
> Artifi cial Intelligence
> High-Performance

Computing
> Internet of Things
> Graphics and

Visualization

JULY 2018 www.computer.org

IEEE Letters of the Computer Society (LOCS) is a rigorously peer-
reviewed forum for rapid publication of brief articles describing high-
impact results in all areas of interest to the IEEE Computer Society.

Topics include, but are not limited to:

• software engineering and design;
• information technology;
• software for IoT, embedded, and cyberphysical

systems;
• cybersecurity and secure computing;
• autonomous systems;
• machine intelligence;
• parallel and distributed software and

algorithms;
• programming environments and languages;
• computer graphics and visualization;
• services computing;
• databases and data-intensive computing;
• cloud computing and enterprise systems;
• hardware and software test technology.

LOCS offers open access options for authors. Learn
more about IEEE open access publishing:

www.ieee.org/open-access

EDITOR IN CHIEF
Darrell Long - University of California, Santa Cruz

ASSOCIATE EDITORS
Dan Feng, Huazhong University of Science and
Technology

Gary Grider - Los Alamos National Laboratory

Kanchi Gopinath - Indian Institute of Science (IISc),
Bangalore

Katia Obraczka - University of California, Santa
Cruz

Thomas Johannes Emil Schwarz - Marquette
University

Marc Shapiro - Sorbonne-Université–LIP6 & Inria

Kwang Mong Sim - Shenzhen University

Learn more about LOCS,
submit your paper, or become
a subscriber today:
www.computer.org/locs

STAFF

Editor
Meghan O’Dell

Contributing Staff

Christine Anthony, Lori Cameron, Cathy Martin, Chris Nelson,
Dennis Taylor, Rebecca Torres, Bonnie Wylie

Production & Design
Carmen Flores-Garvey

Managers, Editorial Content
Brian Brannon, Carrie Clark

Publisher
Robin Baldwin

Director, Products and Services
Evan Butterfield

Senior Advertising Coordinator
Debbie Sims

Circulation: ComputingEdge (ISSN 2469-7087) is published monthly by the IEEE Computer Society. IEEE Headquarters, Three Park Avenue, 17th Floor, New
York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720; voice +1 714 821 8380; fax +1 714 821 4010;
IEEE Computer Society Headquarters, 2001 L Street NW, Suite 700, Washington, DC 20036.

Postmaster: Send address changes to ComputingEdge-IEEE Membership Processing Dept., 445 Hoes Lane, Piscataway, NJ 08855. Periodicals Postage Paid at
New York, New York, and at additional mailing offices. Printed in USA.

Editorial: Unless otherwise stated, bylined articles, as well as product and service descriptions, reflect the author’s or firm’s opinion. Inclusion in ComputingEdge
does not necessarily constitute endorsement by the IEEE or the Computer Society. All submissions are subject to editing for style, clarity, and space.

Reuse Rights and Reprint Permissions: Educational or personal use of this material is permitted without fee, provided such use: 1) is not made for profit;
2) includes this notice and a full citation to the original work on the first page of the copy; and 3) does not imply IEEE endorsement of any third-party products
or services. Authors and their companies are permitted to post the accepted version of IEEE-copyrighted material on their own Web servers without permission,
provided that the IEEE copyright notice and a full citation to the original work appear on the first screen of the posted copy. An accepted manuscript is a version
which has been revised by the author to incorporate review suggestions, but not the published version with copy-editing, proofreading, and formatting added by
IEEE. For more information, please go to: http://www.ieee.org/publications_standards/publications/rights/paperversionpolicy.html. Permission to reprint/republish
this material for commercial, advertising, or promotional purposes or for creating new collective works for resale or redistribution must be obtained from IEEE by
writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2018 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy for private use of patrons, provided the per-
copy fee indicated in the code at the bottom of the first page is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Unsubscribe: If you no longer wish to receive this ComputingEdge mailing, please email IEEE Computer Society Customer Service at help@computer.org and
type “unsubscribe ComputingEdge” in your subject line.

IEEE prohibits discrimination, harassment, and bullying. For more information, visit www.ieee.org/web/aboutus/whatis/policies/p9-26.html.

IEEE COMPUTER SOCIETY computer.org • +1 714 821 8380

www.computer.org/computingedge� 1

IEEE Computer Society Magazine Editors in Chief

Computer
Sumi Helal, Lancaster University

IEEE Software
Diomidis Spinellis, Athens
University of Economics and
Business

IEEE Internet Computing
M. Brian Blake, Drexel University

IT Professional
Irena Bojanova, NIST

IEEE Security & Privacy
David M. Nicol, University of
Illinois at Urbana-Champaign

IEEE Micro
Lieven Eeckhout, Ghent
University

IEEE Computer Graphics
and Applications
Torsten Möller, University of
Vienna

IEEE Pervasive Computing
Marc Langheinrich, Università
della Svizzera Italiana

Computing in Science
& Engineering
Jim X. Chen, George Mason
University

IEEE Intelligent Systems
V.S. Subrahmanian, Dartmouth
College

IEEE MultiMedia
Shu-Ching Chen, Florida
International University

IEEE Annals of the History
of Computing
Nathan Ensmenger, Indiana
University Bloomington

IEEE Cloud Computing
Mazin Yousif, T-Systems
International

JULY 2018 • VOLUME 4, NUMBER 7

THEME HERE

21
Large-Scale

Calculations for
Material Sciences

Using Accelerators to
Improve Time- and
Energy-to-Solution

24
If You Build It,

Will They Come?

32
Autonomic

Networking:
Architecture
Design and

Standardization

38
JPEG at 25:
Still Going

Strong

Subscribe to ComputingEdge for free at
www.computer.org/computingedge.

Artifi cial Intelligence

10 Designing Ethical Personal Agents
 NIRAV AJMERI, HUI GUO, PRADEEP K. MURUKANNAIAH, AND

MUNINDAR P. SINGH

17 Do Computers Follow Rules Once Followed
by Workers?

 BJÖRN WESTERGARD

High-Performance Computing

21 Large-Scale Calculations for Material Sciences
Using Accelerators to Improve Time- and Energy-to-
Solution

 MARKUS EISENBACH

24 If You Build It, Will They Come?
 SRILATHA MANNE, BRYAN CHIN, AND STEVEN K. REINHARDT

IT

32 Autonomic Networking: Architecture Design and
Standardization

 XINJIAN LONG, XIANGYANG GONG, XIRONG QUE, WENDONG
WANG, BING LIU, SHENG JIANG, AND NING KONG

Graphics and Visualization

38 JPEG at 25: Still Going Strong
 GRAHAM HUDSON, ALAIN LÉGER, BIRGER NISS, AND ISTVÁN

SEBESTYÉN

46 Sally Weber: Making Art from Light
 SALLY WEBER, BRUCE CAMPBELL, AND FRANCESCA SAMSEL

Internet of Things

51 A Taxonomy of IoT Client Architectures
 ANTERO TAIVALSAARI AND TOMMI MIKKONEN

57 A Revised View of the IoT Ecosystem
 VINTON G. CERF

Departments
 4 Magazine Roundup
 8 Editor’s Note: The Rise of Artifi cial Intelligence

4 July 2018 Published by the IEEE Computer Society 2469-7087/18/$33.00 © 2018 IEEE

CS FOCUS

T he IEEE Computer
Society’s lineup of 13
peer-reviewed tech-

nical magazines covers cut-
ting-edge topics ranging from
software design and computer
graphics to Internet comput-
ing and security, from scien-
tifi c applications and machine
intelligence to cloud migration
and microchip design. Here are
highlights from recent issues.

Computer

Deep Learning for the
Internet of Things
How can the advantages of
deep learning be brought to
the emerging world of embed-
ded Internet of Things (IoT)
devices? The authors of this
article from the May 2018 issue
of Computer discuss several core
challenges in embedded and

mobile deep learning, as well as
recent solutions demonstrating
the feasibility of building IoT
applications that are powered
by eff ective, effi cient, and reli-
able deep-learning models.

Computing in Science &
Engineering

Touching Data: Enhancing
Visual Exploration of Flow
Data with Haptics
Using the example of interac-
tive exploration of a beating
heart, the authors of this article
from the May/June 2018 issue
of Computing in Science & Engi-
neering demonstrate how data
exploration and analysis can
be further improved by adding
haptics. This combination of
sensory information input leads
to the notion of visuo-haptic
visualization.

Magazine
Roundup
Editor: Lori Cameron

www.computer.org/computingedge 5

IEEE Annals of the History
of Computing

Thomas Harold (“Tommy”)
Flowers: Designer of the
Colossus Codebreaking
Machines
During World War II, English engi-
neer Tommy Flowers (1905–1998)
designed the world’s fi rst program-
mable electronic computer, Colos-
sus, to solve a problem posed by
a mathematician at the Govern-
ment Code and Cypher School at
Bletchley Park. After Colossus was
made public, Flowers began to win
broader attention and was invited
to address various computing
groups and to document his work.
Learn more in the January–March
2018 issue of IEEE Annals of the
History of Computing.

IEEE Cloud Computing

What is “Cloud”? It is Time to
Update the NIST Defi nition?
IaaS, PaaS, and SaaS were formally
defi ned in 2011 (Internet as a ser-
vice, platform as a service, and
software as a service, respectively).
Have these defi nitions held up in the
fast-moving world of cloud comput-
ing? Enter the National Institute of
Standards and Technology (NIST),
a US government entity that for-
mally defi nes standards, metrics,
and the like. After several years of
work, industry collaboration, and
multiple review cycles, they released
the fi nal version of the widely cited
“The NIST Defi nition of Cloud Com-
puting” in 2011. But should this
defi nition be updated for 2018 and
beyond? Read more in the May/June
2018 issue of IEEE Cloud Computing.

IEEE Computer Graphics
and Applications

Sally Weber: Making Art from
Light
Bruce Campbell of Rhode Island
School of Design and Francesca
Samsel of the University of Texas at
Austin caught up with artist Sally
Weber after having been transfi xed
by her latest work, inFLUX, from
her exhibition ELEMENTAL at the
Butler Institute of American Art in
Youngstown, Ohio. The authors of
this article from the May/June 2018
issue of IEEE Computer Graphics
and Applications believe that as an
artist who has worked with light
as her medium during her distin-
guished career, Weber has valu-
able insight to share with CG&A’s
readership.

IEEE Intelligent Systems

Identifying SCADA Systems
and Their Vulnerabilities on
the Internet of Things: A Text-
Mining Approach
Supervisory Control and Data
Acquisition (SCADA) systems
allow operators to control critical
infrastructure. Vendors are increas-
ingly integrating Internet technol-
ogy into these devices, making
them more susceptible to cyberat-
tacks. Identifying and assessing
vulnerabilities of SCADA devices
using Shodan, a search engine
that contains records about pub-
licly available Internet-connected
devices, can help mitigate cyber-
attacks. The authors of this arti-
cle from the March/April 2018
issue of IEEE Intelligent Systems
present a principled approach to

systematically identify all SCADA
devices on Shodan and then
assess the vulnerabilities of the
devices with a state-of-the-art tool.

IEEE Internet Computing

Analytics without Tears or
Is There a Way for Data to
Be Anonymized and Yet Still
Useful?
In this article from the May/June
2018 issue of IEEE Internet Com-
puting, the authors discuss the
new requirements for policies and
mechanisms to retain privacy when
analyzing users’ data. More and
more information is being gath-
ered about all of us, and used for a
variety of reasonable commercial
goals—recommendations, targeted
advertising, optimizing product reli-
ability or service delivery: the list
goes on and on. However, the risks
of leakage or misuse also grow.
Recent years have seen the devel-
opment of a number of tools and
techniques for limiting these risks,
ranging from improved security for
processing systems to increased
control over what is disclosed in
the results. Most of these tools and
techniques will require agreements
on when and how they are used
and how they interoperate.

IEEE Micro

Architectural Risk
Designing a system involves the
risk that a design will fail to meet
its performance goals. While risk
assessment and management are
typically treated independently from
performance, they are more tightly
linked than one might expect.

6 ComputingEdge July 2018

MAGAZINE ROUNDUP

Risk-minimizing and performance-
optimizing designs might not be the
same, and new techniques to help
make smarter choices between the
two are needed. Surprisingly, even
simple performance/risk tradeoff s
are nearly impossible to reason
about with intuition alone. Read
more in the May/June 2018 issue of
IEEE Micro.

IEEE MultiMedia

360-Degree Virtual-Reality
Cameras for the Masses
To make virtual reality (VR) cam-
eras more accessible to the public,
devices must be aff ordable, porta-
ble, reliable, high quality, and user
friendly. In this article from the
January–March 2018 issue of IEEE
MultiMedia, the authors describe
the challenges in meeting these
goals and the techniques that
Kandao–a VR startup company
based in China–used to conquer
them when designing its Obsidian
cameras.

IEEE Pervasive Computing

Making Everyday Interfaces
Accessible: Tactile Overlays
by and for Blind People
Making a physical environment
accessible to blind people gener-
ally requires sighted assistance.
VizLens and Facade put visually
impaired users at the center of a
crowdsourced, computer-vision-
based workfl ow that lets them
make the environment accessible
on their own terms. Read more
about these applications in the
April–June 2018 issue of IEEE Per-
vasive Computing.

IEEE Security & Privacy

The Privacy Paradox of
Adolescent Online Safety: A
Matter of Risk Prevention or
Risk Resilience?
By taking a more “teen-centric”
(instead of a “parent-centric”)
approach to adolescent online
safety, researchers and designers
can help teens foster a stronger
sense of personal agency for regu-
lating their own online behaviors
and managing online risks. Tech-
nology should support teens in
their developmental goals, includ-
ing information seeking, learning
about rules and boundaries, and
maintaining social relationships,
in addition to keeping them safe
from online risks. However, this
goal will only be accomplished
once we listen more intently to
teens as end users. Read more
in the March/April 2018 issue of
IEEE Security & Privacy.

IEEE Software

On the Defi nition of
Microservice Bad Smells
Code smells and architectural
smells (also called bad smells) are
symptoms of poor design that can
hinder code understandability and
decrease maintainability. Several
bad smells have been defi ned in
the literature for both generic and
specifi c architectures. However,
cloud-native applications based
on microservices can be aff ected
by other types of issues. To iden-
tify a set of microservice-specifi c
bad smells, researchers collected
evidence of bad practices by
interviewing 72 developers with

experience in developing systems
based on microservices. Then,
they classifi ed the bad practices
into a catalog of 11 microservice-
specifi c bad smells frequently
considered harmful by practitio-
ners. The results can be used by
practitioners and researchers as
a guideline to avoid experiencing
the same diffi cult situations in the
systems they develop. Read more
in the May/June 2018 issue of IEEE
Software.

IT Professional

The New Threats of
Information Hiding: The Road
Ahead
A recent trend involves exploiting
various information-hiding tech-
niques to empower malware—for
example, to bypass mobile device
security frameworks or to exfi ltrate
sensitive data. The authors of this
article from the May/June 2018
issue of IT Professional provide
an overview of information-hiding
techniques that can be utilized by
malware. They showcase exist-
ing and emerging threats that
use diff erent types of data-hiding
mechanisms (not just those adopt-
ing classical covert channels),
with the goal of monitoring these
threats and proposing effi cient
countermeasures.

Com puting Now

The Computing Now website
(computingnow.computer.org) fea-
tures computing news and blogs,
along with articles ranging from
peer-reviewed research to opinion
pieces by industry leaders.

PURPOSE: The IEEE Computer Society is the world’s largest
association of computing professionals and is the leading
provider of technical information in the field.
MEMBERSHIP: Members receive the monthly magazine
Computer, discounts, and opportunities to serve (all activities
are led by volunteer members). Membership is open to all IEEE
members, affiliate society members, and others interested in the
computer field.
COMPUTER SOCIETY WEBSITE: www.computer.org
OMBUDSMAN: Direct unresolved complaints to ombudsman@
computer.org.
CHAPTERS: Regular and student chapters worldwide provide the
opportunity to interact with colleagues, hear technical experts,
and serve the local professional community.
AVAILABLE INFORMATION: To check membership status, report
an address change, or obtain more information on any of the
following, email Customer Service at help@computer.org or call
+1 714 821 8380 (international) or our toll-free number, +1 800
272 6657 (US):

• Membership applications
• Publications catalog
• Draft standards and order forms
• Technical committee list
• Technical committee application
• Chapter start-up procedures
• Student scholarship information
• Volunteer leaders/staff directory
• IEEE senior member grade application (requires 10 years

practice and significant performance in five of those 10)

PUBLICATIONS AND ACTIVITIES
Computer: The flagship publication of the IEEE Computer
Society, Computer, publishes peer-reviewed technical content that
covers all aspects of computer science, computer engineering,
technology, and applications.
Periodicals: The society publishes 13 magazines, 19 transactions,
and one letters. Refer to membership application or request
information as noted above.
Conference Proceedings & Books: Conference Publishing
Services publishes more than 275 titles every year.
Standards Working Groups: More than 150 groups produce IEEE
standards used throughout the world.
Technical Committees: TCs provide professional interaction in
more than 30 technical areas and directly influence computer
engineering conferences and publications.
Conferences/Education: The society holds about 200 conferences
each year and sponsors many educational activities, including
computing science accreditation.
Certifications: The society offers two software developer
credentials. For more information, visit www.computer.org/
certification.

NEXT BOARD MEETING

revised 201

EXECUTIVE COMMITTEE
President:
President-Elect: ; Past President: ; First VP,

: ; Second VP, ; VP,
Member & Geographic Activities: ; VP, Professional &
Educational Activities: ; VP, Standards Activities: ;

VP, Technical & Conference Activities: ; 201 IEEE

Division V : ; 201 201 IEEE Division V :

201 IEEE Division V -Elect:

BOARD OF GOVERNORS
Term Expiring 201 :

Term Expiring 201 :

Term Expiring 20 :

EXECUTIVE STAFF
Executive Director: Angela R. Burgess
Director, Governance & Associate Executive Director: Anne Marie Kelly
Director, Finance & Accounting: Sunny Hwang
Director, Information Technology & Services: Sumit Kacker
Director, Membership Development: Eric Berkowitz
Director, Products & Services: Evan M. Butterfield

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036-4928
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 Phone:
+1 714 821 8380
Email: help@computer.org

MEMBERSHIP & PUBLICATION ORDERS
Phone: +1 800 272 6657 • Fax: +1 714 821 4641 • Email: help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo
107-0062, Japan
Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE BOARD OF DIRECTORS
President & CEO:
President-Elect: J

Past President:
Secretary:
Treasurer:

Director & President, IEEE-USA:

Director & President, Standards Association:
Director & VP, Educational Activities:
Director & VP, Membership and Geographic Activities:
Director & VP, Publication Services and Products:

Director & VP, Technical Activities:
Director & Delegate Division V:
Director & Delegate Division VIII:

8 July 2018 Published by the IEEE Computer Society 2469-7087/18/$33.00 © 2018 IEEE

EDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTEEDITOR’S NOTE

A rtifi cial intelligence (AI) is rapidly trans-
forming our world through self-driving
cars, personal digital assistants, and

medical advances such as training computers
to read and interpret pathology reports to reveal
insights that could lead to increased disease pre-
vention and detection. However, the rise of AI
means that more and more lives are in the hands
of machines, so cultivating trust in AI is para-
mount—as is ensuring that AI agents act ethically.

Two articles in this issue of ComputingEdge
focus on AI. In IEEE Internet Computing’s “Design-
ing Ethical Personal Agents,” the authors consider
engineering personal agents that act ethically,
understanding applicable social norms and users’
preferred values. In IEEE Annals of the History of
Computing’s “Do Computers Follow Rules Once
Followed by Workers?,” the author refutes the
claim that computers often carry out tasks using
procedures nearly identical to those used by
humans, arguing that this claim misdirects our
attention in studying the relationship between pre-
and post-automatic computing divisions of labor.

The growing adoption of AI is driving more
organizations to turn to high-performance comput-
ing (HPC), as more computing power is needed to
quickly parse large datasets. In Computing in Sci-
ence & Engineering’s “Large-Scale Calculations for
Material Sciences Using Accelerators to Improve
Time- and Energy-to-Solution,” the author pres-
ents the idea that the solution to the problem of
required electrical power for next-generation HPC
systems lies in introducing novel machine archi-
tectures, such as those employing many-core
processors and specialized accelerators. In IEEE
Micro’s “If You Build It, Will They Come?,” the
authors posit that the goal of architects should be
to pursue architectural agility to lower the barri-
ers to developing innovative and disruptive solu-
tions—an example of this can be found in HPC’s
use of GPUs.

