Envisioning software engineer training needs in the digital era through the SWEBOK V4 prism

Hironori Washizaki^{1,*}, Maria-Isabel Sanchez-Segura^{2,*}, Juan Garbajosa³, Steve Tockey⁴, Kenneth E Nidiffer⁵

¹Waseda University, Tokyo, Japan washizaki@waseda.jp

²Universidad Carlos III de Madrid, Madrid, Spain misanche@inf.uc3m.es

³Universidad Politécnica de Madrid, Madrid, Spain juan.garbajosa@upm.es

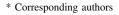
⁴Construx Software, Bellevue, WA, United States steve.tockey@construx.com

⁵George Mason University, Fairfax, VA, United States knidiffe@gmu.edu

Abstract—Our world's needs have evolved dramatically since the origins of software engineering in the 1960s. The future software engineer must be able to anticipate our needs and desires in an era where complex challenges continually emerge, and adaptive solutions must be delivered on the fly. This paper addresses the evolution of the IEEE Computer Society's Guide to the Software Engineering Body of Knowledge (SWEBOK Guide) and its impact on software engineering higher education and professional training that should prepare engineers to fulfill their mission in this dynamic digital future.

Index Terms-Education, professional training, SWEBOK

I. INTRODUCTION


This is the world that software engineers must be able to address to anticipate the needs and desires of an era of emerging and complex challenges where solutions will have to be delivered on the fly. The question is, are we training software engineering professionals capable of dealing with the demands of the digital era in the coming years?

In this paper, we outline how and why the new IEEE Computer Society's Guide to the Software Engineering Body of Knowledge (hereafter "SWEBOK V4") [1] takes into consideration the needs of digital era software engineers immersed in an industry demanding visionary solutions and proposes how to train these engineers in the skills that they need to fulfill their mission. In the following, we first present SWEBOK V4 and the evolution point of each Knowledge area. And then, we give the impact of each knowledge area on higher education and training through the prism of SWEBOK V4.

II. SWEBOK V4 AT A GLANCE

SWEBOK represents the current state of generally accepted, consensus-based knowledge emanating from the interplay between software engineering theory and practice [2], [3]. Its objectives include the provision of guidance for learners, researchers, and practitioners to identify and share a common understanding of "generally accepted knowledge" in software engineering, defining the boundary between software engineering and related disciplines, and providing a foundation for certifications and educational curricula.

The origins of SWEBOK go back to the early 2000s. Much like the software engineering discipline, SWEBOK has

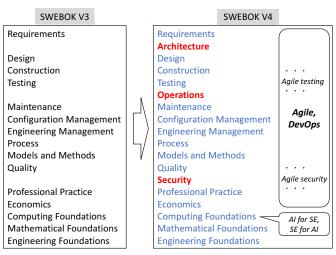


Fig. 1. From SWEBOK V3 to SWEBOK V4

continued to evolve over the last 20 years to reflect the educational, industrial, social, technical, and technological changes in society. A significantly updated SWEBOK V4 will be released in 2023 to improve the guide's currency, readability, consistency, and usability. The current draft public version of SWEBOK V4 can be reached at [1]. The guide contains 18 knowledge areas (KAs), followed by several appendices. A KA is an identified area of software engineering defined by its knowledge requirements and described in terms of its concepts, component processes, practices, inputs, outputs, tools, and techniques. SWEBOK has been adopted well as a fundamental basis for continuously developing software engineering curricula and industrial training programs. For example, [4] proposed a process for assessing and enhancing curricula against SWEBOK and reported the result of a case study targeting multiple universities.

