different domains. This is a point of no
return that has facilitated the ongoing adoption
of Agile and DevOps. The software engineer-
ing process will continue to evolve, profiting
from advances in the engineering dimension,
new tools, and the latest knowledge from the
other KAs.

Students need to be acquainted with new fun-
damentals, new approaches, and new tools so
that they can cope with this landscape. Now
more than ever, software engineering process
definition and management means combining
rigor and flexibility, and the introduction of
the broad use empirical measures to support
decision making and process monitoring. The
relevance of the interactions between this KA
and other KAs, therefore, increases.

Critical thinking, judgment, and decision-
making about different process models and
tools for large, complex, and uncertain specific
scenarios will be needed. Software engineers
need to be skilled in defining and in assessing
and improving software life-cycle processes.
More than ever, software engineers must be
able to learn about the process in execution
and the product. And all this knowledge must
be deployed in subsequent processes, and be
part of the (management) decision making,
possibly to avoid or overcome obstacles. This
will influence professional training.

KA11.
Soft-
ware
Engi-
neering
Models
and
Meth-
ods

Models have been updated and accurately clas-
sified by type. Relatively new methods, in-
cluding aspect-oriented development, as well
as fundamental model-driven and model-based
methods, have also been introduced. Agile
methods have been extended a great deal to
incorporate modern techniques, such as lean
development, as well as large-scale and enter-
prise agile methods. On this note, DevOps and
release engineering have also been introduced
to clarify the release aspect of agile methods.

Fundamental modeling principles and basic
model types are essential and should be ad-
dressed since these are on the basis of almost
any software engineering activity, regardless
of the types of software engineering methods
to be taught, but the key to succeed while
teaching models and methods is the practice, it
is essential to use project-based technique so
students can feel models and methods alive.
Furthermore, method types, as well as details
of a few methods (particularly an agile method
with DevOps in an era of agile), may be
selectively addressed.

In addition to fundamental modeling principles
and model and method types, some meth-
ods, particularly agile and prototyping methods
with DevOps, should be addressed in a fast-
moving and agile era. Furthermore, practition-
ers should understand the basics of model anal-
ysis, such as analysis for consistency and trace-
ability, to ensure that a team of professionals
can successfully develop, operate and maintain
large and/or complex software systems.

hiron
ハイライト表示

hiron
ハイライト表示

hiron
ハイライト表示

TABLE III
SWEBOK EVOLUTION AND IMPACTS ON HIGHER EDUCATION AND TRAINING: KA12–KA18

KA Point of evolution Impact on higher education Impact on professional training
KA12.
Soft-
ware
Quality

This chapter was overhauled for alignment
with notions of processes/product quality. It
now includes new topics: (1) Software De-
pendability and Integrity Levels, (2) Standards,
Models and Certifications, (3) Policies, Pro-
cesses and Procedures, and (4) Quality Control
and Testing.

Students must be made aware that software
quality extends well beyond software testing
alone. Insofar as it can help avoid defects in
the first place and thus vastly reduce the need
for testing resources, process quality is a key
insight. Analysis of real-world case studies
where broader approaches to quality have been
successfully applied can be critical.

The learner is expected to have some real-
world, on-project experience already. Retro-
spective analysis of how past projects might
have been improved through better application
of quality techniques can be useful. It will
be important to emphasize that the cost (i.e.,
effort) invested in quality techniques is easy
to assess, whereas the return on investment is
more difficult to evaluate because it comes in
the form of cost (i.e., effort) avoided—work
not done— (i.e., defects were avoided entirely
or found earlier when they were much cheaper
to repair).

KA13.
Soft-
ware
Secu-
rity

This is a new knowledge area that focuses
on the broader topics of security, particularly
security fundamentals, security management,
security tools, and domain-specific security, as
well as major security engineering activities
(such as security testing) that were briefly de-
scribed under the Computing Foundations KA
in the last SWEBOK edition. The existence
of a separate KA emphasizes that security
should be a first-class quality attribute in any
development since almost any software system
is connected to others, resulting in increased
security risks.

Students should study this KA to learn about
security fundamentals since the development
of almost any software system needs to con-
sider security concerns in the era of IoT
and connected software. Furthermore, students
should learn basic security engineering tech-
niques aligned with the development life cy-
cle, including security requirements, design,
construction, and testing, to understand how
security measures should be incorporated into
the major development activities.

Apart from security fundamentals and major
engineering activities, practitioners should be
aware of available practical security solutions,
including security tools and patterns. Secu-
rity patterns provide guidelines to improve
security characteristics such as confidentiality,
integrity, and availability since security pat-
terns incorporate the knowledge of security
experts. Domain-specific security techniques
should also be recognized since security is a
particularly tough objective for cloud, IoT, and
machine learning applications. Practitioners in-
volved in organization, product, and project
management should refer to the security man-
agement and organization section to learn the
importance of systematically weaving security
governance and management into their cultural
and organizational behaviors.