Autonomic networking brings together HPC
and AI—in IEEE Internet Computing’s “Autonomic
Networking: Architecture Design and Standardiza-
tion,” the authors explain that autonomic network-
ing (where systems self-manage and self-heal)

The Rise of Artifi cial Intelligence

www.computer.org/computingedge 9

is a promising solution to the ever-increasing
management complexity of dynamic network
environments.

Art and graphics play a large role in comput-
ing. In IEEE Computer Graphics and Applications’
“JPEG at 25: Still Going Strong,” original JPEG
development team members provide a brief his-
tory of JPEG and the fundamental components
that have given it longevity. In IEEE MultiMedia’s
“Sally Weber: Making Art from Light,” the authors
interview Sally Weber, a holographic artist who
communicates through light. The authors believe
she has much of value to share with the IEEE
Computer Society’s readership.

Finally, this issue of ComputingEdge delves into
two aspects of the Internet of Things (IoT): soft-
ware architecture options and the IoT ecosystem.

In IEEE Software’s “A Taxonomy of IoT Client
Architectures,” the authors defi ne a taxonomy
of software architecture options for IoT devices,
from the most limited sensing devices to high-
end devices and developer frameworks. In IEEE
Internet Computing’s “A Revised View of the IoT
Ecosystem,” Google’s Vinton G. Cerf says that the
frequency and sheer number of devices to be con-
fi gured within an IoT network can leave the door
open to some frightening possibilities.

IEEE Pervasive Computing explores the many facets of pervasive and ubiquitous
computing with research articles, case studies, product reviews, conference reports,

departments covering wearable and mobile technologies, and much more.

Keep abreast of rapid technology change by subscribing today!

www.computer.org/pervasive

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

10	 July 2018	 Published by the IEEE Computer Society � 2469-7087/18/$33.00 © 2018 IEEE

COLUMN: Natural Web Interfaces

Designing Ethical Personal
Agents

The authors consider the problem of engineering

ethical personal agents. Such an agent would

understand the applicable social norms and its

users’ preferences among values. It would act or

recommend actions that promote preferred values,

especially, in scenarios where the norms conflict.

As personal agents weave themselves into the very
fabric of our lives, it is crucial that those agents respect
their users’ values and act ethically. We understand a

value as what is right or good according to an individual and ethics as a system of values.
Rokeach1 proposed two types of values—terminal values, referring to desired end-states of ex-
istence, and instrumental values, referring to modes of behavior or means to achieve the terminal
values.

A socially intelligent personal agent (SIPA) would understand social contexts, including appli-
cable norms, and help its users flexibly navigate those norms. Additionally, an ethical SIPA must
understand terminal values, such as security, happiness, and recognition, and its actions must
respect instrumental values such as honesty, helpfulness, and forgiveness.

Engineering ethical SIPAs faces two main challenges. First, a SIPA must recognize the relevant
values and reason about the users’ preferences over those values in order to choose an ethical
action. A SIPA’s action may simultaneously promote and demote different values.2 For instance,
a SIPA’s action to share its user’s location with family members promotes safety but demotes
privacy.

Second, since people may have conflicting preferences on values,3 a SIPA’s decision about
which values to promote or demote affects other users. For example, a teenager may prefer pri-
vacy over safety, but his parents may prefer the reverse. A SIPA’s action to share the teenager’s
location affects both the teenager and the parents. Thus, an ethical SIPA must reason not only
about its user’s values and preferences, but also about those of others in the social context.

SOCIAL NORMS
Social norms are central to a social context. A norm characterizes interactions between autono-
mous parties. We adopt Singh’s representation4 in which a norm is directed from a subject to an

Nirav Ajmeri
North Carolina State University

Hui Guo
North Carolina State University

Pradeep K. Murukannaiah
Rochester Institute of Technology

Munindar P. Singh
North Carolina State University

Editor:
Munindar P. Singh
m.singh@ieee.org

16
IEEE Internet Computing Published by the IEEE Computer Society

1089-7801/18/$33.00 USD ©2018 IEEEMarch/April 2018

www.computer.org/computingedge� 11

 IEEE INTERNET COMPUTING

object, as a conditional relationship involving an antecedent (which brings an instance of the
norm in force) and a consequent (which brings the norm instance to completion). A new instance
is generated whenever a norm applies. This representation yields clarity on who is accountable,
when, for what, and to whom. A norm has four core elements, expressed as N(subject; object;
antecedent; consequent), where N specifies the norm type. We consider norms of three types:

Commitment, C(subject; object; antecedent; consequent), means that its subject commits to its
object to ensuring the consequent if the antecedent holds. For instance, consider a user, Aron,
and his mother, Eevee. (We draw names from Pokémon anime.) Aron, who has poor night vi-
sion, could be committed to his mother, Eevee, that whenever he is out, he will keep Eevee in-
formed of his location. Therefore, Aron is accountable for sharing his location to Eevee
whenever he is out at night, which we write as:

C(Aron, Eevee, notHomeAron evening, shareAronLoc)

Authorization, A(subject; object; antecedent; consequent), means that its subject is authorized
by its object for bringing about the consequent if the antecedent holds. Although the authorized
party can decide not to take up the authorization, the authorizing party must support the author-
ized condition if called upon.5 That is, the authorizing party is accountable for ensuring success
of the authorization’s consequent if its antecedent holds. For example, Aron could authorize
Eevee to access Aron’s location if he is not at home before evening, which we write as:

A(Aron, Eevee, notHomeAron evening, accessAronLoc)

Prohibition, P(subject; object; antecedent; consequent), means that its subject is forbidden by its
object from bringing about the consequent if the antecedent holds. The subject is accountable for
ensuring the consequent remains false. For instance, Eevee could be prohibited at all times by
Aron from sharing his location to someone else, which we write as:

P(Eevee, Aron, , shareAronLoc)

A sanction is an action, positive or negative, by a subject toward an object in response to the
latter satisfying or violating a norm.6

SIPAS AND VALUES
To illustrate our ideas, consider Pikachu, a location sharing SIPA. Pikachu may share its user’s
geolocation and social context, including place (such as a bar or theater), companions, and activi-
ty. Importantly, Pikachu must ethically decide whether to share the user’s details with no one,
everyone (public), or specific people.

Example 1 Aron values safety. Also, he has a commitment to his mother, Eevee, that he will
share his location with her when he is not home. Sharing locations promotes safety. One even-
ing, Aron meets a friend at The Flying Saucer, a local pub. Knowing Aron’s commitments and
values, Pikachu shares with Eevee that Aron is at The Flying Saucer with a friend.

C-share-AE = C(Aron, Eevee, , shareLocWithEevee)

shareLocWithEevee Sat(C-share-AE) safety ↑

Example 2 Aron values safety and social recognition, and commits to Eevee as before. Aron is
attending a scientific conference in Stockholm. Sharing Aron’s location with Eevee satisfies his
commitment and promotes safety. Sharing Aron’s location publicly additionally promotes social
recognition. Thus, Pikachu shares publicly that Aron is in Stockholm attending a scientific con-
ference.

shareLocWithEevee Sat(C-share-AE) safety ↑

shareLocWithAll Sat(C-share-AE) safety ↑ social-recognition ↑

Example 3 Continuing Example 2, Dr. Drampa, Aron’s academic advisor, is attending the same
conference. Dr. Drampa values privacy and prohibits his students from sharing location publicly
when they are with Dr. Drampa. Now, by sharing Aron’s location publicly, Pikachu promotes

17March/April 2018 www.computer.org/internet

COLUMN: Natural Web Interfaces

Designing Ethical Personal
Agents

The authors consider the problem of engineering

ethical personal agents. Such an agent would

understand the applicable social norms and its

users’ preferences among values. It would act or

recommend actions that promote preferred values,

especially, in scenarios where the norms conflict.

As personal agents weave themselves into the very
fabric of our lives, it is crucial that those agents respect
their users’ values and act ethically. We understand a

value as what is right or good according to an individual and ethics as a system of values.
Rokeach1 proposed two types of values—terminal values, referring to desired end-states of ex-
istence, and instrumental values, referring to modes of behavior or means to achieve the terminal
values.

A socially intelligent personal agent (SIPA) would understand social contexts, including appli-
cable norms, and help its users flexibly navigate those norms. Additionally, an ethical SIPA must
understand terminal values, such as security, happiness, and recognition, and its actions must
respect instrumental values such as honesty, helpfulness, and forgiveness.

Engineering ethical SIPAs faces two main challenges. First, a SIPA must recognize the relevant
values and reason about the users’ preferences over those values in order to choose an ethical
action. A SIPA’s action may simultaneously promote and demote different values.2 For instance,
a SIPA’s action to share its user’s location with family members promotes safety but demotes
privacy.

Second, since people may have conflicting preferences on values,3 a SIPA’s decision about
which values to promote or demote affects other users. For example, a teenager may prefer pri-
vacy over safety, but his parents may prefer the reverse. A SIPA’s action to share the teenager’s
location affects both the teenager and the parents. Thus, an ethical SIPA must reason not only
about its user’s values and preferences, but also about those of others in the social context.

SOCIAL NORMS
Social norms are central to a social context. A norm characterizes interactions between autono-
mous parties. We adopt Singh’s representation4 in which a norm is directed from a subject to an

Nirav Ajmeri
North Carolina State University

Hui Guo
North Carolina State University

Pradeep K. Murukannaiah
Rochester Institute of Technology

Munindar P. Singh
North Carolina State University

Editor:
Munindar P. Singh
m.singh@ieee.org

16
IEEE Internet Computing Published by the IEEE Computer Society

1089-7801/18/$33.00 USD ©2018 IEEEMarch/April 2018

12	 ComputingEdge� July 2018

 NATURAL WEB INTERFACES

Aron’s social recognition, but demotes Dr. Drampa’s privacy and violates Aron’s prohibition by
Dr. Drampa. In contrast, by sharing his location with Eevee, Pikachu does not promote social
recognition, and does not violate the prohibition or demote Dr. Drampa’s privacy. Since Aron
fears potential sanctions for violating Dr. Drampa’s prohibition more than he prefers social
recognition, Pikachu shares Aron’s location only with Eevee.

P-privacy-AD = P(Aron, Drampa, SameLoc, ShareLocWithAll)

shareLocWithAll Sat(C-share-AE) Vio(P-privacy-AD) safety ↑
social-recognition ↑ privacy ↓

shareLocWithEevee Sat(C-share-AE) Sat(P-privacy-AD) safety ↑
social-recognition ↓ privacy ↑

Example 4 Aron is with Chansey on a midnight hike at Pilot Mountain. Chansey values privacy,
and prohibits location sharing with all (just as Dr. Drampa does). However, Aron prefers safety
to privacy in this context. Knowing these, Pikachu shares Aron’s location with all his friends
(which includes Eevee). Note that sharing with friends, is both safer and less privacy violating
than sharing with all and does not violate Aron’s prohibition from Chansey.

P-privacy-AC = P(Aron, Chansey, SameLoc, ShareLocWithAll)
shareLocWithAll Sat(C-share-AE) Vio(P-privacy-AC) safety ↓ privacy ↓
shareLocWithFriends Sat(C-share-AE) safety ↑ privacy ↓

These examples demonstrate the complexity of ethical decision making. To act ethically, a SIPA
must (1) acquire information about context, social norms, and values; (2) reason about actions
despite conflicts among and between norms and values; and (3) potentially communicate its
reasoning (arguments) to other SIPAs to avoid sanctions.7 We need a systematic method to sup-
port SIPAs in accomplishing these nontrivial tasks.

VALAR: A FRAMEWORK FOR ETHICAL AGENTS
We propose Valar to engineer SIPAs that can understand preferences among values and reason
about them to make policy decisions as exemplified above. Valar extends Arnor7 with values and
provides a four-step method to model stakeholders, contexts, social norms, and values.

Stakeholder modeling identifies the stakeholders, their goals, and relevant actions of a SIPA. A
SIPA’s stakeholder is either its user or someone affected by its actions. A stakeholder’s goal
defines what states he or she prefers. An action represents a step a SIPA may take.

Context modeling identifies contexts in which stakeholders interact. A context refers to the
relevant circumstance of decision making, and it is crucial in determining which goals to bring
about and which actions to perform.8

Social modeling identifies the norms and sanctions (see sidebar) associated with a stakeholder’s
goals and a SIPA’s actions. The social norms and sanctions characterize the social architecture in
which SIPAs act and interact.

Value modeling identifies the relevant values and stakeholders’ preferences among those values,
and how each action by the SIPA promotes or demotes the identified values. A stakeholder’s
value preference specifies what outcomes are morally superior to others in the stakeholder’s
judgment. Stakeholders’ preferences among values provide a basis for choosing which goal to
bring about or which norm to satisfy.

Figure 1 illustrates the main components of a Valar SIPA. A SIPA maintains (1) a model of the
stakeholders, including their goals and values; (2) a world model, including its current state (con-
text), and preconditions and effects of available actions; and (3) the social model, including ap-
plicable norms and sanctions. Using this information, the SIPA’s decision module determines an
ethical action that would be most compatible with its stakeholders’ value preferences and the
applicable norms. The SIPA may perform the determined action or recommend it to its user
depending on the application.

18March/April 2018 www.computer.org/internet

www.computer.org/computingedge� 13

 IEEE INTERNET COMPUTING

Figure 1. A conceptual model outlining decision making by a Valar SIPA.

Reasoning. A SIPA can choose to satisfy or violate norms by identifying stakeholders’ contex-
tual preferences among the values that these norms promote or demote. Following Sotala’s ap-
proach,9 a SIPA learns to maximize a reward function based on its stakeholders’ values. For
simplicity, a SIPA maintains each stakeholder’s preferences as vectors of numeric weights on the
various values—the higher the weight, the more important the corresponding value is for that
stakeholder. Therefore, we can compute the extent to which an action promotes a stakeholder’s
values, or the aggregated value gain, as a weighted sum. A SIPA maintains the weight vector of
different values under each social context, and respects values by choosing an action that pro-
duces the maximum aggregated gain.

EVALUATION: POTENTIAL BENEFIT OF VALUES
Evaluation is a challenge with any approach that involves informal, subjectively defined con-
cepts such as ethics and values. We conducted a small empirical study to investigate if under-
standing the values promoted and demoted by a SIPA’s potential actions and the stakeholders’
preferences among the values could guide the SIPA to select actions that yield a pleasant social
experience to its stakeholders.

Twenty-four graduate and nine undergraduate computer science students participated in our
study, which was approved by North Carolina State University’s Institutional Review Board
(IRB).

We asked the participants to imagine they were in a given context—a combination of place (first
column of Table 1); time of day of visit; and companions (alone, a colleague, crowd, a family
member, or a friend). Each context was tagged as safe, unsafe, sensitive (disclosure of which
may be harmful to the participants or their companions), or not sensitive.

Each participant completed two surveys to select a check-in policy (action) appropriate for that
context. The first survey did not provide awareness of the values promoted or demoted by a shar-
ing policy; the second survey provided awareness of the relevant values. Each survey asked for
(1) a check-in policy ordered from high to low privacy preservation: share with none, compan-
ions, common friends (of companions), and all; and (2) a confidence in the selected check-in
policy on a Likert scale of 1 (very low) to 5 (very high).

Making an informed decision. Figure 2 shows the violin plots for reported check-in policies for
each of the eight places. We observe that an understanding of values significantly changes partic-
ipants’ policy choices in the contexts of hiking and hurricane. In these contexts, location sharing
promotes safety but demotes privacy, and participants generally preferred the former.

19March/April 2018 www.computer.org/internet

 NATURAL WEB INTERFACES

Aron’s social recognition, but demotes Dr. Drampa’s privacy and violates Aron’s prohibition by
Dr. Drampa. In contrast, by sharing his location with Eevee, Pikachu does not promote social
recognition, and does not violate the prohibition or demote Dr. Drampa’s privacy. Since Aron
fears potential sanctions for violating Dr. Drampa’s prohibition more than he prefers social
recognition, Pikachu shares Aron’s location only with Eevee.

P-privacy-AD = P(Aron, Drampa, SameLoc, ShareLocWithAll)

shareLocWithAll Sat(C-share-AE) Vio(P-privacy-AD) safety ↑
social-recognition ↑ privacy ↓

shareLocWithEevee Sat(C-share-AE) Sat(P-privacy-AD) safety ↑
social-recognition ↓ privacy ↑

Example 4 Aron is with Chansey on a midnight hike at Pilot Mountain. Chansey values privacy,
and prohibits location sharing with all (just as Dr. Drampa does). However, Aron prefers safety
to privacy in this context. Knowing these, Pikachu shares Aron’s location with all his friends
(which includes Eevee). Note that sharing with friends, is both safer and less privacy violating
than sharing with all and does not violate Aron’s prohibition from Chansey.

P-privacy-AC = P(Aron, Chansey, SameLoc, ShareLocWithAll)
shareLocWithAll Sat(C-share-AE) Vio(P-privacy-AC) safety ↓ privacy ↓
shareLocWithFriends Sat(C-share-AE) safety ↑ privacy ↓

These examples demonstrate the complexity of ethical decision making. To act ethically, a SIPA
must (1) acquire information about context, social norms, and values; (2) reason about actions
despite conflicts among and between norms and values; and (3) potentially communicate its
reasoning (arguments) to other SIPAs to avoid sanctions.7 We need a systematic method to sup-
port SIPAs in accomplishing these nontrivial tasks.

VALAR: A FRAMEWORK FOR ETHICAL AGENTS
We propose Valar to engineer SIPAs that can understand preferences among values and reason
about them to make policy decisions as exemplified above. Valar extends Arnor7 with values and
provides a four-step method to model stakeholders, contexts, social norms, and values.

Stakeholder modeling identifies the stakeholders, their goals, and relevant actions of a SIPA. A
SIPA’s stakeholder is either its user or someone affected by its actions. A stakeholder’s goal
defines what states he or she prefers. An action represents a step a SIPA may take.

Context modeling identifies contexts in which stakeholders interact. A context refers to the
relevant circumstance of decision making, and it is crucial in determining which goals to bring
about and which actions to perform.8

Social modeling identifies the norms and sanctions (see sidebar) associated with a stakeholder’s
goals and a SIPA’s actions. The social norms and sanctions characterize the social architecture in
which SIPAs act and interact.

Value modeling identifies the relevant values and stakeholders’ preferences among those values,
and how each action by the SIPA promotes or demotes the identified values. A stakeholder’s
value preference specifies what outcomes are morally superior to others in the stakeholder’s
judgment. Stakeholders’ preferences among values provide a basis for choosing which goal to
bring about or which norm to satisfy.

Figure 1 illustrates the main components of a Valar SIPA. A SIPA maintains (1) a model of the
stakeholders, including their goals and values; (2) a world model, including its current state (con-
text), and preconditions and effects of available actions; and (3) the social model, including ap-
plicable norms and sanctions. Using this information, the SIPA’s decision module determines an
ethical action that would be most compatible with its stakeholders’ value preferences and the
applicable norms. The SIPA may perform the determined action or recommend it to its user
depending on the application.

18March/April 2018 www.computer.org/internet

14	 ComputingEdge� July 2018

 NATURAL WEB INTERFACES

Table 1. The p-values indicating the difference in selected check-in policy and confidence when
participants are aware and not aware of values promoted by each policy.

Context Attribute Policy p Confidence p

Graduation ceremony Not sensitive 0.07 <0.01

Conference presentation Not sensitive 0.32 0.07

Library Safe 0.85 0.59

Airport Safe 0.08 0.23

Hiking at night Unsafe <0.01 0.02

Stuck in a hurricane Unsafe 0.01 0.01

Bar with fake ID Sensitive 0.83 0.53

Drug rehab Sensitive 0.14 0.48

Making a confident decision. We observe that participants are more confident in making policy
decisions for scenarios where they are made aware of the privacy, fame, and safety values.

We evaluated the corresponding statistical hypotheses via Wilcoxon’s ranksum-test. Table 1
summarizes our results for eight conceptual places. The p-values obtained indicate that, in some
contexts, the participants’ decisions before and after they are primed with values are significantly
different. Importantly, in some contexts, participants’ confidence increases significantly when
they are primed with values.

RELATED WORK
Kayal et al.10 propose a value-based model for resolving conflicts between norms, especially
social commitments. Their empirical results indicate that values can be used to predict users’
preferences when resolving conflicts. Kayal et al.’s model can supplement Valar, which goes
beyond conflict resolution, providing constructs and mechanisms to develop value-driven ethical
SIPAs.