Figure 1 summarizes the transition from SWEBOK V3, published in 2014, to V4. KAs have been updated to reflect the broad acceptance of agile methodologies and DevOps in many differently sized software-intensive organizations and acknowledge the rise of artificial intelligence (AI). Tables I, II, and III collect the main factor of the evolution of each of the SWEBOK KAs. There are three new KAs: Software Architecture, Software Operations, and Software Security. These additions better reflect contemporary software engineering practice, the pressing need to address cybersecurity as early

TABLE I
SWEBOK EVOLUTION AND IMPACTS ON HIGHER EDUCATION AND TRAINING: KA1–KA6

KA	Point of evolution	Impact on higher education	Impact on professional training
KA1.	The importance of requirements documen-	Students should be confronted with a variety of	Practicing professionals have the advantage of
Soft-	tation for long-term maintenance is added.	realistic cases where they can experience and	real-world experience where the critical re
ware	The whats and hows of work on software	practice diverse (e.g., acceptance criteria-based	quirements knowledge and skills can possibl
Re-	requirements in a project should be deter-	and model-driven) requirements techniques in	be applied retroactively to project situation
quire-	mined by the type of constructed software	various project-based situations that address	that they have already worked on.
ments	and not by the project life cycle. And also	not only new development but also the role of	
	it included a deeper, broader coverage of re-	appropriate requirements in ongoing software	
	quirements specification techniques, including	maintenance.	
	model-driven requirements specification and		
	acceptance criteria-based requirements speci-		
	fication.		
KA2.	As software tends toward larger, evermore	As software engineering technologies become	Architecture has increased in importance a
Soft-	complex systems, architecture concerns move	increasingly powerful while maturing at record	today's cyber-physical systems are pervasiv
ware	beyond construction to connectivity while as-	speed, things formerly taught abstractly can	At the same time, demands for agile, just
Archi-	suring new levels of quality for safety, security,	now be taught practically: students will have to	in-time solutions accelerate the need to "g
tecture	and dependability. Therefore, it is now a new	deal with larger systems than ever before and	things right" early and often. Practitioner
	KA. Software architecture aims to "satisfice"	need exposure to the underlying fundamental	therefore, depend upon knowledge of fund
	all stakeholders, while the focus of software	principles and practices of the discipline.	mental principles to survive.
	design is on the transformation of that vision	principles and practices of the discipline.	mentar principies to survive.
	into a feasible implementation.		
KA3.	1	In an are of agile DayOne aloud and other in	Industry is inhabited by many senior program
KA5. Soft-	Software is pervasive and critical in all aspects of modern life. The success of pervasive soft-	In an era of agile, DevOps, cloud, and other in- novations, it is worth remembering that despite	Industry is inhabited by many senior program mers promoted to designers. There is a nee
	ware depends on broadening the background	huge changes, design is governed by basic	for a sound curriculum to ensure practitione
ware		principles that apply across the board.	-
Design	of people with design skills, especially as	principles that apply across the board.	are comfortable with all the key aspects of
	emerging technologies, faster delivery times,		software design.
	and emphasis on agile, lean, and incremental		
T7 A 4	design impact the development process.		
KA4.	The following sections were added to reflect	Students must be aware that software con-	In addition to construction fundamentals, pra
Soft-	modern construction techniques and practices:	struction is not just programming functioning	titioners need to strengthen the knowledge ar
ware	managing dependencies, cross-platform devel-	code but creating and maintaining readable and	capability of cloud-based software develo