KA14.
Soft-
ware
Engi-
neering
Profes-
sional
Prac-
tice

Additions and revisions address the follow-
ing areas: (1) Professional practices following
generally accepted practices, standards, and
guidelines set forth by the applicable profes-
sional societies, (2) UI/UX inclusive design,
(3) Considerations on diversity and inclusion,
and (4) Considerations on agility.

Students should engage in certification or qual-
ification programs offered by professional so-
cieties or national organizations. Students are
expected to participate in more programs or-
ganized by professional societies to get ac-
quainted with state-of-the-art practices apart
from academic accomplishments.

Professional practices are progressing at an
ever faster pace as software use becomes more
widespread and is adopted in socially critical
applications. Participation in the various activ-
ities of professional societies provides contin-
uous reskilling. Software used in more critical
applications requires the enforcement of a code
of ethics and code of conduct, which calls
for continuous training with respect to the
guidelines of professional societies.

KA15.
Soft-
ware
Engi-
neering
Eco-
nomics

Focuses on the essence of engineering eco-
nomics, the art of making decisions. Broaden
the more traditional, purely financial view of
engineering economics. Value does not always
derive from money alone; that is, value can
also derive from “unquantifiables” like cor-
porate citizenship, employee well-being, envi-
ronmental friendliness, customer loyalty, and
so on. And more systematically address pre-
project decisions, where a project is not under
development but is being envisioned.

The software engineering economics (SEE)
vision must be broader in two ways. It should
(1) focus on the essence of engineering eco-
nomics, which means the art of making deci-
sions, and (2) extend decision-making to the
pre-project phase, where the project is being
envisioned, not developed. Of the software
engineering teaching methods identified by [5],
collaborative learning is one of the methods
that could be very useful for understanding
SEE, because sound decision-making depends
on listening to and understanding stakeholders.
This is followed by collaborative prioritization
in order to make the best decision using ex-
isting methods that can be taught in a flipped
classroom, where the teacher can discuss with
the students the decision-making methods re-
ported in the previous readings sent to the
students about the methods to be discussed.

Decision-making based on cyclical prediction
instead of linear patterns can be an effective
way to apply these techniques retrospectively
to the practitioner’s real-world project experi-
ences. For example, a learner could calculate
the actual PW(i) of a completed project or ana-
lyze whether the specific projects implemented
in a digital transformation really were the best.

KA16.
Com-
puting,
KA17.
Math-
emat-
ical,
KA18.
Engi-
neering
Foun-
dations

Minor improvements in topic presentation.
Discussions of Artificial Intelligence and Ma-
chine Learning were added. Furthermore, the
revision includes a deeper coverage of mea-
surement, particularly its implications for pro-
gramming languages, and a more comprehen-
sive discussion of root cause analysis.

Collaborative learning, where students teach
each other and evaluate other students’ under-
standing, can improve comprehension and also
enhance cooperation and teamworking skills.

The challenge is that many practitioners may
not recognize the need for theoretical foun-
dations (e.g., “I have been successful in my
career so far without that”). It is critical to tie
foundational knowledge in with how it affects
real-world situations.

hiron
ハイライト表示

TABLE IV
SPECIFIC CUTTING-EDGE CONCEPTS IN SWEBOK V4

Concern Related
KA

Impact on higher education Impact on professional training

Agile
& De-
vOps

KA1,
KA9,
KA10,
KA11

Agile and DevOps have a direct impact on several, and an indirect
impact on all, KAs. Agile and DevOps fit the current scenario:
fast-moving and changing times, full of uncertainty. Agile and
DevOps must be explained, highlighting their fundamentals, as
they constitute paradigm shifts rather than just a new set of
practices. It will help to present these new methods together with
other approaches to develop critical thinking and decision-making,
and resource optimization/ management in the case of DevOps.

Agile and DevOps training should open up new perspectives for
professionals. One is critical thinking and judgment based on
DevOps values/principles/practices and schemes. DevOps affects
decision-making at all levels of the software engineering process
and KAs. Agile impacts both the engineering and the management
level.

AI and
SE

KA16 The recent resurge in artificial intelligence (AI), and its prospects
have been swift and strong. In the case of AI systems, knowledge
has very often not yet been consolidated. For this reason, AI is only
considered within the Computing Foundations KA in SWEBOK
V4. More and more systems will be using AI in the coming years,
and humans will depend on these systems in many ways. Higher
education programs can introduce students to emerging endeavors
on AI for SE and SE for AI as a part of the future of software
engineering by referring to the Computing Foundations KA. Future
SWEBOK versions will address how to engineer systems that
include AI subsystems. AI is likely to change how software is
engineered, and this will also be addressed by future versions of
SWEBOK.