Dechesne et al.3 develop a model of norms and culture, represented by values, to study norm
compliance. They concur that values are important in deciding whether or not a norm should be
introduced. Borning and Muller11 motivate Value Sensitive Design to incorporate values in in-
formation technology, and highlight that values may differ widely across cultures and contexts.

Riedl and Harrison12 argue that it is not easy for developers to exhaustively enumerate values,
and propose that agents use sociocultural knowledge in stories, such as crowdsourced narratives,
to learn values.

CONCLUSION AND FUTURE DIRECTIONS
We propose Valar, an agent-oriented software engineering method, to design ethical SIPAs that
can reason about context, norms, values, and preferences among values. The preliminary results
from our pilot study indicate that priming with values offers significant guidance to participants
in making policy decisions. We conjecture that when SIPAs are made aware of such value pref-
erences, they will choose ethical actions and offer a high-quality social experience to the stake-
holders. However, these results are based on a small and biased sample without interaction with
a production SIPA.

20March/April 2018 www.computer.org/internet

www.computer.org/computingedge� 15

 IEEE INTERNET COMPUTING

Figure 2. Policy when not aware of values versus when aware of values.

This topic suggests interesting future directions. One, to evaluate the effectiveness of Valar via a
developer study. Two, to crowdsource data about values and decision making about sharing
policies on a much larger scale. Three, to employ machine learning to assist SIPAs in learning
value preferences of stakeholders, and accordingly select policies.

ACKNOWLEDGMENTS
We thank the US Department of Defense for support through the Science of Security Lablet
at North Carolina State University.

21March/April 2018 www.computer.org/internet

 NATURAL WEB INTERFACES

Table 1. The p-values indicating the difference in selected check-in policy and confidence when
participants are aware and not aware of values promoted by each policy.

Context Attribute Policy p Confidence p

Graduation ceremony Not sensitive 0.07 <0.01

Conference presentation Not sensitive 0.32 0.07

Library Safe 0.85 0.59

Airport Safe 0.08 0.23

Hiking at night Unsafe <0.01 0.02

Stuck in a hurricane Unsafe 0.01 0.01

Bar with fake ID Sensitive 0.83 0.53

Drug rehab Sensitive 0.14 0.48

Making a confident decision. We observe that participants are more confident in making policy
decisions for scenarios where they are made aware of the privacy, fame, and safety values.

We evaluated the corresponding statistical hypotheses via Wilcoxon’s ranksum-test. Table 1
summarizes our results for eight conceptual places. The p-values obtained indicate that, in some
contexts, the participants’ decisions before and after they are primed with values are significantly
different. Importantly, in some contexts, participants’ confidence increases significantly when
they are primed with values.

RELATED WORK
Kayal et al.10 propose a value-based model for resolving conflicts between norms, especially
social commitments. Their empirical results indicate that values can be used to predict users’
preferences when resolving conflicts. Kayal et al.’s model can supplement Valar, which goes
beyond conflict resolution, providing constructs and mechanisms to develop value-driven ethical
SIPAs.

Dechesne et al.3 develop a model of norms and culture, represented by values, to study norm
compliance. They concur that values are important in deciding whether or not a norm should be
introduced. Borning and Muller11 motivate Value Sensitive Design to incorporate values in in-
formation technology, and highlight that values may differ widely across cultures and contexts.

Riedl and Harrison12 argue that it is not easy for developers to exhaustively enumerate values,
and propose that agents use sociocultural knowledge in stories, such as crowdsourced narratives,
to learn values.

CONCLUSION AND FUTURE DIRECTIONS
We propose Valar, an agent-oriented software engineering method, to design ethical SIPAs that
can reason about context, norms, values, and preferences among values. The preliminary results
from our pilot study indicate that priming with values offers significant guidance to participants
in making policy decisions. We conjecture that when SIPAs are made aware of such value pref-
erences, they will choose ethical actions and offer a high-quality social experience to the stake-
holders. However, these results are based on a small and biased sample without interaction with
a production SIPA.

20March/April 2018 www.computer.org/internet

16	 ComputingEdge� July 2018

 NATURAL WEB INTERFACES

REFERENCES
1. M. Rokeach, The Nature of Human Values, Free Press, 1973.
2. P. Pasotti, M.B. van Riemsdijk, and C.M. Jonker, “Representing human habits:

Towards a habit support agent,” Proc. 10th International Workshop on Normative
Multiagent Systems (Nor MAS 16), 2016.

3. F. Dechesne et al., “No smoking here: values, norms and culture in multi-agent
systems,” Artificial Intelligence and Law, vol. 21, no. 1, 2013, pp. 79–107.

4. M.P. Singh, “Norms as a basis for governing sociotechnical systems,” ACM
Transactions on Intelligent Systems and Technology, vol. 5, no. 1, 2013, p. 21:1.

5. G.H. Von Wright, “Deontic logic: A personal view,” Ratio Juris, vol. 12, no. 1, 1999,
pp. 26–38.

6. L.G. Nardin et al., “Classifying sanctions and designing a conceptual sanctioning
process model for socio-technical systems,” The Knowledge Engineering Review, vol.
31, no. 2, 2916, pp. 142–166.

7. N. Ajmeri et al., “Arnor: Modeling social intelligence via norms to engineer privacy-
aware personal agents,” Proc. 16th International Conf. Autonomous Agents and
Multiagent Systems, 2017, pp. 230–238.

8. P.K. Murukannaiah and M.P. Singh, “Extending Tropos to engineer context-aware
personal agents,” Proc. 14th International Conf. Autonomous Agents and MultiAgent
Systems, 2014, pp. 309–316.

9. K. Sotala, “Defining human values for value learners,” Proc. AAAI Workshop on
Artificial Intelligence AI, Ethics, and Society, 2017, pp. 113–123.

10. A. Kayal et al., “Automatic resolution of normative conflicts in supportive technology
based on user values,” ACM Transactions on Internet Technology, 2017.

11. A. Borning and M. Mueller, “Next steps for value sensitive design,” Proc. SIGCHI
Conf. Human Factors in Computing Systems, 2012, pp. 1125–1134.

12. M.O. Riedl and B. Harrison, “Using stories to teach human values to artificial agents,”
Proc. AAAI Workshop on Artificial Intelligence AI, Ethics, and Society, 2016, pp. 105–
112.

AUTHOR BIOS
Nirav Ajmeri is a PhD student in Computer Science at North Carolina State University.

His research interests include artificial intelligence, multiagent systems, and software
engineering with a focus on security and privacy. Ajmeri has a BE in Computer Engi-
neering from Sardar Vallabhbhai Patel Institute of Technology, Gujarat University.
Contact him at najmeri@ncsu.edu.

Hui Guo is a PhD student in Computer Science at North Carolina State University. His re-
search interests include multiagent systems, NLP, text mining, and crowdsourcing.
Guo has an MS in Computer Science from East Carolina University, and a BS from
Tsinghua University. Contact him at hguo5@ncsu.edu.

Pradeep K. Murukannaiah is an Assistant Professor at Rochester Institute of Technology.
He received a PhD and an MS in Computer Science from North Carolina State Uni-
versity. Pradeep’s research seeks to facilitate the engineering of intelligent personal
agents that deliver a personalized, context-aware, privacy-preserving experience to
users. Contact him at pkmvse@rit.edu.

Munindar P. Singh is an Alumni Distinguished Graduate Professor in Computer Science
and a co-director of the Science of Security Lablet at North Carolina State University.
His research interests include the engineering and governance of sociotechnical sys-
tems. Singh is an IEEE Fellow, a AAAI fellow, a former Editor-in-Chief of IEEE In-
ternet Computing, and the current Editor-in-Chief of ACM Transactions on Internet
Technology. Contact him at singh@ncsu.edu.

22March/April 2018 www.computer.org/internet

This article originally appeared in
IEEE Internet Computing, vol. 22, no. 2, 2018.

2469-7087/18/$33.00 © 2018 IEEE	 Published by the IEEE Computer Society	 July 2018� 17

THINK PIECE

1058-6180/17/$33.00 ©2017 IEEE Published by the IEEE Computer Society IEEE Annals of the History of Computing 5

Do Computers Follow Rules Once
Followed by Workers?

Bjorn Westergard

I n his 2014 paper “Polanyi’s Paradox and the Shape of
Employment Growth,” economist David Autor puts for-
ward a very general historical thesis (emphasis added):

When a computer processes a company’s payroll,
alphabetizes a list of names, or tabulates the age
distribution of residents in each U.S. Census enumer-
ation district, it is “simulating” a work process that
would, in a previous era, have been done by humans
using nearly identical procedures. The principle of
computer simulation of workplace tasks has not fun-
damentally changed since the dawn of the computer
era. But its cost has. … This remarkable cost decline
creates strong economic incentives for firms to sub-
stitute ever-cheaper computing power for relatively
expensive human labor, with attendant effects on
employers’ demand for employees.

How could a historian of computing adjudicate this
claim? How can we determine whether the procedures used
by humans and computers are similar, let alone “nearly
identical”? Part and parcel with this framing of the issue is
Autor’s assertion that the inability of workers to articulate
the rules they follow when carrying out a task constitutes
an impediment to writing software to automate it and his
suggestion that this impediment might be overcome with
machine learning techniques, which putatively infer these
“tacit rules” from a wealth of examples.

Underwriting this view is a theory—henceforth, “the
ALM theory”—first laid out by Autor, Levy, and Murnane
in The Skill Content Content of Recent Technological Change
(2003) and The New Division of Labor (2004), which builds
upon Michael Polanyi’s epistemology and attendant con-
ceptions of rule following.

The ALM theory was developed in response to an
economic literature that argued that adoption of com-
puter technology—at the level of the industry, firm, or
worksite—increases demand for the labor of those with a
postsecondary education at the expense of those without. It
was thought that in the race between education (supplying
computer-complementary skills) and technology (creating

demand for them), technology had and would prevail, driv-
ing up the wage premia of more educated workers.1

This “canonical model” of “skills-biased technical
change” employed a binary classification scheme of “more-
and less-skilled workers, often operationalized as college-
and non-college-educated workers.” As the 1990s wore
on economists found slowing growth in the college wage
premium and nonmonotonic inequality growth difficult to
account for in this framework. Subtler distinctions needed
to be drawn.2

For these, economists pursuing the “task approach”
looked to databases of job descriptions, such as the Depart-
ment of Labor’s Dictionary of Occupational Titles and its
successor O*NET, to “[measure] the tasks performed in
jobs rather than the educational credentials of workers
performing those jobs.”3 They would conclude, contrary
to the existing skill-biased technical change literature,
that beginning in the late 1970s, computerization had
issued in “job polarization” or “the simultaneous growth
of high-education, high-wage and low-education, low-
wages jobs.”4

The task approach drops the assumption that edu-
cational attainment determines work activity in favor of
two production functions: one characterizing how labor
and computer capital inputs combine to perform tasks,
another characterizing how task performances com-
bine to produce outputs (i.e., goods, services). The firm
is taken to be a locus of task assignment and execution
in which managers play a key role in “organizing tasks
into jobs.”5

The heart of the ALM theory, which is meant to pro-
vide an interpretation of the data collected using the “task
approach,” is the “ALM hypothesis”:6

(1) that computer capital substitutes for workers in
carrying out a limited and well-defined set of cognitive
and manual activities, those that can be accomplished
by following explicit rules (what we term “routine
tasks”); and (2) that computer capital complements
workers in carrying out problem-solving and complex
communication activities (“nonroutine tasks”).

Editor: Bradley Fidler

18	 ComputingEdge� July 2018
6 www.computer.org/annals

THINK PIECE

In addition to being “routine” or “nonroutine,” tasks
are also either “manual” or “cognitive.” Example classifi-
cations include record keeping, calculation, repetitive cus-
tomer service (routine cognitive), medical diagnosis, legal
writing, managing others (nonroutine cognitive), picking/
sorting, repetitive assembly (routine manual), janitorial
work, truck driving, and removing paper clips from docu-
ments7 (nonroutine manual).8

Routine tasks are “those that can be accomplished
by following explicit rules” (equivalently: “precise, well-
understood procedures” or “instructions”).9 To count as
sufficiently “rules-based”10 (“procedural,” “codifiable”)
a task must be susceptible to being “fully described in a
sequence of if-then-do steps.”11

Autor found the existing “skills-biased technical
change” literature deficient for having failed “to answer
the question of what it is that computers do.”12 To fill this
lacuna, he suggests that what computers do (“fundamen-
tally”) is follow “procedures meticulously laid out by pro-
grammers.”13 Routine tasks, then, are “tasks that follow
an exhaustive set of rules and hence are readily amenable to
computerization”14 (emphasis added).

Nonroutine tasks, by contrast, are those we “only tacitly
understand how to perform”:15

But the scope for substitution [of computer capital for
labor] is bounded: engineers cannot program a com-
puter to simulate a process that they (or the scientific
community at large) do not explicitly understand. This
constraint is more binding than one might initially
surmise because there are many tasks that we under-
stand tacitly and accomplish effortlessly for which we
do not know the explicit “rules” or procedures. I refer
to this constraint as Polanyi’s paradox, following
Michael Polanyi’s (1966) observation that, “We know
more than we can tell.” When we break an egg over
the edge of a mixing bowl, identify a distinct species
of bird based only on a fleeting glimpse, write a per-
suasive paragraph, or develop a hypothesis to explain
a poorly understood phenomenon, we are engaging in
tasks that we only tacitly understand how to perform.

Autor muses that programming is no longer the only
way a machine can come by the rules it follows. Advances
in “machine learning” have opened the way to “pro-
gram[ming] a machine to master the task autonomously
by studying successful examples of the task being carried
out by others,” thereby “inferring the rules that we tacitly
apply but do not explicitly understand” (emphasis added). The
machine running such algorithmically generated code can-
not, alas, “‘tell’ programmers why they do what they do.”16

The economist Daniel Susskind has recently put for-
ward a critique of the ALM theory on this point.17 Granting
that “a machine must be set an explicit set of programmed
rules,” he insists that the ALM theorists erred in asserting
that “these explicit rules must originate with, and precisely
reflect, the thinking process of a human being.” Rather than
“allowing us to uncover more of the tacit rules that human
beings follow in performing ‘non-routine’ tasks” machine
learning systems “allow us to perform tasks with systems
and machines that follow rules which do not need to reflect
the rules that human beings follow at all, tacit or other-
wise.” Neural networks that classify skin discolorations,
for example, can “derive a set of diagnostic ‘rules’ that do
not need to reflect those that a dermatologist might follow.”
Therefore, not only can computer capital be expected to
substitute for labor in the execution “routine” tasks—those
for which we can exhaustively state the rules we follow—
but also “routinizable” tasks—which have “features that
make it more or less feasible to articulate a set of rules for a
machine to follow.”

There are two central conceptual issues with both the
ALM theory and Susskind’s critique thereof. Clarity on
these points can help us to avoid historiographic missteps.

First, the pivotal notion of an “exhaustive” set of rules
is obscure. In the first half of the ALM hypothesis, the ALM
theorists do not merely wish to remind us that computer
capital can substitute for labor in carrying out those tasks
that we can accomplish by programming a computer (a near
tautology). Rather, they wish to explain this susceptibility
to “[codification] … in software” of certain work rules (the
explanandum) by reference to the “exhaustiveness” of those
rules (the explanans).

If the “exhaustiveness” of work rules is simply defined
as their susceptibility to “codification,” there is no distinc-
tion between explanans and explanandum, and the ALM
theory is explanatorily vacuous (as would be the case if
Susskind’s “routinizibility” superseded the ALM theorists’
“routineness,” as he proposes).

The ALM theorists, on the other hand, require but do not
provide a criterion of specificity (“exhaustiveness”) distinct
from the aforementioned susceptibility that is applicable to
rules for (e.g.) identifying bird species and multiplying num-
bers alike. But as sociologist Kjeld Schmidt points out, “the
criterion of adequate specification of skilled performance is
surely whether the specification serves the purpose for which
it is given.”18 Pace Autor, experienced chefs can provide
rules specific enough to guide apprentices in cracking eggs
(“no, no, strike the flattest part of the egg, like this!”). It is a
mistake to think that “even if an account is satisfactory to the
practitioners (masters and apprentices alike) for their practi-
cal purposes, something can be construed as unsaid.”19 An

www.computer.org/computingedge� 19
 October–December 2017 7

engineer writing a program for an egg-cracking robot might
define the “flattest” part of the egg in terms of the second
derivative of a curve fit to a raster image of the egg, etc.—but
this is not a more precise statement of the chef’s rule. It is dif-
ferent rule for a different (but related) purpose (writing soft-
ware to crack eggs) (cf. Shanker on algorithms).20

Second, it is unclear what following a tacit rule would
entail. The philosopher Stuart Shanker reminds us that in
everyday usage “to say of an agent that he/she/it is follow-
ing a rule, then he/she/it must exhibit the ability to, e.g.,
instruct, explain, correct, or justify his/her/its behaviour
by reference to the expression of the rule.”21 The ALM the-
orists flout everyday usage. If, for example, we say an indi-
vidual’s ability to identify a bird’s species involves the “tacit
application” of rules (an application without awareness of
a rule the individual cannot express), how can we account
for a mistake in identification? The philosopher and social
scientist Nigel Pleasants wryly surveys our various (and var-
iously baffling) options: “have they selected the wrong tacit
rule; misapplied the correct tacit rule; or followed no tacit
rule at all?”22 By the same token, it is equally meaningless to
assert that “machine learning” programs produce rules that
resemble (Autor) or do not resemble (Susskind) the rules
tacitly followed by workers, because these latter rules are (ex
hypothesi) ineffable, and thus unavailable for comparison.

But can’t we compare those work rules that can be
made “explicit” with the “procedures meticulously laid out
by programmers” in “stored instructions (programs)”23 that
“computers follow”24 and find that they are “nearly identi-
cal”? No, because the computing artifacts in question do not
follow rules.25 But their users do, at least some of the time.

In fact, a “new division of labor” did accompany the dif-
fusion of computing artifacts, but it remained a division of
labor among human beings. There certainly are algorithms
that were applied to tasks both before and after the advent
of stored program digital computers, but in these cases the
transition was not from human to machine application of a
given algorithm, but from application in one set of occupa-
tions (e.g., clerk, computer, the managers thereof) to appli-
cation in another (e.g., engineer, programmer). To demon-
strate that the same rules were applied by two such groups,
the historian must show that those in the latter appealed to
rules expressed by those in the former.

Although this historiographic maxim has not, to my
knowledge, been stated before, leading historians of com-
puting already act in accord with it. For example, when
Knuth argues that distribution-sorting algorithms “were
used [by machine operators] to sort punched cards for many
years, long before electronic computers existed”26 before
being “adapted to computer programming,” he identifies a
paper by computer scientist H.H. Seward27 (1954) as having

been crucial in convincing computer users that “radix sort-
ing within a computer” was feasible. In other words, he jus-
tifies his claim that the same rules were applied by machine
operators in sorting and computer users in writing sorting
programs by providing us with an example of an appeal by a
representative of the latter group (Seward) to expressions of
rules followed by the former.28

References and Notes
 1. C.D. Goldin and L. F. Katz, The Race Between Education

and Technology, Harvard University Press, 2007.
 2. J. Schmitt, H. Shierholz, and L. Mishel, “Don’t Blame

the Robots: Assessing the Job Polarization Explanation
of Growing Wage Inequality,” Economic Policy Institute,
19 November 2013; http://www.epi.org/publication/
technology-inequality-dont-blame-the-robots/.

 3. D.H. Autor, F. Levy, and R.J. Murnane, “The Skill Con-
tent of Recent Technological Change: An Empirical
Exploration,” Quarterly Journal of Economics, vol. 118,
no. 4 (2003), p. 127–1333.

 4. D. Autor, “Polanyi’s Paradox and the Shape of Employ-
ment Growth,” vol. 20485, National Bureau of Eco-
nomic Research, 2014, p. 130.

 5. D.H. Autor, F. Levy, and R.J. Murnane, “Upstairs,
Downstairs: Computers and Skills on Two Floors of a
Large Bank,” ILR Review, vol. 55, no. 3, 2002, p. 433.

 6. D. Susskind, “Re-Thinking the Capabilities of Machines
in Economics,” Department of Economics Discussion
Paper Series, University of Oxford, May 2017; https://
www.economics.ox.ac.uk/materials/papers/15127/
825-susskind-capabilities-of-machines.pdf.