Con-	opment and migration, feedback loop for con-	verifiable code through coding, verification,	ment and deployment, the understanding
struc-	struction, and visual programming and low-	testing, and debugging with consideration of	DevOps and continuous integration/deliver
tion	code/zero-code platforms. Furthermore, major	related areas such as Software Design KA.	and the awareness of complex open-source
	updates were made to some of the existing sec-	Students should learn and practice construction	and commercial software ecosystems and the
	tions, especially about reuse, life-cycle models,	basics through coding tests and good examples,	impact on software development in training
	construction languages and environments.	as well as construction fundamentals, including	Furthermore, practitioners should understan
		complexity, change, reuse, coding standards,	industrial practices in construction manage
		and the proper support of tools and platforms	ment and the spread of reliable construction
		with a particular focus on modern development	technologies (such as error handling) as we
		processes such as Agile and DevOps.	as modern tools (such as low-code/zero-cod
			platforms).
KA5.	The chapter structure has been revised to align	It is essential to address the followings: (1)	This KA increases professional knowledge
Soft-	with the shift left testing movement. In partic-	Promote knowledge about quality and its value	about the risks and consequences of po-
ware	ular, this KA provides new content about soft-	to raise awareness about the product and pro-	software testing. It promotes learning pro-
Testing	ware testing in recent development processes	cess trustworthiness by incorporating specific	grams and specific courses for addressing cri
	(like Agile, DevOps, and Test-Driven Devel-	testing aspects such as automation, machine	ical aspects of software testing and know
	opment), application domains (like automotive,	learning, cloud computing, DevOps, continu-	edge about emerging testing technologies ar
	healthcare, mobile, legal, and IoT), emerging	ous testing, and security into the curriculum.	tools. It promotes learning-by-doing practice
	technologies (such as AI, blockchain, cloud)	(2) Round out student knowledge with hands-	and experience-based learning to improve the
	and quality attributes (like security and pri-	on experiences in laboratory and industrial	awareness of testing and the connected risks
	vacy).	contexts to raise appreciation of the importance	awareness of testing and the competed fish
	(403).	of quality and promote awareness of product	
		and process trustworthiness. (3) Incorporate	
		into the curriculum specific testing aspects	
		such as automation, machine learning, cloud	
		computing, DevOps, continuous testing, and	
		security. (4) Increase student knowledge and	
		skills about emerging software testing tech-	
VAC	This is a new knowledge and that add	nologies and tools.	In addition to anousting for large (1, 1)
KA6.	This is a new knowledge area that addresses	Students must be aware of the importance of	In addition to operations fundamentals k
Soft-	the evolution of the role of software engineers	software engineering operations, including de-	practices, practitioners should grasp the enti-
ware	to include DevOps and infrastructure as code	ployment, configuration, operational monitor-	picture of operations, including operation pla
Engi-	activities while eliminating the organizational	ing, and management in the era of continuous	ning, delivery, and control as an integral pa
neering	silos between development, maintenance, and	software engineering. Students should learn	of system and software life cycle processe
Opera-	operations. This new KA describes operations	fundamentals and practice operation basics and	Furthermore, practitioners should understand
tions	fundamentals, planning, delivery and control	tools, particularly DevOps practices, through	modern infrastructure practices such as Agi
	activities, and techniques. It also presents prac-	exercise and project-based learning.	Infrastructure and Infrastructure as Code (IaC
	tical considerations and tools.		as well as practical considerations, relat
			standards and tools such as containers as
			standards, and tools such as containers a