Professional training programs should address emerging automated
techniques and tools by referring to the general introduction of AI
and ML, as well as AI for SE. Practitioners should understand
how such AI techniques and tools are going to replicate particular
developer behavior, ranging from resolving ambiguous require-
ments to predicting maintainability. Furthermore, professionals
should understand the need for particular software engineering
support for AI since AI systems are developed differently from
traditional software systems, as the rules and system behavior of
AI systems are inferred from training data rather than written
down as program code. Professionals can learn from emerging
recommended software engineering practices for AI, which are
often formalized as patterns.

TABLE V
LINKING TEACHING METHODS IN SE AND SWEBOK V4 KAS

Teaching method Knowledge Area
Project-Based Learning KA1, KA3, KA4, KA6, KA7,

KA8, KA9, KA10, KA12
Learning by Reflection KA2, KA3, KA9, KA10, KA11,

KA16, KA17, KA18
Just-in-Time Learning KA2, KA14
Participation in SW Community KA4, KA5
Flipped Learning KA15, KA10
Experimental/Research-Based Learning KA5
Global Software Development KA4
Problem-Based Learning KA4, KA5, KA11, KA13
Active Learning/Learning by Doing KA5, KA8, KA10
Collaborative/Peer Learning KA15
Agile Learning KA9

as possible in developing distributed, networked systems for
use by the public at large, and the need for specialized skills
to be able to work effectively in these areas.

III. TRAINING AND EDUCATION IN DIGITAL ERA

Tables I, II, and III also show the main impact of each KA
on both higher education and professional training. Moreover,
Table V shows the teaching methods, identified in recent work
by [5], that best suit each KA. Software engineering education
and training programs are expected to focus on core topics for
each SWEBOK V4 knowledge area as described in the Tables
I–III, through suggested teaching methods identified in Table
V which maps KAs to teaching methods.

Table IV includes some cutting-edge concepts and how
they are addressed in SWEBOK V4. “Agile & DevOps” are
two topics that should be incorporated into any education
and training program as they are practical fundamentals that
are well accepted by industry and should be addressed by
academia. However, in and of themselves, it is not felt that
they should constitute a key area but are applicable across
multiple of the existing key areas in SWEBOK V4. The “AI
and SE” connection, while not a key area of SWEBOK V4

either, is a topic that should be considered and developed as an
advanced topic in the various software engineering programs.

IV. CONCLUSION

In this paper, we described the evolution of SWEBOK and
its impact on higher education and training. Although all the
teaching methods identified by [5] can be applied to most
KAs, Table V summarizes the ones that are most suitable for
each KA. The software engineering profession needs to be
aware of several specific methods to instruct the different KAs.
The emergence of Architecture, Operations and Security KAs
requires specific reflection on their connections with SE2014
[6] already covered by SWEBOK V3 [4]. A special attention is
also required to update SWECOM [7] to incorporate potential
competencies required to perform new KAs.

ACKNOWLEDGMENT

The authors thank the SWEBOK editors, IEEE CS staff,
and other volunteers for their contributions to the SWEBOK
development. We thank Rich Hilliard, Alain April, Xin Peng,
Katsutoshi Shintani, Eda Marchetti and Said Daoudagh for
their support and contributions to this paper.

REFERENCES

[1] “SWEBOK guide v4 beta,” https://waseda.app.box.com/v/
ieee-cs-swebok, (Accessed on 22/03/2023).

[2] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body
of Knowledge (SWEBOK): Version 3.0. IEEE Computer Society, 2014.

[3] P. Kamthan and H. Washizaki, “SWEBOK matters: Report and reflection
of a seke panel on the educational and professional implications of
SWEBOK,” Int. J. Softw. Eng. Knowl. Eng., vol. 32, no. 11–12, 2022.

[4] A. Alarifi, M. Zarour, N. Alomar, Z. Alshaikh, and M. Alsaleh,
“SECDEP: software engineering curricula development and evaluation
process using SWEBOK,” Inf. Softw. Technol., vol. 74, pp. 114–126, 2016.

[5] K. P. Anicic and Z. Stapic, “Teaching methods in software engineering:
A systematic review,” IEEE Softw., vol. 39, no. 6, pp. 73–79, 2022.

[6] “Curriculum guidelines for undergraduate degree programs in software
engineering (SE2014),” https://www.acm.org/binaries/content/assets/
education/se2014.pdf, 2015, (Accessed on 26/05/2023).

[7] “Software engineering competency model (SWECOM),” http://www.
dahlan.web.id/files/ebooks/SWECOM.pdf, 2014.