 7. Autor et al., “Upstairs, Downstairs,” fn. 16.
 8. Autor et al., “Skill Content,” p. 1286.
 9. Autor et al., “Skill Content,” p. 1280.
 10. Autor et al., “Upstairs, Downstairs,” p. 432.
 11. Autor et al., “Upstairs, Downstairs,” p. 439.
 12. Autor et al., “Skill Content,” p. 1280.
 13. Autor et al., “Polanyi’s Paradox,” p. 134.
 14. Autor et al., “Polanyi’s Paradox,” p. 135.
 15. Autor et al., “Polanyi’s Paradox,” p. 135.
 16. Autor et al., “Polanyi’s Paradox,” fn. 38.
 17. Susskind, “Re-Thinking the Capabilities.”
 18. K. Schmidt, “The Trouble with ‘Tacit Knowledge’,”

Computer Supported Cooperative Work (CSCW), vol. 21,
no. 2–3, 2012, p. 190.

 19. Schmidt, “The Trouble with ‘Tacit Knowledge’.”
 20. S.G. Shanker, “Wittgenstein versus Turing on the

Nature of Church’s Thesis,” Notre Dame Journal of For-
mal Logic, vol. 28, no. 4, 1987, p. 637.

 21. Shanker, “Wittgenstein versus Turing on the Nature of
Church’s Thesis,” p. 621.

6 www.computer.org/annals

THINK PIECE

In addition to being “routine” or “nonroutine,” tasks
are also either “manual” or “cognitive.” Example classifi-
cations include record keeping, calculation, repetitive cus-
tomer service (routine cognitive), medical diagnosis, legal
writing, managing others (nonroutine cognitive), picking/
sorting, repetitive assembly (routine manual), janitorial
work, truck driving, and removing paper clips from docu-
ments7 (nonroutine manual).8

Routine tasks are “those that can be accomplished
by following explicit rules” (equivalently: “precise, well-
understood procedures” or “instructions”).9 To count as
sufficiently “rules-based”10 (“procedural,” “codifiable”)
a task must be susceptible to being “fully described in a
sequence of if-then-do steps.”11

Autor found the existing “skills-biased technical
change” literature deficient for having failed “to answer
the question of what it is that computers do.”12 To fill this
lacuna, he suggests that what computers do (“fundamen-
tally”) is follow “procedures meticulously laid out by pro-
grammers.”13 Routine tasks, then, are “tasks that follow
an exhaustive set of rules and hence are readily amenable to
computerization”14 (emphasis added).

Nonroutine tasks, by contrast, are those we “only tacitly
understand how to perform”:15

But the scope for substitution [of computer capital for
labor] is bounded: engineers cannot program a com-
puter to simulate a process that they (or the scientific
community at large) do not explicitly understand. This
constraint is more binding than one might initially
surmise because there are many tasks that we under-
stand tacitly and accomplish effortlessly for which we
do not know the explicit “rules” or procedures. I refer
to this constraint as Polanyi’s paradox, following
Michael Polanyi’s (1966) observation that, “We know
more than we can tell.” When we break an egg over
the edge of a mixing bowl, identify a distinct species
of bird based only on a fleeting glimpse, write a per-
suasive paragraph, or develop a hypothesis to explain
a poorly understood phenomenon, we are engaging in
tasks that we only tacitly understand how to perform.

Autor muses that programming is no longer the only
way a machine can come by the rules it follows. Advances
in “machine learning” have opened the way to “pro-
gram[ming] a machine to master the task autonomously
by studying successful examples of the task being carried
out by others,” thereby “inferring the rules that we tacitly
apply but do not explicitly understand” (emphasis added). The
machine running such algorithmically generated code can-
not, alas, “‘tell’ programmers why they do what they do.”16

The economist Daniel Susskind has recently put for-
ward a critique of the ALM theory on this point.17 Granting
that “a machine must be set an explicit set of programmed
rules,” he insists that the ALM theorists erred in asserting
that “these explicit rules must originate with, and precisely
reflect, the thinking process of a human being.” Rather than
“allowing us to uncover more of the tacit rules that human
beings follow in performing ‘non-routine’ tasks” machine
learning systems “allow us to perform tasks with systems
and machines that follow rules which do not need to reflect
the rules that human beings follow at all, tacit or other-
wise.” Neural networks that classify skin discolorations,
for example, can “derive a set of diagnostic ‘rules’ that do
not need to reflect those that a dermatologist might follow.”
Therefore, not only can computer capital be expected to
substitute for labor in the execution “routine” tasks—those
for which we can exhaustively state the rules we follow—
but also “routinizable” tasks—which have “features that
make it more or less feasible to articulate a set of rules for a
machine to follow.”

There are two central conceptual issues with both the
ALM theory and Susskind’s critique thereof. Clarity on
these points can help us to avoid historiographic missteps.

First, the pivotal notion of an “exhaustive” set of rules
is obscure. In the first half of the ALM hypothesis, the ALM
theorists do not merely wish to remind us that computer
capital can substitute for labor in carrying out those tasks
that we can accomplish by programming a computer (a near
tautology). Rather, they wish to explain this susceptibility
to “[codification] … in software” of certain work rules (the
explanandum) by reference to the “exhaustiveness” of those
rules (the explanans).

If the “exhaustiveness” of work rules is simply defined
as their susceptibility to “codification,” there is no distinc-
tion between explanans and explanandum, and the ALM
theory is explanatorily vacuous (as would be the case if
Susskind’s “routinizibility” superseded the ALM theorists’
“routineness,” as he proposes).

The ALM theorists, on the other hand, require but do not
provide a criterion of specificity (“exhaustiveness”) distinct
from the aforementioned susceptibility that is applicable to
rules for (e.g.) identifying bird species and multiplying num-
bers alike. But as sociologist Kjeld Schmidt points out, “the
criterion of adequate specification of skilled performance is
surely whether the specification serves the purpose for which
it is given.”18 Pace Autor, experienced chefs can provide
rules specific enough to guide apprentices in cracking eggs
(“no, no, strike the flattest part of the egg, like this!”). It is a
mistake to think that “even if an account is satisfactory to the
practitioners (masters and apprentices alike) for their practi-
cal purposes, something can be construed as unsaid.”19 An

20	 ComputingEdge� July 2018
8 www.computer.org/annals

THINK PIECE

 22. N. Pleasants, “Nothing Is Concealed: De-centring Tacit
Knowledge and Rules from Social Theory,” Journal
for the Theory of Social Behaviour, vol. 26, no. 3, 1996,
p. 251.

 23. Autor et al., “Skill Content,” p. 1282.
 24. Autor et al., “Polanyi’s Paradox,” p. 134.
 25. Computer programs are sets of rules that can be fol-

lowed (e.g., by an interviewee solving a programming
problem on a whiteboard, or a developer “translating”
or “porting” a program), even if computers do not follow
them. This is one side of the “duality” of programs, as
explicated in R. Turner and N. Angius, “The Philosophy
of Computer Science,” in The Stanford Encyclopedia of
Philosophy, spring 2017 edition, Edward N. Zalta (ed.);
https://plato.stanford.edu/entries/computer-science/.

 26. D.E. Knuth, The Art of Computer Programming: Sorting
and Searching, vol. 3, Pearson Education, 1998, p. 168.

 27. H.H. Seward, “Information Sorting in the Application of
Electronic Digital Computers to Business Operations,”
Technical paper no. RS-232, Digital Computer Laboratory,
Massachusetts Institute of Technology; http://bitsavers.

trailing-edge.com/pdf/mit/whirlwind/R-series/R-232_
Information_Sorting_in_the_Application_of_Electronic_
Digital_Computers_to_Business_Operations_May54.pdf.

 28. Seward, “Information Sorting in the Application of
Electronic Digital Computers to Business Operations.”
Endnotes 4 and 5 refer the reader to works on punched
card procedure in industrial and scientific contexts,
respectively.

Björn Westergard is a software engineer in Washington,
DC who has worked on electoral campaigning, on-demand
delivery, and logistics applications. His research focuses
on the specifically capitalist imperatives that have shaped
information technologies. Contact him at bjornw@gmail.
com.

handles the details
 so you don’t have to!

Professional management and production of your publication

Inclusion into the IEEE Xplore and CSDL Digital Libraries

Access to CPS Online: Our Online Collaborative Publishing System

Choose the product media type that works for your conference:

Books, CDs/DVDs, USB Flash Drives, SD Cards, and Web-only delivery!

www.computer.org/cps or cps@computer.org
Contact CPS for a Quote Today!

Advertising Personnel

Debbie Sims: Advertising Coordinator
Email: dsims@computer.org
Phone: +1 714 816 2138 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Southeast, Far East:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742
Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East:
David Schissler
Email: d.schissler@computer.org
Phone: +1 508 394 4026
Fax: +1 508 394 1707

Southwest, California:
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Advertising Sales Representative (Classifieds & Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 201 887 1703

Advertising Sales Representative (Jobs Board)

Marie Thompson
Email: marie@4caradio.org
Phone: 714-813-5094

ADVERTISER INFORMATION

This article originally appeared in
IEEE Annals of the History of Computing, vol. 39,
no. 4, 2017.

www.computer.org/computingedge� 21

Section title

January/February 2017 Copublished by the IEEE CS and the AIP 1521-9615/17/$33.00 © 2017 IEEE Computing in Science & Engineering 83

Leadership Computing

Large-Scale Calculations for Material Sciences
Using Accelerators to Improve Time- and
Energy-to-Solution

Markus Eisenbach | Oak Ridge National Laboratory

U
nderstanding the properties of materials is im-
portant for a wide range of engineering applica-
tions and for answering fundamental questions in
condensed-matter physics and materials science.

While existing computational capabilities are sufficient to
provide both highly accurate results for simple, idealized
systems and approximate results for larger systems, the ca-
pabilities needed for ab initio investigations of realistic
materials, including defects and disorder at operating tem-
peratures, are beyond the practical limits of current systems.

A major and growing impediment to delivering the
computational performance needed for next-generation ma-
terials science breakthroughs—and similar breakthroughs

in any number of other scientific domains—is the amount
of power consumed by widely deployed computer archi-
tectures. Indeed, power requirements for state-of-the-art
leadership computing facilities are now measured in units
of megawatts and aren’t scalable for many practical rea-
sons. This is one of the major drivers for the introduction of
new machine architectures, such as those designed around
many-core processors and specialized accelerators.

Toward Modeling Realistic Materials
Although the ground-state properties of a pure compound can
readily be calculated with density functional theory (DFT) to-
day, real materials—structures with atomic impurities, crystal

Editors: James J. Hack, jhack@ornl.gov | Michael E. Papka, papka@anl.gov

22	 ComputingEdge� July 2018

Leadership Computing

84 January/February 2017

defects, dislocations, grain boundaries, and other low
symmetry structures—have to be considered. Yet,
the calculation of even the ground state for realistic
models of systems of more than 1,000 atoms is a
daunting problem for current computer systems.

The need for computational resources at least
an order of magnitude more powerful than current
machines also arises from the need to calculate the
finite temperature properties of these materials. Re-
alistic materials are significantly more complex than
idealized materials and need the consideration of a
significantly larger number of possible configurations
arising from chemical order and atomic displace-
ments, consequently requiring more computational
resources. A relevant length scale can be obtained by
considering the thickness of a magnetic domain wall,
typically a few hundred atomic layers thick.

A computational super-cell to describe the ther-
modynamics of such a system will require more than
100,000 atoms, which is 100 times larger than the
cell sizes used in current-generation computations.
Going beyond the static behavior of magnetic sys-
tems requires the inclusion of magnetic kinetics in
the calculations, driving the need for computational
resources capable of calculating realistic systems at
finite temperatures well into exascale computing.

One approach to tackling this problem is to
use the locally self-consistent multiple scattering
(LSMS) method, which was designed to efficiently
perform scalable first-principles calculations of ma-
terials and condensed-matter systems. The usual
approach of finding the solution of the Kohn-Sham
equation that underpins DFT relies on expanding
the electron wave functions in a way that assumes
an ideal, “defectless” periodic crystal with a small
cell of representative atoms. This traditional ap-
proach scales with the cube of the system size.

An alternative expression for the solution of
the Kohn-Sham equation that contains all the nec-
essary information to calculate the physical quanti-
ties can be elegantly formulated in the context of
the multiple scattering theory for electrons, also
known as the Kohn-Korringa-Rostoker (KKR)
method. In real space, this allows linear scaling
in the number of total atoms in the system for all
electron first-principles calculations. Additionally,
the main computational requirement of this meth-
od lies in inverting dense complex matrices, as the
code achieves high compute intensity and benefits
from highly optimized dense linear algebra librar-
ies, such as BLAS and LAPACK.

The computational efficiency of LSMS led to
its recognition as an outstanding achievement in

high-performance computing (HPC), winning the
prestigious ACM Gordon Bell Prize in 1998 for
enabling the efficient first-principles calculations
of ground-state properties of realistic models of
materials with disorder or internal nanostructure.

More recently, the capabilities of LSMS have
been expanded to investigate the behavior of ma-
terial properties at finite temperatures. With the
extended ability to perform calculations for large
simulation cells addressed with the original version
of LSMS, calculations of these finite temperature
behaviors require the calculation and sampling of
a large number of configurations that the atomic
sites in these cells can occupy.

This capability was achieved by combining the
LSMS code with the Wang-Landau Monte Carlo
method to systematically sample randomly selected
configurations of simulation cells to compute a
system’s finite temperature behavior, resulting in
the WL-LSMS code. This sampling of configura-
tions introduced an additional level of parallelism
that enables the scaling of these calculations to the
largest currently available HPC architectures. Thus
WL-LSMS was one of the earliest codes to achieve
double-precision performance beyond the PFLOP/s
mark, which resulted in it being recognized with a
Gordon Bell Prize in 2009.

Exploiting the GPU
The large-scale, first-principles simulations enabled
with LSMS has allowed a research team using Oak
Ridge Leadership Computing Facility’s Titan su-
percomputer to investigate magnetism in large
structures and, by using the first-principles-based
Monte Carlo simulation, to obtain finite tempera-
ture behavior of magnetic materials and alloys. Un-
derstanding phase transitions in alloys is of funda-
mental importance in materials science, and the de-
sign of new materials relies on the knowledge of the
thermodynamic properties of the different phases.
Hence, there’s a desire to be able to calculate prop-
erties such as phase transition temperatures and
specific heat of alloys from first principles.

The advances in available computational re-
sources have made it possible to consider direct
simulation of the order-disorder transition in solid-
solution alloys without resorting to fitting to mod-
els or the need to resort to mean field theories. For
example, the team has been able to calculate the
ordering transition in brass (Cu0.5Zn0.5) without
model parameters, where the atoms randomly oc-
cupy the lattice sites at high temperature to a regu-
lar order at low temperature.

www.computer.org/computingedge� 23
www.computer.org/cise 85

The emergence of hybrid, accelerator-based
HPC architectures has opened the door to signifi-
cant on-node, multithreaded parallelism. To be
able to take advantage of these new capabilities of
multithreaded and accelerated architectures, the
WL-LSMS data layout was restructured to enable
bundling multiple atoms into a single MPI process
and allow multithreaded execution of multi-atom
and multi-energy calculations on a single node.

For the GPU accelerators available on Titan, the
team focused on porting the matrix inversion in the
multiple scattering part of LSMS to the GPUs, as
this part is responsible for roughly 95 percent of all
the floating-point operations in the code. The matrix
inversion algorithm for general complex matrices
employed in LSMS consists of multiple matrix-ma-
trix multiplications and inversions of small subma-
trices. The matrix-matrix multiplications employ the
routines provided in cuBLAS, while the sub-block
inversion uses an optimized matrix inversion algo-
rithm that performs LU factorization (a method that
transforms a square matrix to two triangular matri-
ces) completely on the GPU device without needing
data communication with the CPU host.

To assess the power efficiency of LSMS’s GPU
port, the team measured Titan’s instantaneous power
consumption during the execution of the WL-LSMS
code. Figure 1 shows the power consumption over
time of a simulated cell of 1,024 iron atoms. An
identical simulation was performed using a GPU-
optimized, CPU-only version of the code. The dif-
ferent phases of the calculation are clearly visible in
the power consumption graph, where the high power
requirement of LSMS’s computationally intensive
dense linear algebra calculations are interspersed with
the low power demand of the Monte Carlo and com-
munication part of the Wang-Landau calculation.
The code’s execution pattern is clearly visible in this
power trace, both for the CPU and GPU versions.
This measurement utilized 18,561 of Titan’s nodes,
equivalent to 99 percent of the system’s capacity.
The GPU-accelerated code executes 8.6 times faster
than the version of the code that doesn’t utilize ac-
celerators, achieving a sustained performance of 14.5
Pflops versus 1.86 Pflops for the nonaccelerated code.

Moreover, the energy consumption for this calcu-
lation of the GPU version was 3,500 kilowatt hours,
while the identical calculation using only CPUs con-
sumed 25,700 kilowatt hours. Consequently, while
the peak instantaneous power consumption of the ac-
celerated version of LSMS is 30 percent higher than
the nonaccelerated version, the simultaneous speedup
results in a 7.3-fold reduction in energy to solution.

At the same time, LSMS maintains scalability and
achieves weak scaling efficiency of 96 percent when
scaling from a 16-atom calculation on 4 Titan nodes
to 65,536 atoms on 16,384 nodes.

These results illustrate the benefits of exploring
new, more power-efficient architectures by refac-

toring algorithms and, in the process, enabling new
scientific capabilities.

Acknowledgments
This work has been sponsored by the US Department of
Energy, Office of Science, Basic Energy Sciences, Material
Sciences and Engineering Division (basic theory and ap-
plications) and by the Office of Advanced Scientific Com-
puting Research (software optimization and performance
measurements). This research used resources of the Oak
Ridge Leadership Computing Facility, which is supported
by the Office of Science of the US Department of Energy
under contract no. DE-AC05-00OR22725. I thank Eric
D. Gedenk of Oak Ridge National Laboratory for his
help in editing this article. Additional editorial assistance
provided by Laura Wolf of Argonne National Laboratory.

Markus Eisenbach is a computational scientist at the
National Center for Computational Sciences at Oak
Ridge National Laboratory. His expertise lies in first
principles calculations for magnetic materials and large-
scale scientific computing. Eisenbach received a PhD in
theoretical physics from the University of Bristol. Con-
tact him at eisenbachm@ornl.gov.

Figure 1. Power consumption of WL-LSMS on identical runs of
1,024 iron atoms on 18,561 nodes of Titan. The power trace
shows 20 Monte Carlo steps for each walker. The GPU-enabled
version of the code shows significantly increased instantaneous
power consumption, with 14.5 Pflops sustained performance for
GPU code versus 1.86 Pflops for CPU only. Runtime is 8.6x faster
for the accelerated code, and energy consumed is 7.3x less. The
GPU-accelerated code consumed 3,500 kWh, and the CPU-only
code consumed 25,700 kWh for the same calculation.

8

7

6

5

4

P
ow

er
 (

M
W

)

3

2

1

0

0
:0

0

0
:1

7

0
:3

4

0
:5

1

1
:0

9

1
:2

6

1
:4

3

2
:0

0

2
:1

8

2
:3

5

2
:5

2

3
:1

0

3
:2

7

3
:4

4

4
:0

1

Elapsed time (h:mm)

CPU only
GPU enabled

Leadership Computing

84 January/February 2017

defects, dislocations, grain boundaries, and other low
symmetry structures—have to be considered. Yet,
the calculation of even the ground state for realistic
models of systems of more than 1,000 atoms is a
daunting problem for current computer systems.

The need for computational resources at least
an order of magnitude more powerful than current
machines also arises from the need to calculate the
finite temperature properties of these materials. Re-
alistic materials are significantly more complex than
idealized materials and need the consideration of a
significantly larger number of possible configurations
arising from chemical order and atomic displace-
ments, consequently requiring more computational
resources. A relevant length scale can be obtained by
considering the thickness of a magnetic domain wall,
typically a few hundred atomic layers thick.

A computational super-cell to describe the ther-
modynamics of such a system will require more than
100,000 atoms, which is 100 times larger than the
cell sizes used in current-generation computations.
Going beyond the static behavior of magnetic sys-
tems requires the inclusion of magnetic kinetics in
the calculations, driving the need for computational
resources capable of calculating realistic systems at
finite temperatures well into exascale computing.