 TABLE II

 SWEBOK EVOLUTION AND IMPACTS ON HIGHER EDUCATION AND TRAINING: KA7–KA11

KA	Point of evolution	Impact on higher education	Impact on professional training
KA7.	Maintenance categories and the software pro-	Maintenance has increased in cost and im-	In addition to software maintenance funda
Soft-	cess have been updated to align with the	portance in a world of continuous changes.	mentals, practitioners can further learn main
ware Main	2021 version of ISO14764. Also, continuous	Although it is often hard to experience the	tenance activities, processes, techniques, and toole in Agile and DayOne any ironmants where
Main- tenance	integration, delivery, testing, and deployment have been added as a new topic in response	reality of maintenance in higher education programs, students should learn maintenance	tools in Agile and DevOps environments where development, maintenance, and operations are
tenance	to the growing popularity of regrouping devel-	fundamentals by referring to textbooks, in-	grouped together. Learners are also expected
	opment, maintenance, and operations tasks to	dustrial maintenance project reports as well	to increase their awareness about the need
	improve software engineering productivity.	as open-source projects. Furthermore, software	for maintenance as well as their associated
	1	architecting and design exercises can teach	challenges in practice.
		students how to handle maintainability.	
KA8.	Version control is the best-known facet of the	This process cannot be explained without	The configuration plan definition and develop
Soft-	SCM process, although it is just one of many.	project management (estimation and planning),	ment have to be strongly connected to project
ware	This helps explain past precariousness of the	quality and construction, because it has to	planning and DevOps performance.
Config-	process. In SWEBOK V4, SCM has been ex-	be developed in combination with all these	
uration Man-	plained considering all of its facets. It stresses	processes to guarantee the control of the con- figuration items to be developed. Of the soft-	
age-	that the SCM process plan must be defined first before all the decisions and commitments	ware engineering teaching methods identified	
ment	included in the plan are somehow incorporated	by [5], there is no doubt that the SCM process	
	into existing tools for execution rather than the	must be taught using project-based and active	
	other way around, as was the usual practice in	learning. Both approaches force students to	
	the past. Keeping track of CI relationships is	address SCM integrally, because, for instance,	
	essential to visualize the potential impact of a	no configuration item can be output unless the	
	change on a CI over other CIs.	project is under development, and no output	
		product can be assessed from the quality as-	
		surance process perspective unless it has been	
		identified and cataloged as a configuration item with the identification of its respective base-	
		line.	
KA9.	The scale of complicated and complex	Modern software engineering management	To meet these challenges, a higher educatio
Soft-	software-enabled systems and services will	practices are changing to meet the needs of so-	program in software engineering managemer
ware	continue to increase exponentially with intri-	ciety caused by increases in the size and com-	needs to offer a unique combination of ad
Engi-	cate and often hidden interfaces and interre-	plexity of software, alongside greater pressure	vanced technical knowledge and management
neering	lationships operating in a dynamic and non-	to quickly release software enabling products	competencies. There is a need to develo
Man-	deterministic world. As a result, software en-	to market in rapidly changing environments.	perspectives for (1) Understanding industria
age-	gineering management knowledge will evolve	There are fundamental management shifts in	practices and current and future trends in
ment	continuously to meet the needs of society.	how work is performed because software has	technology development, (2) Judging and im
	Although significant progress has been made to date, artificial intelligence/machine learning	the power to cause increasing globalization, innovations, interactions, and productivity and	proving software quality, methods, processes and tools, (3) sustaining software systems over
	and other technological systems are beginning	the countervailing force of increasing com-	long time periods, (4) innovating softwar
	to emerge. They will unleash future challenges	plexity. These management challenges need to	development practices and improving perfor
	for systems management.	be addressed to produce and sustain future	mance, and (5) a project-based, collaborative
		software-enabled systems.	learning environment to meet the needs of the
			workforce in the digital age.
KA10.	The software engineering process is central	Students need to be acquainted with new fun-	Critical thinking, judgment, and decision
Soft-	to the creation of reliable and cost-effective	damentals, new approaches, and new tools so	making about different process models and
ware	software products. Software engineers face a	that they can cope with this landscape. Now more than ever, software engineering process	tools for large, complex, and uncertain specifi
Engi- neering	challenging and evolving highly technological landscape, fast-moving technology (sometimes	definition and management means combining	scenarios will be needed. Software engineer need to be skilled in defining and in assessing
Process	to obsolescence), societal events and changes,	rigor and flexibility, and the introduction of	and improving software life-cycle processes
	uncertainty, a growing complexity of systems,	the broad use empirical measures to support	More than ever, software engineers must b
	and the trend towards digitalization of many	decision making and process monitoring. The	able to learn about the process in execution
	and different domains. This is a point of no	relevance of the interactions between this KA	and the product. And all this knowledge mus
	return that has facilitated the ongoing adoption	and other KAs, therefore, increases.	be deployed in subsequent processes, and b
	of Agile and DevOps. The software engineer-		part of the (management) decision making
	ing process will continue to evolve, profiting		possibly to avoid or overcome obstacles. Thi
	from advances in the engineering dimension,		will influence professional training.
	new tools, and the latest knowledge from the other $K \Delta s$		
KA11.	other KAs. Models have been updated and accurately clas-	Fundamental modeling principles and basic	In addition to fundamental modeling principle
Soft-	sified by type. Relatively new methods, in-	model types are essential and should be ad-	and model and method types, some method
ware	cluding aspect-oriented development, as well	dressed since these are on the basis of almost	ods, particularly agile and prototyping method
Engi-	as fundamental model-driven and model-based	any software engineering activity, regardless	with DevOps, should be addressed in a fas
neering	methods, have also been introduced. Agile	of the types of software engineering methods	moving and agile era. Furthermore, practition
Models	methods have been extended a great deal to	to be taught, but the key to succeed while	ers should understand the basics of model ana
	incorporate modern techniques, such as lean	teaching models and methods is the practice, it	ysis, such as analysis for consistency and trace
and		is accordial to use project based technique so	ability to another that a team of mechanican
Meth-	development, as well as large-scale and enter-	is essential to use project-based technique so	
	prise agile methods. On this note, DevOps and	students can feel models and methods alive.	ability, to ensure that a team of professional can successfully develop, operate and maintai
Meth-	prise agile methods. On this note, DevOps and release engineering have also been introduced	students can feel models and methods alive. Furthermore, method types, as well as details	
Meth-	prise agile methods. On this note, DevOps and	students can feel models and methods alive.	can successfully develop, operate and maintai