One approach to tackling this problem is to
use the locally self-consistent multiple scattering
(LSMS) method, which was designed to efficiently
perform scalable first-principles calculations of ma-
terials and condensed-matter systems. The usual
approach of finding the solution of the Kohn-Sham
equation that underpins DFT relies on expanding
the electron wave functions in a way that assumes
an ideal, “defectless” periodic crystal with a small
cell of representative atoms. This traditional ap-
proach scales with the cube of the system size.

An alternative expression for the solution of
the Kohn-Sham equation that contains all the nec-
essary information to calculate the physical quanti-
ties can be elegantly formulated in the context of
the multiple scattering theory for electrons, also
known as the Kohn-Korringa-Rostoker (KKR)
method. In real space, this allows linear scaling
in the number of total atoms in the system for all
electron first-principles calculations. Additionally,
the main computational requirement of this meth-
od lies in inverting dense complex matrices, as the
code achieves high compute intensity and benefits
from highly optimized dense linear algebra librar-
ies, such as BLAS and LAPACK.

The computational efficiency of LSMS led to
its recognition as an outstanding achievement in

high-performance computing (HPC), winning the
prestigious ACM Gordon Bell Prize in 1998 for
enabling the efficient first-principles calculations
of ground-state properties of realistic models of
materials with disorder or internal nanostructure.

More recently, the capabilities of LSMS have
been expanded to investigate the behavior of ma-
terial properties at finite temperatures. With the
extended ability to perform calculations for large
simulation cells addressed with the original version
of LSMS, calculations of these finite temperature
behaviors require the calculation and sampling of
a large number of configurations that the atomic
sites in these cells can occupy.

This capability was achieved by combining the
LSMS code with the Wang-Landau Monte Carlo
method to systematically sample randomly selected
configurations of simulation cells to compute a
system’s finite temperature behavior, resulting in
the WL-LSMS code. This sampling of configura-
tions introduced an additional level of parallelism
that enables the scaling of these calculations to the
largest currently available HPC architectures. Thus
WL-LSMS was one of the earliest codes to achieve
double-precision performance beyond the PFLOP/s
mark, which resulted in it being recognized with a
Gordon Bell Prize in 2009.

Exploiting the GPU
The large-scale, first-principles simulations enabled
with LSMS has allowed a research team using Oak
Ridge Leadership Computing Facility’s Titan su-
percomputer to investigate magnetism in large
structures and, by using the first-principles-based
Monte Carlo simulation, to obtain finite tempera-
ture behavior of magnetic materials and alloys. Un-
derstanding phase transitions in alloys is of funda-
mental importance in materials science, and the de-
sign of new materials relies on the knowledge of the
thermodynamic properties of the different phases.
Hence, there’s a desire to be able to calculate prop-
erties such as phase transition temperatures and
specific heat of alloys from first principles.

The advances in available computational re-
sources have made it possible to consider direct
simulation of the order-disorder transition in solid-
solution alloys without resorting to fitting to mod-
els or the need to resort to mean field theories. For
example, the team has been able to calculate the
ordering transition in brass (Cu0.5Zn0.5) without
model parameters, where the atoms randomly oc-
cupy the lattice sites at high temperature to a regu-
lar order at low temperature.

This article originally appeared in
Computing in Science & Engineering, vol. 19, no. 1, 2017.

24	 July 2018	 Published by the IEEE Computer Society � 2469-7087/18/$33.00 © 2018 IEEE
6 Published by the IEEE Computer Society 0272-1732/17/$33.00 © 2017 IEEE

Expert Opinion

All hardware companies face a conun-
drum. Should they continue the evolu-
tionary trend of their current products,
or build riskier products that have the
potential for greater reward but carry a
higher probability of failure? The safe
course, and one that many custom-
ers ask for, is the former. However, as
Clayton Christensen points out in The
Innovator’s Dilemma, “most companies
with a practiced discipline of listening
to their best customers and identify-
ing new products that promise greater
profitability and growth are rarely able
to build a case for investing in disrup-
tive technologies until it is too late.”1

Computer hardware companies
expend enormous resources to suc-
cessfully improve their products in an
evolutionary fashion. Single-threaded
processor performance has been improv-
ing at a rate of 15 to 20 percent per year
by utilizing both process technology
and architectural improvements.2 These
improvements, however, are increasingly
difficult to achieve. Using data from
Moein Khazraee and colleagues,3 Fig-
ure 1 shows that a processor’s cost per
operation, as defined by a combina-
tion of fabrication, nonrecurring engi-
neering (NRE), and packaging costs,
has not significantly improved in the
past decade. However, performance
improvements are flattening out due to

power restrictions and the breakdown
of Dennard scaling. For instance, Intel
is no longer relying on the tick-tock
model, which it rode to market dom-
inance for the past decade, due to the
declining benefits of process technol-
ogy scaling.4

Sustaining versus Disruptive
Technology
Christensen describes the evolutionary
process of improvements using the sus-
taining technology S-curve (see Figure 2).
For every successful technology, the per-
formance metric is initially flat during
development, rapidly improves for a
period of time, and flattens out again
when the product and/or technology
reaches maturity. Sustaining technolo-
gies are dominating the processor indus-
try, and these technologies are reaching
a plateau.

Sometimes a disruptive technol-
ogy with a new S-curve will enter the
landscape, as shown in Figure 2. Dis-
ruptive technologies do not go head
to head with mainstream technolo-
gies, but they do have features that a
few fringe markets value. Typically,
disruptive technologies initially under-
perform, but then rapidly match and
exceed the previous technology. Suc-
cessful companies not only ride their
sustaining S-curves but generate new,

disruptive curves to improve perfor-
mance as the current technology curve
flattens out. Microprocessors were
once a disruptive technology,1 and
the computing landscape over the past
few decades is littered with disruptive
technologies, from minicomputers to
PCs to smartphones to cloud comput-
ing. In all these cases, the disruptive
technology yielded worse performance
in the near-term when using the same
cost function as mainstream technology.
However, as Christensen maintains, dis-
ruptive technologies eventually redefine
how performance is measured.

Recent examples of disruptive
technologies in processor architecture
include GPUs and Arm servers. GPUs
were originally designed for 3D graph-
ics processing, but have made signifi-
cant inroads first in high-performance
computing (HPC) and more recently
in machine learning. For applications
that are similar to those found in
SPECint, GPUs underperform gen-
eral-purpose processors. However,
for targeted HPC applications and
machine learning, GPUs are over-
whelmingly superior.

Arm processors originally tar-
geted power-constrained embedded
domains, but have more recently
entered the server market with prod-
uct offerings from companies such as

If You Build It, Will They Come?

Srilatha Manne
Cavium

Bryan Chin
University of California, San Diego

Steven K. Reinhardt
Microsoft

www.computer.org/computingedge� 25
www.computer.org/micro November/December 2017 7

Cavium and Qualcomm that address
multicore throughput computing.5,6
A new S-curve could develop for these
specialized throughput-based server
products—enabled by highly paralleliz-
able shared-memory applications—just
as it did with HPC and machine learn-
ing in the GPU market.

It took the GPU market nearly
two decades to make headway outside
of graphics applications, and the Arm
server market has resulted in several
failures. Christensen notes that this
commonplace in disruptive markets is
where “[it] is simply impossible to pre-
dict with any useful degree of precision
how disruptive products will be used
or how large their markets will be.”
So, how does one innovate in a rapidly
changing technology landscape where
the underlying cost function is in flux?
How does a company keep up with the
necessary and expensive evolutionary
changes, yet also prepare for and justify
expending valuable resources investi-
gating disruptive technologies that are
inevitable?

The Case for Agility
Companies and their mainstream cus-
tomers alike are notoriously bad at pre-
dicting what disruptive products will
take root in the marketplace. There are
many instances of high-profile devel-
opments that flopped. For example, it
is unlikely you are reading this article
on your Apple Newton while listen-
ing to music on your Microsoft Zune.
Conversely, some disruptive technol-
ogies have found success in surprising
places such as GPUs. Innovation in a
rapidly changing landscape is difficult
and prone to failure. Therefore, we
posit that architects, rather than trying
to predict the future, should pursue
agility in order to accelerate innova-
tion while minimizing costs. Hard-
ware companies, architects, and the
underlying design methodologies and
infrastructure must be nimble enough
to deal with disruptive technologies
that come from within and outside the

current technology landscape. The rest
of the article presents some ideas on
how this may be accomplished.

Agile Architecture
In his book The Lean Startup: How
Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Success-
ful Business,7 Eric Ries writes about
software companies that use agile
software development strategies. The
premise is to deliver prototypes as
quickly as possible, even if haphazardly
put together, to get early customer
feedback. The goal is to use customer
feedback to drive product features and
direction through a process of continu-
ous development. If you consider how
frequently the apps on your phone are
updated, or the look and feel of social
networking sites evolve, you have seen
agile software practices in action.

Facebook, for example, uses agile
coding practices. As Kent Beck
explains,8 one of the basic practices at
Facebook is reversibility. If a decision is
reversible, it does not require the rig-
orous testing that irreversible decisions
require. Code is also released incremen-
tally to a small subset of users, which
enables changes to be rolled back with
minimal disruption if a problem is
found.9 The challenge for the hard-
ware industry is how to adapt a similar
agile methodology without incur-
ring large overheads. We address this

challenge in both traditional processor
hardware methodologies and innova-
tive methodologies utilized by large
computing companies.

Processor Agility
Prior to the ASIC revolution of the
past few decades, hardware prototypes
were a common means of achieving
the rapid development and early feed-
back cycle. Old technologies such as
wire-wrap, breadboards, programma-
ble logic devices (PLDs), and low-cost
printed circuit boards (PCBs) enabled
hardware companies to quickly build
and iterate on products. This meth-
odology is no longer feasible given the
complexity and cost of processor devel-
opment both in terms of engineering
time and fabrication costs.3

1996

1.2

1.0

0.8

0.6

C
os

t/
op

/s

0.4

0.2

0
1998 2000 2002 2004 20082006 2010 2012 2014 2016

Figure 1. Processor computation cost as a function of time. Cost is defined as a
combination of fabrication, nonrecurring engineering (NRE), and packaging costs.3

Time

Development

Rapid improvement

Discontinuity

Disruptive
technology

Maturity

Sustaining
technologyPe

rf
or

m
an

ce

Figure 2. The sustaining technology
and disruptive technology S-curves.

6 Published by the IEEE Computer Society 0272-1732/17/$33.00 © 2017 IEEE

Expert Opinion

All hardware companies face a conun-
drum. Should they continue the evolu-
tionary trend of their current products,
or build riskier products that have the
potential for greater reward but carry a
higher probability of failure? The safe
course, and one that many custom-
ers ask for, is the former. However, as
Clayton Christensen points out in The
Innovator’s Dilemma, “most companies
with a practiced discipline of listening
to their best customers and identify-
ing new products that promise greater
profitability and growth are rarely able
to build a case for investing in disrup-
tive technologies until it is too late.”1

Computer hardware companies
expend enormous resources to suc-
cessfully improve their products in an
evolutionary fashion. Single-threaded
processor performance has been improv-
ing at a rate of 15 to 20 percent per year
by utilizing both process technology
and architectural improvements.2 These
improvements, however, are increasingly
difficult to achieve. Using data from
Moein Khazraee and colleagues,3 Fig-
ure 1 shows that a processor’s cost per
operation, as defined by a combina-
tion of fabrication, nonrecurring engi-
neering (NRE), and packaging costs,
has not significantly improved in the
past decade. However, performance
improvements are flattening out due to

power restrictions and the breakdown
of Dennard scaling. For instance, Intel
is no longer relying on the tick-tock
model, which it rode to market dom-
inance for the past decade, due to the
declining benefits of process technol-
ogy scaling.4

Sustaining versus Disruptive
Technology
Christensen describes the evolutionary
process of improvements using the sus-
taining technology S-curve (see Figure 2).
For every successful technology, the per-
formance metric is initially flat during
development, rapidly improves for a
period of time, and flattens out again
when the product and/or technology
reaches maturity. Sustaining technolo-
gies are dominating the processor indus-
try, and these technologies are reaching
a plateau.

Sometimes a disruptive technol-
ogy with a new S-curve will enter the
landscape, as shown in Figure 2. Dis-
ruptive technologies do not go head
to head with mainstream technolo-
gies, but they do have features that a
few fringe markets value. Typically,
disruptive technologies initially under-
perform, but then rapidly match and
exceed the previous technology. Suc-
cessful companies not only ride their
sustaining S-curves but generate new,

disruptive curves to improve perfor-
mance as the current technology curve
flattens out. Microprocessors were
once a disruptive technology,1 and
the computing landscape over the past
few decades is littered with disruptive
technologies, from minicomputers to
PCs to smartphones to cloud comput-
ing. In all these cases, the disruptive
technology yielded worse performance
in the near-term when using the same
cost function as mainstream technology.
However, as Christensen maintains, dis-
ruptive technologies eventually redefine
how performance is measured.

Recent examples of disruptive
technologies in processor architecture
include GPUs and Arm servers. GPUs
were originally designed for 3D graph-
ics processing, but have made signifi-
cant inroads first in high-performance
computing (HPC) and more recently
in machine learning. For applications
that are similar to those found in
SPECint, GPUs underperform gen-
eral-purpose processors. However,
for targeted HPC applications and
machine learning, GPUs are over-
whelmingly superior.

Arm processors originally tar-
geted power-constrained embedded
domains, but have more recently
entered the server market with prod-
uct offerings from companies such as

If You Build It, Will They Come?

Srilatha Manne
Cavium

Bryan Chin
University of California, San Diego

Steven K. Reinhardt
Microsoft

26	 ComputingEdge� July 2018
8 IEEE Micro

Expert Opinion

Automated design methodology and
reuse. Companies today rely on
improved design methodologies and
reusability to reduce design time and
cost. Design methodologies have made
great strides in the past two decades,
resulting in shorter design cycle times and
an expanded product portfolio using the
same fundamental components. Most
processors, even those designed for high
performance, are mostly or completely
synthesized. The Arm roadmap has
synthesized cores operating at 3 GHz,
and AMD, Intel, and IBM extensively
use automated tools throughout their
design.10–12 In addition, companies uti-
lize a modular design methodology such
that multiple products can be developed
using the same basic components.

Both Intel and AMD use their
respective base core designs and inno-
vative packaging technologies to build
products ranging from low-power
mobile parts to multicore server
products.13 Similarly, silicon compa-
nies such as Cavium and Nvidia have
been able to create a family of devices
with varying price/performance points
from the same basic design by utilizing
flexible chip layouts that let designers
vary the number of computational
units and/or the amount of on-die
memory. Intel has taken this one
step further by collaborating with
Facebook to develop a specialized
version of Broadwell (referred to as
Broadwell-D) to meet the specific
needs of Facebook.14

The technologies mentioned so far
reduce design cycle time, but there is
still significant overhead associated with
bringing a chip to production. Post-
silicon functional and performance
debug is a formidable challenge for
modern processors that may encompass
multiple sockets, heterogeneous and/or
multithreaded cores, many cores com-
bined with multiple levels of memory
hierarchy, complex memory coherence
and consistency protocols, and extensive
power and performance management
via on-chip controllers. In addition,

modern processors may operate under
complex software stacks containing one
or more nested virtual environments.
For these reasons, even with mostly
synthesized methodologies and reuse
of existing components, the transition
from first silicon to full production part
can take up to a year or more.15

Functional verification and bug
mitigation. Post-production bugs are
commonplace, and fixing bugs in
shipped products often involves errata,
metal and full-layer spins, and/or
replacing existing silicon. Infamous
examples of such bugs are the Pentium
FDIV bug,16 the Haswell/Broadwell
transactional memory bug,17 and the
AMD TLB bug.18 These bugs cost the
respective companies millions of dol-
lars in lost revenue, and in AMD’s case,
contributed to its loss of momentum
in the server market. All processors
have a large list of errata. The table of
known errata in Haswell, for instance,
covers six pages.19

To meet market needs and address
the complexity and cost of post-silicon
debug, architects must focus on
hardware and software solutions for
exposing, analyzing, and mitigating
functional and performance bugs.
Processor vendors must provide tools
that rapidly expose and identify bugs
and have systems in place for mitigat-
ing these bugs without the need for
extensive silicon changes. Efforts such
as Arm’s hardware debug architecture
attempt to standardize the infrastruc-
ture so that common tools can be
made available to the Arm hardware
development ecosystem.20

Both software and hardware solu-
tions should be explored for mitigating
hardware bugs in the field. On the hard-
ware front, microcode fixes on tradi-
tional CISC processors come to mind,
as does the PAL (Privileged Architecture
Library) code feature of DEC’s Alpha
processors. A similar technology that
might help processor vendors mitigate
bugs is virtual machine environments.

Much software these days is compiled
to an abstract machine. Two examples
of such abstraction layers, one cur-
rent and one historical, are Oracle’s
Java Virtual Machine (JVM)21 and
IBM’s AS/400 Series.22 If an entire
processor is designed to execute only
a JVM, then the JVM itself provides
the instruction set architecture (ISA) of
the machine, and the underlying phys-
ical machine may have bugs or features
that are invisible to the JVM. The JVM
addresses ISA-related bugs. Similarly,
more fully specified virtual machine
environments, such as VMware’s
vSphere and Microsoft’s Hyper-V, vir-
tualize system aspects of the machine,
such as memory management and I/O.
Machines such as IBM’s AS/400 man-
aged to maintain a stable abstract archi-
tecture through multiple generations
of hardware. By expecting and archi-
tecting for bug discovery, analysis,
and mitigation, processor vendors can
reduce the number of bugs that reach
production silicon, and respond to
issues in post-production parts quickly
and effectively. This shortens the
designer-customer feedback loop and
leads to a faster development cycle and
improved successor products.

Performance verification and
optimization. Another critical facet
of bringing a processor to production
is performance tuning. Processors are
designed with dozens of control bits
(also referred to as chicken bits) to
manage system performance. Some
chicken bits are exposed to the user
(for example, disabling prefetching or
simultaneous multithreading mode, or
restricting power management), and
others are known only by the manufac-
turer. Regardless, how these bits are set
and tuned can have a significant impact
on performance. Unfortunately, there
are hundreds of these interdependent
knobs, and tuning them by hand is
impractical. However, self-tuning sys-
tems, either integrated into the oper-
ating system or as separate tools,23

www.computer.org/computingedge� 27
www.computer.org/micro November/December 2017 9

that can dynamically adjust these bits
according to application needs may be
an innovative mechanism for achiev-
ing optimal performance. Best of all,
these tuners can be deployed on-site,
which means they do not gate product
release to customers. Finally, the same
techniques for fixing bugs via low-level
software or implementing a virtual
machine can also be used to adapt sil-
icon to new applications. Hardware
designers can enable and deploy new
instructions and features through
the same mechanisms used to patch
around bugs. New versions of a JVM
implementation, for example, may
exploit optimizations that are relevant
to new application areas.

Computational Agility
So far, we have addressed agility at
the processor level. However, with
the advent of warehouse-scale systems
driven by cloud computing, the pro-
cessor becomes one piece of a larger
computational problem. New com-
panies entering the computing arena
include numerous startups and large,
established companies from outside
the traditional chip design industry,
such as Google, Microsoft, and Ama-
zon. Few if any of these companies
are choosing to go head-to-head in
the general-purpose processor market
with traditional designs such as Intel
and AMD. Rather, they are achieving
agility via specialized devices targeting
narrower but highly relevant domains.

The need for specialization. The end
of Dennard scaling and the slowdown
and imminent demise of Moore’s law
drive the need for specialization, just
as they demand agility in processor
design. During the steep part of the
S-curve for general-purpose processors,
specialized architectures were quickly
outpaced by these cheaper commodity
devices. The slowing rate of improve-
ment in general-purpose designs both
creates opportunity for specialized
architectures and drives demand, as

customers can no longer rely on the
commodity market to satisfy their
computing needs.

A prerequisite for specialization is
identifying an application or applica-
tion domain narrow enough to benefit
from specialization but large enough
to justify a specialized device. Focusing
on smaller and smaller domains (down
to specific applications) increases the
amount of potential performance
uplift through specialization, while
decreasing the potential market. To
be successful, the total value cre-
ated through specialization (roughly
speaking, the value per device times
the number of devices) must exceed
the cost of developing the specialized
device. By developing agile methodol-
ogies that reduce engineering costs, we
can enable specialization for smaller
domains and allow specialized devices
to emerge sooner in growing markets.

Figure 3 shows the specializa-
tion trend over time, starting with
CPUs and ending with custom ASICs.
Cryptocurrency mining followed this
trend,24 and deep learning, one of the
most prominent new markets attract-
ing specialized architectures, is follow-
ing suit. GPUs offer better performance
than CPUs for certain tasks, such as
training for AI, whereas state-of-the

art field-programmable gate arrays
(FPGAs) can outperform standard
GPUs for certain computations such
as low-precision arithmetic.25 Finally,
custom ASIC accelerators provide the
highest performance efficiency.

Multiple startups such as Graph-
core, Wave Computing, Nervana (now
part of Intel), and Groq are developing
or have developed customized deep
learning accelerators that occupy the
upper right corner of Figure 3. How-
ever, one of the earliest and most pub-
licized deep learning accelerators is not
from a startup but from an established
company without a history of chip
design. The Google Tensor Processing
Unit (TPU) was developed in a short
15 months.26 To achieve a rapid pro-
duction cycle, Google used an older
and more stable process technology
(28 nm) and existing communication
interfaces. The first-generation TPU
was for internal use and had compu-
tational and memory bandwidth lim-
itations. However, the TPU is now on
its second iteration, and it not only
supports higher computational capa-
bility and memory bandwidth, but will
reportedly be made accessible to third
parties.27

Even in an agile environment, the
delay from the initial ASIC concept

FPGA

ASIC

More general purpose

C
om

pu
te

 e
ff

ic
ie

nc
y More specialization

GPU

Time

CPU

Figure 3. Specialization trend over time.

8 IEEE Micro

Expert Opinion

Automated design methodology and
reuse. Companies today rely on
improved design methodologies and
reusability to reduce design time and
cost. Design methodologies have made
great strides in the past two decades,
resulting in shorter design cycle times and
an expanded product portfolio using the
same fundamental components. Most
processors, even those designed for high
performance, are mostly or completely
synthesized. The Arm roadmap has
synthesized cores operating at 3 GHz,
and AMD, Intel, and IBM extensively
use automated tools throughout their
design.10–12 In addition, companies uti-
lize a modular design methodology such
that multiple products can be developed
using the same basic components.

Both Intel and AMD use their
respective base core designs and inno-
vative packaging technologies to build
products ranging from low-power
mobile parts to multicore server
products.13 Similarly, silicon compa-
nies such as Cavium and Nvidia have
been able to create a family of devices
with varying price/performance points
from the same basic design by utilizing
flexible chip layouts that let designers
vary the number of computational
units and/or the amount of on-die
memory. Intel has taken this one
step further by collaborating with
Facebook to develop a specialized
version of Broadwell (referred to as
Broadwell-D) to meet the specific
needs of Facebook.14

The technologies mentioned so far
reduce design cycle time, but there is
still significant overhead associated with
bringing a chip to production. Post-
silicon functional and performance
debug is a formidable challenge for
modern processors that may encompass
multiple sockets, heterogeneous and/or
multithreaded cores, many cores com-
bined with multiple levels of memory
hierarchy, complex memory coherence
and consistency protocols, and extensive
power and performance management
via on-chip controllers. In addition,

modern processors may operate under
complex software stacks containing one
or more nested virtual environments.
For these reasons, even with mostly
synthesized methodologies and reuse
of existing components, the transition
from first silicon to full production part
can take up to a year or more.15

Functional verification and bug
mitigation. Post-production bugs are
commonplace, and fixing bugs in
shipped products often involves errata,
metal and full-layer spins, and/or
replacing existing silicon. Infamous
examples of such bugs are the Pentium
FDIV bug,16 the Haswell/Broadwell
transactional memory bug,17 and the
AMD TLB bug.18 These bugs cost the
respective companies millions of dol-
lars in lost revenue, and in AMD’s case,
contributed to its loss of momentum
in the server market. All processors
have a large list of errata. The table of
known errata in Haswell, for instance,
covers six pages.19

To meet market needs and address
the complexity and cost of post-silicon
debug, architects must focus on
hardware and software solutions for
exposing, analyzing, and mitigating
functional and performance bugs.
Processor vendors must provide tools
that rapidly expose and identify bugs
and have systems in place for mitigat-
ing these bugs without the need for
extensive silicon changes. Efforts such
as Arm’s hardware debug architecture
attempt to standardize the infrastruc-
ture so that common tools can be
made available to the Arm hardware
development ecosystem.20

Both software and hardware solu-
tions should be explored for mitigating
hardware bugs in the field. On the hard-
ware front, microcode fixes on tradi-
tional CISC processors come to mind,
as does the PAL (Privileged Architecture
Library) code feature of DEC’s Alpha
processors. A similar technology that
might help processor vendors mitigate
bugs is virtual machine environments.

Much software these days is compiled
to an abstract machine. Two examples
of such abstraction layers, one cur-
rent and one historical, are Oracle’s
Java Virtual Machine (JVM)21 and
IBM’s AS/400 Series.22 If an entire
processor is designed to execute only
a JVM, then the JVM itself provides
the instruction set architecture (ISA) of
the machine, and the underlying phys-
ical machine may have bugs or features
that are invisible to the JVM. The JVM
addresses ISA-related bugs. Similarly,
more fully specified virtual machine
environments, such as VMware’s
vSphere and Microsoft’s Hyper-V, vir-
tualize system aspects of the machine,
such as memory management and I/O.
Machines such as IBM’s AS/400 man-
aged to maintain a stable abstract archi-
tecture through multiple generations
of hardware. By expecting and archi-
tecting for bug discovery, analysis,
and mitigation, processor vendors can
reduce the number of bugs that reach
production silicon, and respond to
issues in post-production parts quickly
and effectively. This shortens the
designer-customer feedback loop and
leads to a faster development cycle and
improved successor products.

Performance verification and
optimization. Another critical facet
of bringing a processor to production
is performance tuning. Processors are
designed with dozens of control bits
(also referred to as chicken bits) to
manage system performance. Some
chicken bits are exposed to the user
(for example, disabling prefetching or
simultaneous multithreading mode, or
restricting power management), and
others are known only by the manufac-
turer. Regardless, how these bits are set
and tuned can have a significant impact
on performance. Unfortunately, there
are hundreds of these interdependent
knobs, and tuning them by hand is
impractical. However, self-tuning sys-
tems, either integrated into the oper-
ating system or as separate tools,23

28	 ComputingEdge� July 2018
10 IEEE Micro

Expert Opinion

to fully deployed device is measured
in years. Once deployed, ASICs must
continue to provide value for multi-
ple additional years before replace-
ment. Thus, an ASIC must accelerate
a function that, from the point of con-
ception, will still be valuable four to
five years in the future. While some
functions, such as compression and
encryption algorithms, tend to be sta-
ble over these time frames, those in
rapidly evolving fields such as deep
learning may develop new and differ-
ent requirements in the interval from
design start to deployment. Stable,
high-volume accelerators can easily
justify an ASIC’s higher nonrecurring
engineering cost. Because an ASIC
design needs larger markets and longer
lifetimes, an ASIC accelerator typically
includes as much flexibility as design-
ers can afford in the form of configura-
tion parameters, options, and software
programmability.

To achieve a more agile acceler-
ation framework, Microsoft took an
unusual approach to specialization by
focusing on FPGAs rather than ASICs
for datacenter acceleration.28 For a
given accelerator design, an FPGA
implementation could be several times
slower and less energy efficient than
an ASIC implementation. However,
by using hardware devices that can be
reprogrammed after deployment, Mic-
rosoft gains agility at the expense of
computational efficiency. FPGA-based
accelerators not only are tolerant to
the changing requirements of a given
application, but can be completely
retargeted as new applications emerge
or demand shifts. An FPGA accelera-
tor design can afford to be less config-
urable and more customized to specific
situations, as the design itself can be
incrementally modified after initial
deployment to address new circum-
stances. In this fashion, the FPGA’s
agility as a platform can be used to
recover a portion of the efficiency that
it sacrifices to an equivalent ASIC-
based design.

FPGAs can also close the gap
with ASICs by incorporating larger
and more complex hard logic blocks
on chip. Current FPGAs include
multiply-accumulate units and even
full microprocessor cores as hard logic.
Researchers have also proposed devices
that are mostly hard logic, but with
configurable interconnect, referred to
as coarse-grained reconfigurable accel-
erators (CGRAs).29 The line between
FPGAs and ASICs is further blurred
by integrated multichip packages
that incorporate both an FPGA and
ASIC die.30 The ability for customers
to specify which ASICs are included
in the package provides yet another
dimension of flexibility.

The computational marketplace.
Amazon has also developed hardware
for internal consumption from custom
routers to chipsets used in its servers.31
This enables Amazon to optimize the
hardware for its specific needs with full
control of both the hardware and soft-
ware stack. Amazon also provides hard-
ware agility to its customers by offering
platforms for custom programmable
hardware as part of the AWS services
plan.32 The goal is to encourage com-
panies to develop accelerators using
Amazon’s FPGA framework for inter-
nal use and/or sell the resulting com-
putational capability to end customers
on the AWS Marketplace. Amazon’s
EC F1 instances with FPGAs offer two
significant benefits for custom solution
developers. First, Amazon provides the
FPGA hardware, tools, and infrastruc-
ture, significantly lowering the cost
and convenience threshold for devel-
oping customized hardware. Second,
Amazon provides a deployment model
(via AWS) and a ready marketplace of
potential customers for the final prod-
uct. No longer are hardware developers
restricted to products with a large Tier
One customer base. They can rapidly
develop and deploy niche hardware and
test its viability in the AWS computa-
tional marketplace with many small

customers across the country and the
world. The computational marketplace
scenario comes closest to achieving the
rapid deployment model highlighted
in The Lean Startup.7 Finally, if any
of these customized solutions become
pervasive, they can eventually be reim-
plemented as an ASIC, as noted by
Khazraee,3 or integrated into a general-
purpose processor architecture.

Standardized ecosystem. A successful
computational marketplace requires
standardized interfaces for interacting
with accelerators. On the hardware
side, current solutions from Amazon,
Microsoft, Google, and others rely
on PCIe for accelerator integration.
PCIe has been the de facto standard
for peripherals for many years, and a
part of its success can be attributed to
having an open standard. However, for
processor designers wanting to create
specialized accelerators, PCIe may not
offer the tightly coupled memory sys-
tem integration desired or required by
the application. Proprietary coherent
processor interconnects such as Intel’s
QPI and AMD’s Infinity Fabric offer
the memory system integration that a
specialized accelerator might require,
while Nvidia’s NVLink is a proprietary
interconnect for GPUs. Nonpropri-
etary standards from different consor-
tia such as OpenCAPI (www.opencapi
.org), Gen-Z (www.genzconsortium
.org), and CCIX (www.ccixconsortium
.com) might also supplement PCIe as
these standards evolve. What is clear,
from the PCIe example, is that the new
standard should be easily licensable
and controlled by an open standards
organization to enable a level playing
field.

While we have thus far empha-
sized agility in hardware development
and deployment, software agility is also
a critical requirement. An environment
in which hardware capabilities change
and evolve rapidly is impossible to use
unless low-level software can adapt
equally rapidly, while providing stable

www.computer.org/computingedge� 29
www.computer.org/micro November/December 2017 11

APIs to higher-level services so that
the bulk of the code base can remain
independent of the underlying imple-
mentation’s details. Software stacks
can provide additional agility when
they help to automate the mapping of
applications to accelerators, and enable
hardware bug workarounds to cope
with issues that may slip through an
accelerated development and testing
schedule.

P rocessor architecture has changed
significantly over the past few

decades with the advent of multicore
designs, design for low power, het-
erogeneous systems, and many-core
processors that can run a hundred or
more threads. With cloud computing
and the emerging customizable mar-
ketplace of products, we are once again
witnessing a sea change in the way
computing takes place.

In this article, we have made a
case for agility because we cannot pre-
dict the future with any level of accu-
racy. We need agility not only for rapid
evolution of conventional architec-
ture, but also for lowering the barrier
for specialized architectures. As Bill
Gates once noted, “We always overes-
timate the change that will occur in the
next two years and underestimate the
change that will occur in the next ten.
Don’t let yourself be lulled into inac-
tion.”33 As architects, we must develop
the infrastructure and mindset that
enable us to be agile and take risks in
order to evolve with a rapidly changing
environment and create the next dis-
ruptive technology.

References
1. C.M. Christensen, The Innovator’s

Dilemma: When New Technologies
Cause Great Firms to Fail, Harvard
Business School Press, 1997.

2. “A Look Back at Single-
Threaded CPU Performance,”
blog, 8 Feb. 2012; http://preshing
. c o m / 2 0 1 2 0 2 0 8 / a - l o o k

-back-at-single-threaded-cpu
-performance.

3. M. Khazraee et al., “Moonwalk:
NRE Optimization in ASIC
Clouds,” Proc. 22nd Int’l Conf.
Architectural Support for Program-
ming Languages and Operating
Systems, 2017, pp. 511–526.

4. J. Hruska, “Intel Formally Kills
its Tick-Tock Approach to Pro-
cessor Development,” blog, 23
Mar. 2016; www.extremetech.com
/extreme/225353-intel-formally
-kil ls- its-tick-tock-approach
-to-processor-development.

5. T.P. Morgan, “Qualcomm Fires
ARM Server Salvo, Broadcom
Silences Guns,” 7 Dec. 2016; www
.nextplatform.com/2016/12/07
/qualcomm-fires-arm-server-salvo
-broadcom-silences-guns.

6. R. Brueckner, “Cavium Thun-
derX2 Processors Power New
Baymax HyperScale Server Plat-
forms,” blog, 29 May 2017;
http://insidehpc.com/2017/05
/cavium-thunderx2-processors
-power-new-baymax-hyperscale
-server-platforms.

7. E. Ries, The Lean Startup:
How Today’s Entrepreneurs Use
Continuous Innovation to Cre-
ate Radically Successful Busi-
ness, Crown Publishing Group,
2011.

8. C. Murphy, “Facebook Guru
and Agile Pioneer Kent Beck
Reveals the Mind of the
Modern Programmer,” Forbes, 9
Jan. 2017; www.forbes.com/sites
/oracle/2017/01/09/facebook
-guru-and-agile-pioneer-kent
-beck-reveals-the-mind-of-the
-modern-programmer.

9. J. Bird, “This Is How Facebook
Develops and Deploys Software.
Should You Care?” blog, 4 Sept.
2013; http://dzone.com/articles
/how-facebook-develops-and.

10. M. Humrick, “Exploring Dy-
namIQ and ARM’s New CPUs:
Cortex-A75, Cortex-A55,” blog,

29 May 2017; www.anandtech
.com/show/11441/dynamiq-and
-a rms-new-cpus-cor tex-a75
-a55.

11. P. Gelsinger et al., “Such a CAD!
Coping with the Complexity of
Microprocessor Design at Intel,”
IEEE Solid-State Circuits, vol. 2,
no. 3, 2010, pp. 32–43.

12. M. Ziegler, R. Puri, and B. Phil-
hower, “POWER8 Design Meth-
odology Innovations for Improving
Productivity and Reducing Power,”
Proc. IEEE Custom Integrated Cir-
cuits Conf., 2014, pp. 1–9.

13. A. Patrizio, “Intel Shakes Up
Its Chip Design Process,” blog,
23 May 2014; www.itworld
.com/article/2699164/hardware
/intel-shakes-up-its-chip-design
-process.html.

14. V. Rao and E. Smith, “Facebook’s
New Front-End Server Design
Delivers on Performance with-
out Sucking Up Power,” blog, 9
Mar. 2016; http://code.facebook
.com/posts/1711485769063510
/facebook-s-new-front-end-server
-design-delivers-on-performance
-without-sucking-up-power.

15. M. Abramovici and P. Bradley,
“A New Approach to In-System
Silicon Validation and De-
bug,” EE Times, 16 Sept. 2007;
www.eetimes.com/document
.asp?doc_id51276099.

16. “Pentium FDIV Bug,” blog; www
.cs.earlham.edu/~dusko/cs63
/fdiv.html.

17. S. Wasson, “Errata Prompts Intel
to Disable TSX in Haswell, Early
Broadwell CPUs,” blog, 12 Aug.
2014; http://techreport.com/news
/26911/errata-prompts-intel-to
-disable-tsx-in-haswell-early
-broadwell-cpus.

18. K. Kubicki, “Understanding AMD’s
‘TLB’ Processor Bug,” blog, 5
Dec. 2007; www.dailytech.com
/Understanding11AMDs1TLB
1Processor1Bug/article9915
.htm.

10 IEEE Micro

Expert Opinion

to fully deployed device is measured
in years. Once deployed, ASICs must
continue to provide value for multi-
ple additional years before replace-
ment. Thus, an ASIC must accelerate
a function that, from the point of con-
ception, will still be valuable four to
five years in the future. While some
functions, such as compression and
encryption algorithms, tend to be sta-
ble over these time frames, those in
rapidly evolving fields such as deep
learning may develop new and differ-
ent requirements in the interval from
design start to deployment. Stable,
high-volume accelerators can easily
justify an ASIC’s higher nonrecurring
engineering cost. Because an ASIC
design needs larger markets and longer
lifetimes, an ASIC accelerator typically
includes as much flexibility as design-
ers can afford in the form of configura-
tion parameters, options, and software
programmability.

To achieve a more agile acceler-
ation framework, Microsoft took an
unusual approach to specialization by
focusing on FPGAs rather than ASICs
for datacenter acceleration.28 For a
given accelerator design, an FPGA
implementation could be several times
slower and less energy efficient than
an ASIC implementation. However,
by using hardware devices that can be
reprogrammed after deployment, Mic-
rosoft gains agility at the expense of
computational efficiency. FPGA-based
accelerators not only are tolerant to
the changing requirements of a given
application, but can be completely
retargeted as new applications emerge
or demand shifts. An FPGA accelera-
tor design can afford to be less config-
urable and more customized to specific
situations, as the design itself can be
incrementally modified after initial
deployment to address new circum-
stances. In this fashion, the FPGA’s
agility as a platform can be used to
recover a portion of the efficiency that
it sacrifices to an equivalent ASIC-
based design.

FPGAs can also close the gap
with ASICs by incorporating larger
and more complex hard logic blocks
on chip. Current FPGAs include
multiply-accumulate units and even
full microprocessor cores as hard logic.
Researchers have also proposed devices
that are mostly hard logic, but with
configurable interconnect, referred to
as coarse-grained reconfigurable accel-
erators (CGRAs).29 The line between
FPGAs and ASICs is further blurred
by integrated multichip packages
that incorporate both an FPGA and
ASIC die.30 The ability for customers
to specify which ASICs are included
in the package provides yet another
dimension of flexibility.

The computational marketplace.
Amazon has also developed hardware
for internal consumption from custom
routers to chipsets used in its servers.31
This enables Amazon to optimize the
hardware for its specific needs with full
control of both the hardware and soft-
ware stack. Amazon also provides hard-
ware agility to its customers by offering
platforms for custom programmable
hardware as part of the AWS services
plan.32 The goal is to encourage com-
panies to develop accelerators using
Amazon’s FPGA framework for inter-
nal use and/or sell the resulting com-
putational capability to end customers
on the AWS Marketplace. Amazon’s
EC F1 instances with FPGAs offer two
significant benefits for custom solution
developers. First, Amazon provides the
FPGA hardware, tools, and infrastruc-
ture, significantly lowering the cost
and convenience threshold for devel-
oping customized hardware. Second,
Amazon provides a deployment model
(via AWS) and a ready marketplace of
potential customers for the final prod-
uct. No longer are hardware developers
restricted to products with a large Tier
One customer base. They can rapidly
develop and deploy niche hardware and
test its viability in the AWS computa-
tional marketplace with many small

customers across the country and the
world. The computational marketplace
scenario comes closest to achieving the
rapid deployment model highlighted
in The Lean Startup.7 Finally, if any
of these customized solutions become
pervasive, they can eventually be reim-
plemented as an ASIC, as noted by
Khazraee,3 or integrated into a general-
purpose processor architecture.

Standardized ecosystem. A successful
computational marketplace requires
standardized interfaces for interacting
with accelerators. On the hardware
side, current solutions from Amazon,
Microsoft, Google, and others rely
on PCIe for accelerator integration.
PCIe has been the de facto standard
for peripherals for many years, and a
part of its success can be attributed to
having an open standard. However, for
processor designers wanting to create
specialized accelerators, PCIe may not
offer the tightly coupled memory sys-
tem integration desired or required by
the application. Proprietary coherent
processor interconnects such as Intel’s
QPI and AMD’s Infinity Fabric offer
the memory system integration that a
specialized accelerator might require,
while Nvidia’s NVLink is a proprietary
interconnect for GPUs. Nonpropri-
etary standards from different consor-
tia such as OpenCAPI (www.opencapi
.org), Gen-Z (www.genzconsortium
.org), and CCIX (www.ccixconsortium
.com) might also supplement PCIe as
these standards evolve. What is clear,
from the PCIe example, is that the new
standard should be easily licensable
and controlled by an open standards
organization to enable a level playing
field.