TABLE III
SWEBOK EVOLUTION AND IMPACTS ON HIGHER EDUCATION AND TRAINING: KA12–KA18

KA KA 12	Point of evolution	Impact on higher education	Impact on professional training
KA12. Soft- ware Quality	This chapter was overhauled for alignment with notions of processes/product quality. It now includes new topics: (1) Software De- pendability and Integrity Levels, (2) Standards, Models and Certifications, (3) Policies, Pro- cesses and Procedures, and (4) Quality Control and Testing.	Students must be made aware that software quality extends well beyond software testing alone. Insofar as it can help avoid defects in the first place and thus vastly reduce the need for testing resources, process quality is a key insight. Analysis of real-world case studies where broader approaches to quality have been successfully applied can be critical.	The learner is expected to have some real- world, on-project experience already. Retro- spective analysis of how past projects might have been improved through better application of quality techniques can be useful. It will be important to emphasize that the cost (i.e., effort) invested in quality techniques is easy to assess, whereas the return on investment is more difficult to evaluate because it comes in the form of cost (i.e., effort) avoided—work not done— (i.e., defects were avoided entirely or found earlier when they were much cheaper to repair).
KA13. Soft- ware Secu- rity	This is a new knowledge area that focuses on the broader topics of security, particularly security fundamentals, security management, security tools, and domain-specific security, as well as major security engineering activities (such as security testing) that were briefly de- scribed under the Computing Foundations KA in the last SWEBOK edition. The existence of a separate KA emphasizes that security should be a first-class quality attribute in any development since almost any software system is connected to others, resulting in increased security risks.	Students should study this KA to learn about security fundamentals since the development of almost any software system needs to con- sider security concerns in the era of IoT and connected software. Furthermore, students should learn basic security engineering tech- niques aligned with the development life cy- cle, including security requirements, design, construction, and testing, to understand how security measures should be incorporated into the major development activities.	Apart from security fundamentals and major engineering activities, practitioners should be aware of available practical security solutions, including security tools and patterns. Secu- rity patterns provide guidelines to improve security characteristics such as confidentiality, integrity, and availability since security pat- terns incorporate the knowledge of security experts. Domain-specific security techniques should also be recognized since security is a particularly tough objective for cloud, IoT, and machine learning applications. Practitioners in- volved in organization, product, and project management should refer to the security man- agement and organization section to learn the importance of systematically weaving security governance and management into their cultural and organizational behaviors.
KA14. Soft- ware Engi- neering Profes- sional Prac- tice	Additions and revisions address the follow- ing areas: (1) Professional practices following generally accepted practices, standards, and guidelines set forth by the applicable profes- sional societies, (2) UI/UX inclusive design, (3) Considerations on diversity and inclusion, and (4) Considerations on agility.	Students should engage in certification or qual- ification programs offered by professional so- cieties or national organizations. Students are expected to participate in more programs or- ganized by professional societies to get ac- quainted with state-of-the-art practices apart from academic accomplishments.	Professional practices are progressing at an ever faster pace as software use becomes more widespread and is adopted in socially critical applications. Participation in the various activ- ities of professional societies provides contin- uous reskilling. Software used in more critical applications requires the enforcement of a code of ethics and code of conduct, which calls for continuous training with respect to the guidelines of professional societies.
KA15. Soft- ware Engi- neering Eco- nomics	Focuses on the essence of engineering eco- nomics, the art of making decisions. Broaden the more traditional, purely financial view of engineering economics. Value does not always derive from money alone; that is, value can also derive from "unquantifiables" like cor- porate citizenship, employee well-being, envi- ronmental friendliness, customer loyalty, and so on. And more systematically address pre- project decisions, where a project is not under development but is being envisioned.	The software engineering economics (SEE) vision must be broader in two ways. It should (1) focus on the essence of engineering economics, which means the art of making decisions, and (2) extend decision-making to the pre-project phase, where the project is being envisioned, not developed. Of the software engineering teaching methods identified by [5], collaborative learning is one of the methods that could be very useful for understanding SEE, because sound decision-making depends on listening to and understanding stakeholders. This is followed by collaborative prioritization in order to make the best decision using existing methods that can be taught in a flipped classroom, where the teacher can discuss with the students the decision-making methods reported in the previous readings sent to the students about the methods to be discussed.	Decision-making based on cyclical prediction instead of linear patterns can be an effective way to apply these techniques retrospectively to the practitioner's real-world project experi- ences. For example, a learner could calculate the actual PW(i) of a completed project or ana- lyze whether the specific projects implemented in a digital transformation really were the best.
KA16. Com- puting, KA17. Math- emat- ical, KA18. Engi- neering Foun- dations	Minor improvements in topic presentation. Discussions of Artificial Intelligence and Ma- chine Learning were added. Furthermore, the revision includes a deeper coverage of mea- surement, particularly its implications for pro- gramming languages, and a more comprehen- sive discussion of root cause analysis.	Collaborative learning, where students teach each other and evaluate other students' under- standing, can improve comprehension and also enhance cooperation and teamworking skills.	The challenge is that many practitioners may not recognize the need for theoretical foun- dations (e.g., "I have been successful in my career so far without that"). It is critical to tie foundational knowledge in with how it affects real-world situations.

TABLE IV		
SPECIFIC CUTTING-EDGE CONCEPTS IN SWEBOK V4		

Concern	Related	Impact on higher education	Impact on professional training
	KA		
Agile	KA1,	Agile and DevOps have a direct impact on several, and an indirect	Agile and DevOps training should open up new perspectives for
& De-	KA9,	impact on all, KAs. Agile and DevOps fit the current scenario:	professionals. One is critical thinking and judgment based on
vOps	KA10,	fast-moving and changing times, full of uncertainty. Agile and	DevOps values/principles/practices and schemes. DevOps affects
	KA11	DevOps must be explained, highlighting their fundamentals, as	decision-making at all levels of the software engineering process
		they constitute paradigm shifts rather than just a new set of	and KAs. Agile impacts both the engineering and the management
		practices. It will help to present these new methods together with	level.
		other approaches to develop critical thinking and decision-making,	
		and resource optimization/ management in the case of DevOps.	
AI and	KA16	The recent resurge in artificial intelligence (AI), and its prospects	Professional training programs should address emerging automated
SE		have been swift and strong. In the case of AI systems, knowledge	techniques and tools by referring to the general introduction of AI
		has very often not yet been consolidated. For this reason, AI is only	and ML, as well as AI for SE. Practitioners should understand
		considered within the Computing Foundations KA in SWEBOK	how such AI techniques and tools are going to replicate particular
		V4. More and more systems will be using AI in the coming years,	developer behavior, ranging from resolving ambiguous require-
		and humans will depend on these systems in many ways. Higher	ments to predicting maintainability. Furthermore, professionals
		education programs can introduce students to emerging endeavors	should understand the need for particular software engineering
		on AI for SE and SE for AI as a part of the future of software	support for AI since AI systems are developed differently from
		engineering by referring to the Computing Foundations KA. Future	traditional software systems, as the rules and system behavior of
		SWEBOK versions will address how to engineer systems that	AI systems are inferred from training data rather than written
		include AI subsystems. AI is likely to change how software is	down as program code. Professionals can learn from emerging
		engineered, and this will also be addressed by future versions of	recommended software engineering practices for AI, which are
		SWEBOK.	often formalized as patterns.