While we have thus far empha-
sized agility in hardware development
and deployment, software agility is also
a critical requirement. An environment
in which hardware capabilities change
and evolve rapidly is impossible to use
unless low-level software can adapt
equally rapidly, while providing stable

30	 ComputingEdge� July 2018
12 IEEE Micro

Expert Opinion

19. Desktop 4th Generation Intel Core
Processor Family, Desktop Intel Pen-
tium Processor Family, and Desktop
Intel Celeron Processor Family, re-
port 328899-037US, Mar. 2017.

20. “Debug Architecture Overview,”
ARM, 2017; http://developer.arm
.com/products/architecture/debug
-architecture

21. T. Lindholm et al., The Java Vir-
tual Machine Specification: Java SE
7 Edition, 28 Feb. 2013.

22. F.G. Soltis, Inside the AS/400: Fea-
turing the AS/400e Series, 2nd ed.,
29th Street Press, 1997.

23. T. Morad, The Era of Self-
Tuning Servers, 7 Feb. 2017; www
.hpcadvisorycouncil.com/events
/2017/stanford-workshop/pdf
/Morad_TheEraOfSelfTuning
Servers.pdf.

24. P. Jama, “The Future of Machine
Learning Hardware,” blog, 10 Sept.
2016; http://hackernoon.com/the
-future-of-machine-learning
-hardware-c872a0448be8.

25. L. Barney, “Can FPGAs Beat GPUs
in Accelerating Next-Generation
Deep Learning?” blog, 21 Mar.
2017; www.nextplatform.com
/2017/03/21/can-fpgas-beat-gpus
-accelerating-next-generation-deep
-learning.

26. K. Sato, C. Young, and D.
Patterson, “An In-Depth Look at
Google’s First Tensor Processing

Unit (TPU),” blog, 12 May 2017;
http://cloud.google.com/blog
/big-data/2017/05/an-in-depth
-look-at-googles-first-tensor
-processing-unit-tpu.

27. P. Teich, “Under the Hood of
Google’s TPU2 Machine Learning
Clusters,” blog, 22 May 2017; www
.nextplatform.com/2017/05/22
/hood-googles-tpu2-machine
-learning-clusters.

28. A. Putnam et al., “A Reconfig-
urable Fabric for Accelerating
Large-Scale Datacenter Services,”
blog, 1 June 2014; www.microsoft
.com/en-us/research/publication
/a-reconfigurable- fabr ic- for
-accelerating-large-scale-datacenter
-services.

29. M. Gao and C. Kozyrakis, “HRL:
Efficient and Flexible Reconfig-
urable Logic for Near-Data Pro-
cessing,” Proc. IEEE Int’l Symp.
High Performance Computer Ar-
chitecture, 2016, doi: 10.1109
/HPCA.2016.7446059.

30. M. Deo, Enabling Next-
Generation Platforms Using Intel’s
3D System-in-Package Technology,
white paper WP-01251-1.5, Intel,
Aug. 2017.

31. D. Richman, “Amazon Web Services’
Secret Weapon: Its Custom-Made
Hardware and Network,” blog,
19 Jan. 2017; www.geekwire
.com/2017/amazon-web-services

-secret-weapon-custom-made
-hardware-network.

32. “Amazon EC2 F1 Instances,
Customizable FPGAs for Hard-
ware Acceleration Are Now
Generally Available,” blog, 19
Apr. 2017; http://aws.amazon
. com/about-aws/what s -new
/2017/04/amazon-ec2-f1-instances
-customizable-fpgas-for-hardware
-acceleration-are-now-generally
-available.

33. B. Gates, The Road Ahead, Viking
Penguin, 1996.

Srilatha Manne is a principal hardware
architect at Cavium. Contact her at
bobbiemanne12@gmail.com.

Bryan Chin is a lecturer in the Com-
puter Science and Engineering Depart-
ment at the University of California,
San Diego. Contact him at b5chin
@ucsd.edu.

Steven K. Reinhardt is a partner hard-
ware engineering manager at Micro-
soft. Contact him at stever@microsoft
.com.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

For submission information and author guidelines,
please visit www.computer.org/internet/author.htm

Engineering and Applying the Internet

IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

For submission information and author guidelines,
please visit www.computer.org/internet/author.htm

Engineering and Applying the Internet

This article originally appeared in
IEEE Micro, vol. 37, no. 6, 2017.

www.computer.org/computingedge� 31

Oracle America, Inc.
has openings for

TECHNICAL
ANALYST-
SUPPORT

 positions in Colorado Springs, CO.

Job duties include: Deliver solutions to
the Oracle customer base while serving
as an advocate for customer needs.

Apply by e-mailing resume to
Sandra.Earnest@oracle.com,

referencing 385.19465.

Oracle supports workforce diversity.

TECHNICAL

Announcement of an open position at the
Faculty of Informatics, TU Wien, Austria

FULL PROFESSOR
of

MACHINE LEARNING
The TU Wien (Vienna University of Technology)
invites applications for a Full Professor position
at the Faculty of Informatics.
The successful candidate will have an outstand-
ing research and teaching record in the field of
Machine Learning, which investigates and devel-
ops methods that provide computing systems
the ability to automatically learn / improve from
experience and to infer or recognize patterns
using data, whether for exploratory purposes
or to accomplish specific tasks. All areas of
machine learning will be considered, covering
theoretical foundations, systems, and enabling
technologies for machine learning. Methods of
interest include, but are not restricted to: statis-
tical machine learning, supervised learning, un-
supervised learning, reinforcement learning,
deep learning, probabilistic modelling and infer-
ence, data analytics and mining, optimization,
cognitive systems, neural processing.
We offer excellent working conditions in an
attractive research environment in a city with
an exceptional quality of life.
For a more detailed announcement and infor-
mation on how to apply, please go to:
http://www.informatik.tuwien.ac.at/vacancies
Application Deadline: October 1, 2018

Announcement of an open position at the
Faculty of Informatics, TU Wien, Austria

FULL PROFESSOR
of

UBIQUITOUS COMPUTING
The TU Wien (Vienna University of Technology)
invites applications for a Full Professor position
at the Faculty of Informatics.
The successful candidate will have an
outstanding research and teaching record in
the field of Ubiquitous Computing and focuses
on next generation ubiquitous computing
systems and their application in authentic
real world settings. Particular research topics
of interest include sensor-rich environments;
interactive and smart spaces; new interaction
paradigms; Internet of Things; mobile and
context-aware computing; awareness and
privacy; and tangible, situated and embodied
interaction.
We offer excellent working conditions in an
attractive research environment in a city with
an exceptional quality of life.
For a more detailed announcement and
information on how to apply, please go to:
http://www.informatik.tuwien.ac.at/vacancies
Application Deadline: October 22, 2018

LinkedIn Corp.
 has openings in our Mtn View, CA location for:

Software Engineer (All Levels/Types) (SWE0618MV) Design, develop & integrate cutting-edge software technologies.

LinkedIn Corp. has openings in our Sunnyvale, CA location for:
Software Engineer (All Levels/Types) (SWE0618SV) Design, develop & integrate cutting-edge software technologies; Senior Manager, Site
Reliability Engineering (6597.58) Serve as the face of a team responsible for the overall health, performance, & capacity of a significant part of
our business; Staff Engineer, Site Reliability (6597.474) Ensure that complex, web-scale systems are healthy, monitored, automated, and
designed to scale; Senior Salesforce.com Developer (6597.2449) Develop, enhance, debug, support, analyze, maintain and test new/existing
functionality which supports internal business units or supporting functions; Senior Front End Developer (6597.2294) Apply current trends &
best practices in front-end architecture, including performance, security, & usability, & own the front-end development for one or more of our
internal products.

LinkedIn Corp. has openings in our San Francisco, CA location for:
Software Engineer (All Levels/Types) (SWE0618SF) Design, develop & integrate cutting-edge software technologies.

LinkedIn Corp. has openings in our Carpinteria, CA location for:
Manager, Database Engineering (6597.1339) Leverage data architecture & warehousing skills to build a leading edge enterprise data warehouse
encompassing the entire life cycle, including data integration, transformation, logical & physical design, security, backup, & archival strategies
implementing industry best practices.

Please email resume to: 6597@linkedin.com. Must ref. job code above when applying.

TECHNOLOGY

32	 July 2018	 Published by the IEEE Computer Society � 2469-7087/18/$33.00 © 2018 IEEE
48 Published by the IEEE Computer Society 1089-7801/17/$33.00 © 2017 IEEE IEEE INTERNET COMPUTING

Standards
Editor: Yong Cui • cuiyong@tsinghua.edu.cn

Autonomic Networking:
Architecture Design
and Standardization
Xinjian Long, Xiangyang Gong, Xirong Que, and Wendong Wang •
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts
and Telecommunications

Bing Liu and Sheng Jiang • Huawei Technologies

Ning Kong • China Internet Network Information Center

Autonomic networking is a promising solution to handle the ever-increasing

management complexity of dynamic network environments. This article

elaborates on two autonomic networking architectures and current

standardization activities revolving around them.

W ith the ever-expanding scale of the Inter-
net and the advent of new devices and
technologies in both wired and wireless

environments, the complexity and redundancy
of network management are becoming greater
challenges to both industry and academia.

Autonomic networking1 is proposed as a
solution to these challenges by introducing
the autonomic system engineering into diverse
environments (wired, wireless, and so on) and
implementing self-managing functions for self-
adaptability and context-aware or situation-
driven behavior changes in systems, services, or
applications. This technology lets us reconfigure
the network and optimize it for a nonsupervised
or minimal manual administration environ-
ment upon the obtained feedback from real-time
system behaviors. As a result, the IT system’s
complexity and maintenance costs are reduced,
while dynamically changing user requirements
are met.

Autonomic networking is inspired by IBM’s
autonomic computing.2 While autonomic com-
puting attempts to improve the closed computing

system, autonomic networking addresses the far
more heterogeneous and complex network envi-
ronment. Challenges and difficulties in this area
include the following:

• designing an acceptable performant net-
working architecture to enable the imple-
mentation of desirable autonomic behaviors;

• designing novel protocols and exposing
exploitable or extendable features from
existing protocols to support the hando-
ver control, heterogeneity, and cooperation
among and within the autonomic networks;
and

• designing innovative mechanisms, algo-
rithms, and paradigms to handle differ-
ent network scenarios such as load bal-
ance, information dissemination, and fault
detection/removal.

Many projects, such as the European Union’s
Information Society Technologies (EU-IST)
Sixth Framework Program (FP6) Future and
Emerging Technologies (FET) exist that design

www.computer.org/computingedge� 33

Autonomic Networking: Architecture Design and Standardization

SEPTEMBER/OCTOBER 2017 49

and develop clean-slate autonomic
elements and architectures, unify-
ing advancements and trends occur-
ring across various areas. These
efforts promote continuous improve-
ment and lead the introduction of
autonomicity into the generic opera-
tional network environment — such
approaches include the European
Commission’s Seventh Framework
Program (FP7) project “Exposing the
Features in IP version Six protocols
that can be exploited/extended for
the purposes of designing/building
Autonomic Networks and Services”
(EFIPSANS). Currently, the stan-
dardization of autonomic network-
ing is facilitated by IRTF/IETF —
through the Network Management
Research Group (NMRG) and the
Autonomic Networking Integrated
Model and Approach (ANIMA), for
example — as well as European Tele-
communications Standards Institute
(ETSI) working groups such as Net-
work Technologies/Autonomic Future
Internet (NTECH/AFI) and Next-
Generation Protocols Self-X Net-
works (NGP SXN).

Autonomic networking refers to
the act of achieving self-management
and adapting to changing environ-
ments in accordance with a set of
high-level objectives from the net-
work management system rather
than performing tasks following
static, predefined rules. The most
cited properties of self-management
are self-configuring, self-optimizing,
self-protecting, and self-healing.
These properties are realized by the
autonomic control loop (ACL), which
refers to the procedure of monitoring
the managed elements, analyzing
the network intelligence, planning
policies for self-adaptation, and
executing the decided policies in the
autonomic network. IBM proposes
Monitor, Analyze, Plan, Execute, and
Knowledge (MAPE-K) as a reference
model for ACL, which also applies to
autonomic networking. Currently,
novel technologies (such as artificial

intelligence) are used in autonomic
networking to provide more elastic
and reliable network management
in mobile networks. Rather than
presenting all the existing research
efforts, this article focuses on cur-
rent standardization activities on the
networking architecture and its cor-
related research.

Autonomic Networking
Architectures
With the advent and rise of auto-
nomic networking, novel networking
architectures (such as EU-IST FP6
Autonomic Network Architecture,
or ANA) have been proposed. These
approaches are considered clean slate
and academic in nature. FP7 EFIP-
SANS targeted IPv6 as the starting
point for engineering autonomi-
city in networks and services. With
the Generic ANA (GANA) reference
model, standardization communities
such as IRTF research group NMRG
and IETF working group ANIMA
continue to make strides and prog-
ress on autonomicity, and these
previous works provide vision for
ongoing standardization activities.

GANA Reference Model
In EU-IST FP7 Project EFIPSANS,
GANA3 is proposed as a reference
model for autonomic network engi-
neering, which implements auto-
nomicity into the Decision Plane
and brings a significant reduction in
the complexity of network policy
computation. Nowadays, GANA is
instantiated in various networks by
ETSI NTECH/AFI to address self-
management in the specific net-
work architecture (for example, the
Third-Generation Partnership Project
[3GPP]4 and so on). Figure 1 offers a
global view of GANA.

GANA adopts (with some modi-
fications) from the Decision, Dis-
semination, Discovery, and Data
Plane network architecture. GANA’s
Decision Plane is composed of Deci-
sion Elements (DEs) and Managed
Elements (MEs). According to the
scope of decisions, a DE is further
classified into four different levels
(from the bottom to the top: protocol,
function, node, network), and the
inferior DEs always serve as the MEs
of the superior DEs. This relationship
among DEs and MEs in different

GANA pro�le

Network operator

Interactions between
domains Network

level DE

Node-level
DE

Function-
level DE

Protocol-
level DE

Data
Plane

Other network
domainsAutonomic nodes

Autonomic node

Feedback
information

Interactions
between nodes

Autonomic node

Hierarchical
Control Loop

(HCL)

Autonomic network

Data traf�c

Decision
Plane

Infrastructure-
level ME

Autonomic
behavior (AB)

Figure 1. Global view of the Generic Autonomic Network Architecture (GANA)
reference model. (DE stands for Decision Element and ME stands for
Managed Element.)

48 Published by the IEEE Computer Society 1089-7801/17/$33.00 © 2017 IEEE IEEE INTERNET COMPUTING

Standards
Editor: Yong Cui • cuiyong@tsinghua.edu.cn

Autonomic Networking:
Architecture Design
and Standardization
Xinjian Long, Xiangyang Gong, Xirong Que, and Wendong Wang •
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts
and Telecommunications

Bing Liu and Sheng Jiang • Huawei Technologies

Ning Kong • China Internet Network Information Center

Autonomic networking is a promising solution to handle the ever-increasing

management complexity of dynamic network environments. This article

elaborates on two autonomic networking architectures and current

standardization activities revolving around them.

W ith the ever-expanding scale of the Inter-
net and the advent of new devices and
technologies in both wired and wireless

environments, the complexity and redundancy
of network management are becoming greater
challenges to both industry and academia.

Autonomic networking1 is proposed as a
solution to these challenges by introducing
the autonomic system engineering into diverse
environments (wired, wireless, and so on) and
implementing self-managing functions for self-
adaptability and context-aware or situation-
driven behavior changes in systems, services, or
applications. This technology lets us reconfigure
the network and optimize it for a nonsupervised
or minimal manual administration environ-
ment upon the obtained feedback from real-time
system behaviors. As a result, the IT system’s
complexity and maintenance costs are reduced,
while dynamically changing user requirements
are met.

Autonomic networking is inspired by IBM’s
autonomic computing.2 While autonomic com-
puting attempts to improve the closed computing

system, autonomic networking addresses the far
more heterogeneous and complex network envi-
ronment. Challenges and difficulties in this area
include the following:

• designing an acceptable performant net-
working architecture to enable the imple-
mentation of desirable autonomic behaviors;

• designing novel protocols and exposing
exploitable or extendable features from
existing protocols to support the hando-
ver control, heterogeneity, and cooperation
among and within the autonomic networks;
and

• designing innovative mechanisms, algo-
rithms, and paradigms to handle differ-
ent network scenarios such as load bal-
ance, information dissemination, and fault
detection/removal.

Many projects, such as the European Union’s
Information Society Technologies (EU-IST)
Sixth Framework Program (FP6) Future and
Emerging Technologies (FET) exist that design

34	 ComputingEdge� July 2018

Standards

50 www.computer.org/internet/ IEEE INTERNET COMPUTING

levels together forms a Hierarchi-
cal Control Loop (HCL) architecture
in the GANA’s Decision Plane. Poli-
cies from superior HCL components
are defined as Autonomic Behaviors
(ABs).

GANA has been applied in
one EFIPSANS’ testbed (shown in
Figure 2), which improves users’
quality-of-service (QoS) experi-
ence and reduces manual interven-
tion by automatically adapting to
the changing context in IPv6 net-
works. A set of QoS-related DEs are
introduced into both edge and core
nodes of the traditional Diffserv
architecture. Each DE contains a
GANA-based control loop and these
control loops cooperate with each

other. The network-level DE (known
as the QoS manager) distributes
ABs to enable the network to self-
optimize its resources and self-adapt
to the dynamic network context. The
node-level DE receives and parses
these ABs, then distributes them to
the function-level DE. The protocol-
level DE follows instructions from
the function-level DE and imple-
ments specific QoS functions (packet
marking, queue management, queue
scheduling, and so on).

ANIMA Model
According to RFC 75751 and ANIMA’s
draft,5 many concepts of the ANIMA
model are inspired from GANA.
As Figure 3 shows, an autonomic

network is composed of autonomic
nodes (ANs), and this network might
contain more than one autonomic
domain. Each AN provides a com-
mon set of capabilities across the
network called Autonomic Network-
ing Infrastructure (ANI). Autonomic
Service Agents (ASAs), which serve
as atomic entities of autonomic func-
tions (AFs), are instantiated on ANs.
AF refers to the function or the fea-
ture that can rely on self-knowledge,
discovery, and intent to acquire the
information needed for operations
without external configuration. ANs
and ASAs communicate with each
other using a Generic Autonomic
Networking Protocol (GRASP) in
the Autonomic Control Plane (ACP)
created by the ANI. With the help
of these communications, AFs run
logically over ASAs and span across
the network to achieve network-wide
autonomicity.

AN consists of three layers: ASAs,
ANI (ASA uses services created
by ANI), and basic operating sys-
tem functions. Each AN is assigned
a globally unique domain certifi-
cate (a logical device identifier, or
LDevID),6 which cryptographically
asserts its membership in the auto-
nomic domain, and maintains an
adjacency table (containing node-
ID, IP address, domain, certificate,
and so on) used for recording the
ACP neighbor. Each autonomic node
maintains a state machine (with three
states: factory default, enrolled, and
in ACP), which indicates that auto-
nomic networking applies for the
whole life cycle of an AN.

ANI is the basis for AFs and is
generic to support different ASAs.
ANI is composed of three main
components: Bootstrapping Remote
Secure Key Infrastructures (BRSKI),7
ACP,6 and GRASP.8

BRSKI. This is an automatic
approach to bootstrap a remote
secure key infrastructure using
vendor-installed X.509 certificates

Figure 2. An application scenario of the autonomic architecture for quality of
service. (CR stands for core router; ER stands for edge router; MR stands for
the router that supports for mobile access; QoS stands for quality of service;
and R stands for router.)