TABLE V LINKING TEACHING METHODS IN SE AND SWEBOK V4 KAS

Teaching method	Knowledge Area
Project-Based Learning	KA1, KA3, KA4, KA6, KA7,
Learning by Reflection	KA8, KA9, KA10, KA12 KA2, KA3, KA9, KA10, KA11,
0.1	KA16, KA17, KA18
Just-in-Time Learning	KA2, KA14
Participation in SW Community	KA4, KA5
Flipped Learning	KA15, KA10
Experimental/Research-Based Learning	KA5
Global Software Development	KA4
Problem-Based Learning	KA4, KA5, KA11, KA13
Active Learning/Learning by Doing	KA5, KA8, KA10
Collaborative/Peer Learning	KA15
Agile Learning	KA9

as possible in developing distributed, networked systems for use by the public at large, and the need for specialized skills to be able to work effectively in these areas.

III. TRAINING AND EDUCATION IN DIGITAL ERA

Tables I, II, and III also show the main impact of each KA on both higher education and professional training. Moreover, Table V shows the teaching methods, identified in recent work by [5], that best suit each KA. Software engineering education and training programs are expected to focus on core topics for each SWEBOK V4 knowledge area as described in the Tables I–III, through suggested teaching methods identified in Table V which maps KAs to teaching methods.

Table IV includes some cutting-edge concepts and how they are addressed in SWEBOK V4. "Agile & DevOps" are two topics that should be incorporated into any education and training program as they are practical fundamentals that are well accepted by industry and should be addressed by academia. However, in and of themselves, it is not felt that they should constitute a key area but are applicable across multiple of the existing key areas in SWEBOK V4. The "AI and SE" connection, while not a key area of SWEBOK V4

either, is a topic that should be considered and developed as an _ advanced topic in the various software engineering programs.

IV. CONCLUSION

In this paper, we described the evolution of SWEBOK and its impact on higher education and training. Although all the teaching methods identified by [5] can be applied to most KAs, Table V summarizes the ones that are most suitable for each KA. The software engineering profession needs to be aware of several specific methods to instruct the different KAs. The emergence of Architecture, Operations and Security KAs requires specific reflection on their connections with SE2014 [6] already covered by SWEBOK V3 [4]. A special attention is also required to update SWECOM [7] to incorporate potential competencies required to perform new KAs.

ACKNOWLEDGMENT

The authors thank the SWEBOK editors, IEEE CS staff, and other volunteers for their contributions to the SWEBOK development. We thank Rich Hilliard, Alain April, Xin Peng, Katsutoshi Shintani, Eda Marchetti and Said Daoudagh for their support and contributions to this paper.

REFERENCES

- [1] "SWEBOK guide v4 beta," https://waseda.app.box.com/v/ ieee-cs-swebok, (Accessed on 22/03/2023).
- [2] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body of Knowledge (SWEBOK): Version 3.0. IEEE Computer Society, 2014.
- [3] P. Kamthan and H. Washizaki, "SWEBOK matters: Report and reflection of a seke panel on the educational and professional implications of SWEBOK," Int. J. Softw. Eng. Knowl. Eng., vol. 32, no. 11–12, 2022.
- [4] A. Alarifi, M. Zarour, N. Alomar, Z. Alshaikh, and M. Alsaleh, "SECDEP: software engineering curricula development and evaluation process using SWEBOK," *Inf. Softw. Technol.*, vol. 74, pp. 114–126, 2016.
- [5] K. P. Anicic and Z. Stapic, "Teaching methods in software engineering: A systematic review," *IEEE Softw.*, vol. 39, no. 6, pp. 73–79, 2022.
- [6] "Curriculum guidelines for undergraduate degree programs in software engineering (SE2014)," https://www.acm.org/binaries/content/assets/ education/se2014.pdf, 2015, (Accessed on 26/05/2023).
- [7] "Software engineering competency model (SWECOM)," http://www. dahlan.web.id/files/ebooks/SWECOM.pdf, 2014.