Network
operator

Onix System
QoS manager

Provisioning operations such
as autonomic behaviors

ER1

CR3 CR1

MR1
AN: Autonomic node

MR2

R2

R1

R3

ER2

Edge node main DE

Mon
_DE

Mon
_DE

Data
plane

Queue
schedule

Queue
schedule

Packet
marking

Service
aware

Queue
manage

Queue
manage

Core node main DEFunction-level QoS management DE

Function-level QoS management DESA_DE PM_DE QM_DE

QM_DE

QS_DE

QS_DE

CR4

Events or monitoring
information related to QoS

www.computer.org/computingedge� 35

Autonomic Networking: Architecture Design and Standardization

SEPTEMBER/OCTOBER 2017 51

Autonomic
service agent

Autonomic
service agent

Autonomic networking infrastructure

Autonomic networking infrastructure

ACP

BRSKI

Addressing

Secure
tunnel

API level

Routing

...

Discovery

Negotiation

Synchronization

Flood

Basic operating system functions
Autonomic domain 2

Autonomic functions

Autonomic
function1

Autonomic
function 2

Intent
Autonomic
function 3

Autonomic
function 4

Autonomic domain 1

Autonomic
node

Autonomic
node

Autonomic
node

Autonomic
node

ASA 4ASA 1

ASA 1

ASA 1ASA 2ASA 3

ASA 3 ASA 1

ASA 1ASA 2

Autonomic
node

GRASP

Autonomic
service agent

Figure 3. Overview of the (a) Autonomic Networking Architecture (ANA) proposed by Autonomic Networking Integrated
Model and Approach (ANIMA), and (b) the structure of an autonomic node. (ASA stands for Autonomic Service Agent;
ACP stands for Autonomic Control Plane; BRSKI stands for Bootstrapping Remote Secure Key Infrastructures; and
GRASP stands for Generic Autonomic Networking Protocol.)

and a vendor authorized service
online or offline. BRSKI secures the
initial connection (the distribution
of the key materials or the secure
certificate in most cases) between
the device without configuration
(Pledge) and the device that’s already
in a specific network domain (Reg-
istrar). The Pledge actions derive
from a cryptographically protected
message delivered through the
Registrar.

ACP. This is a self-managing and
configuration-independent control
plane for AF communication. The
interaction within the ACP uses IPv6
link local addressing by default. ACP
provides management protocols with
the functionality of the Virtual-out-
of-Band channel, which allows con-
nectivity to all devices regardless of
the Data Plane’s configuration and
the global routing table. ACP also
guarantees connectivity for con-
trol protocols against the temporal
faulty and the transitional event
of the Data Plane. Secure tunnels,
which are placed into the autonomic

node’s virtual routing and forward-
ing instance, are established and
create an overlay network after the
construction of the ACP. Within
the ACP, the loopback interface of
each ASA has a routable address
using the IPv6 unique local address
(ULA) addressing scheme, while the
other interfaces exclusively use the
IPv6 link local for autonomic func-
tions. Any autonomic device within
one ACP has the same /48 prefix.
The routing protocol resided in the
ACP is independent of the data layer
and is mainly used for the distribu-
tion of ULA addresses. The ACP’s
routing protocol is RPL (the Routing
Protocol for Low-Power and Lossy
Networks, defined in RFC 6550).

GRASP. This protocol will be dis-
cussed further in the following
chapter.

Standardization Activities
on Autonomic Networking
ETSI NTECH/AFI has been working
on the application of a GANA refer-
ence model onto concrete use cases

and setting up an ETSI Specialist
Task Force (STF). This STF has pro-
posed two technical reports on using
GANA to introduce autonomicity
into the 3GPP Core and Backhaul,
Ad Hoc, and Mesh network archi-
tectures.4,9 Similarly, IETF ANIMA
has been working on further refine-
ment and specification of the main
building blocks, signaling protocols,
use cases, and other aspects in auto-
nomic networking. In ANIMA’s char-
ter, its current target is described
as developing one or more protocol
specifications.

GRASP
The GRASP generic autonomic
signaling protocol for autonomic
networking runs in a secure and
strongly authenticated communi-
cation environment (generally the
ACP) by default. Because of a lack
of built-in security features, GRASP
uses existing mechanisms (such as
TLS) to guarantee secure communi-
cation in the absence of ACP.

GRASP provides four mecha-
nisms: discovery, negotiation,

Standards

50 www.computer.org/internet/ IEEE INTERNET COMPUTING

levels together forms a Hierarchi-
cal Control Loop (HCL) architecture
in the GANA’s Decision Plane. Poli-
cies from superior HCL components
are defined as Autonomic Behaviors
(ABs).

GANA has been applied in
one EFIPSANS’ testbed (shown in
Figure 2), which improves users’
quality-of-service (QoS) experi-
ence and reduces manual interven-
tion by automatically adapting to
the changing context in IPv6 net-
works. A set of QoS-related DEs are
introduced into both edge and core
nodes of the traditional Diffserv
architecture. Each DE contains a
GANA-based control loop and these
control loops cooperate with each

other. The network-level DE (known
as the QoS manager) distributes
ABs to enable the network to self-
optimize its resources and self-adapt
to the dynamic network context. The
node-level DE receives and parses
these ABs, then distributes them to
the function-level DE. The protocol-
level DE follows instructions from
the function-level DE and imple-
ments specific QoS functions (packet
marking, queue management, queue
scheduling, and so on).

ANIMA Model
According to RFC 75751 and ANIMA’s
draft,5 many concepts of the ANIMA
model are inspired from GANA.
As Figure 3 shows, an autonomic

network is composed of autonomic
nodes (ANs), and this network might
contain more than one autonomic
domain. Each AN provides a com-
mon set of capabilities across the
network called Autonomic Network-
ing Infrastructure (ANI). Autonomic
Service Agents (ASAs), which serve
as atomic entities of autonomic func-
tions (AFs), are instantiated on ANs.
AF refers to the function or the fea-
ture that can rely on self-knowledge,
discovery, and intent to acquire the
information needed for operations
without external configuration. ANs
and ASAs communicate with each
other using a Generic Autonomic
Networking Protocol (GRASP) in
the Autonomic Control Plane (ACP)
created by the ANI. With the help
of these communications, AFs run
logically over ASAs and span across
the network to achieve network-wide
autonomicity.

AN consists of three layers: ASAs,
ANI (ASA uses services created
by ANI), and basic operating sys-
tem functions. Each AN is assigned
a globally unique domain certifi-
cate (a logical device identifier, or
LDevID),6 which cryptographically
asserts its membership in the auto-
nomic domain, and maintains an
adjacency table (containing node-
ID, IP address, domain, certificate,
and so on) used for recording the
ACP neighbor. Each autonomic node
maintains a state machine (with three
states: factory default, enrolled, and
in ACP), which indicates that auto-
nomic networking applies for the
whole life cycle of an AN.

ANI is the basis for AFs and is
generic to support different ASAs.
ANI is composed of three main
components: Bootstrapping Remote
Secure Key Infrastructures (BRSKI),7
ACP,6 and GRASP.8

BRSKI. This is an automatic
approach to bootstrap a remote
secure key infrastructure using
vendor-installed X.509 certificates

Figure 2. An application scenario of the autonomic architecture for quality of
service. (CR stands for core router; ER stands for edge router; MR stands for
the router that supports for mobile access; QoS stands for quality of service;
and R stands for router.)

Network
operator

Onix System
QoS manager

Provisioning operations such
as autonomic behaviors

ER1

CR3 CR1

MR1
AN: Autonomic node

MR2

R2

R1

R3

ER2

Edge node main DE

Mon
_DE

Mon
_DE

Data
plane

Queue
schedule

Queue
schedule

Packet
marking

Service
aware

Queue
manage

Queue
manage

Core node main DEFunction-level QoS management DE

Function-level QoS management DESA_DE PM_DE QM_DE

QM_DE

QS_DE

QS_DE

CR4

Events or monitoring
information related to QoS

36	 ComputingEdge� July 2018

Standards

52 www.computer.org/internet/ IEEE INTERNET COMPUTING

synchronization, and flooding. These
mechanisms can be combined to
provide a rapid mode of operation
when necessary.8 For instance, a ses-
sion could be ended immediately
with an ending message rather than
a response message when the coun-
terpart is satisfied with the requested
configuration.

Use Case
Features (for example, always-on,
data plane independent connectiv-
ity, and so on) and main components
(such as GRASP) of ANIMA’s model
apply to various scenarios such as
call home, network provisioning,
and trouble shooting.

ANIMA proposes a use case
(shown in Figure 4) to relieve the
human administration of the IPv6
prefix management at the edge of
large-scale ISP networks.10 A C11

implementation developed by the
Beijing University of Posts and
Telecommunications and a Python
implementation developed by the
University of Auckland8,11 are pro-
vided as the demo for this scenario.

In the traditional IP Radio
Access Network (RAN) solution, a
new base station (eNodeB and so
on) requests the Cell-Site Gateway
(CSG) for a match configuration
when it’s online. After the request
is received, CSG will ask the Aggre-
gation-Site Gateway (ASG) to estab-
lish a pseudo wire (PW) for main-
tenance. Then, eNodeB will request
the Dynamic Host Configuration
Protocol (DHCP) server for its own
IP. CSGs and ASGs (even Radio
Network Controller Site Gateways,
or RSGs) will serve as the DHCP
relay at this stage. The eNodeB will
use its IP to communicate with the

eNode B

eNode B

eNode B

CSG 1

CSG 2

CSG 3

CSG 4

ASG 2

• ASG: Aggregation-Site Gateway
• CSG: Cell-Site Gateway
• RSG: RNC Site Gateway

1.1 GRASP discovery msg

2.1 GRASP discovery msg

GRASP
discovery

2.3 Discovery response msg

2.4 Discovery response msg

3.1 GRASP request negotiation msg

3.2 GRASP negotiation msg

Opt: prefix manager
objective

Opt: prefix manager
objective

Opt: locator

Opt: locator, divert

Opt: prefix manager objective

Opt: prefix manager objective

Opt:

GRASP negotiation end msg

: CSG1 broadcasts a discovery message with a pre�x manager objective option for
extra address space (1.1, 1.2).

: CSG2 and CSG3 (without pre�x manager ASA) recieve the discovery message
and divert CSG1 to ASG1 and ASG2 (with pre�x manager ASA) by responding
with a discovery response message with a divert option (2.1, 2.2) and cache the
information of the responder. ASG1 has extra address space and responds a
discovery response message (2.3, 2.4) with locator options to indicate itself as a
discovery responder. We assume that ASG2 has no extra address space, thus it
will discard the discovery message silently.

: CSG1 negotiates with ASG1 about the details of the requesting pre�x (pre�x
length and so on).

ASG 1 RSG 1

RSG 2
Network

management
system

DHCP server

1.2

1.1

2.2

2.1

2.3

2.4

3.2

3.1

No cached information, then
repeat the discovery procedure

Cached the response, then
repeat it to CSG 1

The negotiation process is repeated until
both the requesting and the requested

device reach a consensus on the
negotiated content

CSG 1 CSG 2 ASG 1

GRASP
negotiation

Figure 4. Autonomic IPv6 Prefix Management in Large-scale ISP Networks. The message chart of this scenario is
presented on the right. (DHCP stands for Dynamic Host Configuration Protocol.)

network management system to
obtain all the IPs for services. Sim-
ilarly, eNodeB will establish a PW
for service between the CSG and
the ASG. Finally, this new eNodeB
comes into service.

In this scenario, prefix manage-
ment still depends on human plan-
ning even with DHCPv6-PD because
of the lack of information about the
appropriate prefix length that each
router should request. In addition,
once the PW for service between
the CSG and the ASG is estab-
lished, the endpoints’ requirement
of timely resource assignments is
incompatible to existing protocols.
In this case, ANIMA’s model is pro-
posed as a solution to achieve the
self-configuration — for instance,
to enable dynamic IPv6 address
space management in large-scale
networks.

www.computer.org/computingedge� 37

Autonomic Networking: Architecture Design and Standardization

SEPTEMBER/OCTOBER 2017 53

C ompared to the ideal autonomic
network, several improvements

are needed in the current network,
such as more coordination among
devices or network partitions; reus-
able common components; a secure
control plane; less configuration;
forecasting and closed-loop dry runs
for configuration changes; portable
network knowledge among network
devices; and more efforts on data
analysis. As IETF further deepens
the standardization, the develop-
ment of autonomic networking also
will be propelled forward. We hope
the work and efforts from ETSI, IETF,
and others will provide substantial
experiences as valuable input to
ongoing research on this topic.

Acknowledgments
This work is supported in part by the National

High Technology Research and Develop-

ment Program (863 Program) of China

(2015AA016101 and 2015AA015601) and

the National Natural Science Foundation of

China (61402436)

References
 1. M. Behringer et al., Autonomic Network-

ing: Definitions and Design Goals, Inter-

net Research Task Force RFC 7575, 2015;

www.rfc-editor.org/info/rfc7575.

 2. P. Horn, Autonomic Computing: IBM’s

Perspective on the State of Information

Technology, IBM TJ Watson Labs, 2001.

 3. M. Berringer et al., eds., A Reference

Model for Autonomic Networking, IETF

Internet draft,14 Mar. 2017; https://tools

.ietf.org/html/draf t-behr inger-anima

-reference-model-03.

 4. M. Berringer et al., eds., An Autonomic

Control Plane, IETF Internet draft, 28

Mar. 2017; https://datatracker.ietf.org/doc

/draf t-ietf-anima-autonomic-control

-plane.

 5. C. Bormann et al., A Generic Autonomic

Signaling Protocol (GRASP), IETF Inter-

net draft, 1 Apr. 2017; https://datatracker

.ietf.org/doc/draft-ietf-anima-grasp.

 6. M. Pritikin et al., Bootstrapping Remote

Secure Key Infrastructures (BRSKI), IETF

Internet draft, 14 Mar. 2017; https://

datatracker.ietf.org/doc/draft-ietf-anima

-bootstrapping-keyinfra.

 7. S. Jiang et al. Autonomic IPv6 Edge

Prefix Management in Large-Scale Net-

works, IETF Internet draft, 11 Mar. 2017;

https://datatracker.ietf.org/doc/draft-ietf

-anima-pref ix-management/?include

_text51.

 8. L. Ciavaglia, Autonomic Network Engi-

neering for the Self-Managing Future

Internet (AFI); Generic Autonomic Net-

work Architecture (An Architectural

Reference Model for Autonomic Net-

working, Cognitive Networking and Self-

Management), v. 1.1.1, specification by Euro-

pean Telecommunications Standards Inst.,

2013, pp. 802167; www.etsi.org/deliver

/etsi_gs/AFI/001_099/002/01.01.01_60

/gs_afi002v010101p.pdf.

 9. Network Technologies (NTECH); Auto-

nomic Network Engineering for the

Self-Managing Future Internet (AFI);

Autonomicity and Self-Management in

the Backhaul and Core Network Parts of

the 3GPP Architecture, tech. report 103

404 (V1.1.1), ETSI, 2016; www.etsi.org

/deliver/etsi_tr/103400_103499/103404

/01.01.01_60/tr_103404v010101p.pdf.

 10. B. Carpenter et al., Generic Autonomic

Signaling Protocol Application Program

Interface (GRASP API), IETF Internet

draft, 17 Feb. 2017; https://datatracker.

ie t f .org /doc/d ra f t-l iu-an ima-grasp

-api/?include_text51.

 11. Network Technologies (NTECH); Auto-

nomic Network Engineering for the

Self-Managing Future Internet (AFI);

Autonomicity and Self-Management in

Wireless Ad-Hoc/Mesh Networks: Auto-

nomicity-Enabled Ad-Hoc and Mesh

Network Architectures, tech. report 103

495 (V1.1.1), ETSI, 2017; www.etsi.org

/deliver/etsi_tr/103400_103499/103495

/01.01.01_60/tr_103495v010101p.pdf.

Xinjian Long is a PhD candidate in the State

Key Laboratory of Networking and

Switching Technology (SKL-NST) at the

Beijing University of Posts and Tele-

communications (BUPT). His research

interests include artificial intelligence

in networks and software-defined net-

working technologies. Long has a BS in

telecommunications engineering with

management from BUPT. Contact him at

barbiel_origin@bupt.edu.cn.

Xiangyang Gong is a full professor in the

SKL-NST at BUPT. His research interests

include IP quality of service (QoS), video

communications, novel network archi-

tectures, and mobile Internet. Gong has a

PhD in telecommunication and informa-

tion system from BUPT. Contact him at

xygong@bupt.edu.cn.

Xirong Que is an associate professor in the

SKL-NST at BUPT. Her research interests

include innovation application, next-

generation network architectures, and

mobile Internet. Que has an ME in com-

puter applications from BUPT. Contact

her at rongqx@bupt.edu.cn.

Wendong Wang is a full professor in the

SKL-NST at BUPT. His research interests

include future Internet architectures,

software-defined networking technolo-

gies, and network QoS. Wang has an ME

in computer science from BUPT. He’s the

corresponding author of this article. Con-

tact him at wdwang@bupt.edu.cn.

Bing Liu is a research engineer at Huawei

Technologies. His research interests

include autonomic networking. Liu has a

PhD in signal and information processing

from BUPT. Contact him at leo.liubing@

huawei.com.

Sheng Jiang is a senior principle engineer at

Huawei Technologies. His research inter-

ests include autonomic networking and

artificial intelligence in networks. Jiang

has a PhD in computer science from Uni-

versity College London. Contact him at

jiangsheng@huawei.com.

Ning Kong is a researcher at the China Inter-

net Network Information Center. His

research interests include Internet nam-

ing and addressing technologies as well

as the Internet of Things. Kong has a PhD

in computer software and theory from the

University of Chinese Academy of Sci-

ences. Contact him at nkong@cnnic.cn.

Standards

52 www.computer.org/internet/ IEEE INTERNET COMPUTING

synchronization, and flooding. These
mechanisms can be combined to
provide a rapid mode of operation
when necessary.8 For instance, a ses-
sion could be ended immediately
with an ending message rather than
a response message when the coun-
terpart is satisfied with the requested
configuration.

Use Case
Features (for example, always-on,
data plane independent connectiv-
ity, and so on) and main components
(such as GRASP) of ANIMA’s model
apply to various scenarios such as
call home, network provisioning,
and trouble shooting.

ANIMA proposes a use case
(shown in Figure 4) to relieve the
human administration of the IPv6
prefix management at the edge of
large-scale ISP networks.10 A C11

implementation developed by the
Beijing University of Posts and
Telecommunications and a Python
implementation developed by the
University of Auckland8,11 are pro-
vided as the demo for this scenario.

In the traditional IP Radio
Access Network (RAN) solution, a
new base station (eNodeB and so
on) requests the Cell-Site Gateway
(CSG) for a match configuration
when it’s online. After the request
is received, CSG will ask the Aggre-
gation-Site Gateway (ASG) to estab-
lish a pseudo wire (PW) for main-
tenance. Then, eNodeB will request
the Dynamic Host Configuration
Protocol (DHCP) server for its own
IP. CSGs and ASGs (even Radio
Network Controller Site Gateways,
or RSGs) will serve as the DHCP
relay at this stage. The eNodeB will
use its IP to communicate with the

eNode B

eNode B

eNode B

CSG 1

CSG 2

CSG 3

CSG 4

ASG 2

• ASG: Aggregation-Site Gateway
• CSG: Cell-Site Gateway
• RSG: RNC Site Gateway

1.1 GRASP discovery msg

2.1 GRASP discovery msg

GRASP
discovery

2.3 Discovery response msg

2.4 Discovery response msg

3.1 GRASP request negotiation msg

3.2 GRASP negotiation msg

Opt: prefix manager
objective

Opt: prefix manager
objective

Opt: locator

Opt: locator, divert

Opt: prefix manager objective

Opt: prefix manager objective

Opt:

GRASP negotiation end msg

: CSG1 broadcasts a discovery message with a pre�x manager objective option for
extra address space (1.1, 1.2).

: CSG2 and CSG3 (without pre�x manager ASA) recieve the discovery message
and divert CSG1 to ASG1 and ASG2 (with pre�x manager ASA) by responding
with a discovery response message with a divert option (2.1, 2.2) and cache the
information of the responder. ASG1 has extra address space and responds a
discovery response message (2.3, 2.4) with locator options to indicate itself as a
discovery responder. We assume that ASG2 has no extra address space, thus it
will discard the discovery message silently.

: CSG1 negotiates with ASG1 about the details of the requesting pre�x (pre�x
length and so on).

ASG 1 RSG 1

RSG 2
Network

management
system

DHCP server

1.2

1.1

2.2

2.1

2.3

2.4

3.2

3.1

No cached information, then
repeat the discovery procedure

Cached the response, then
repeat it to CSG 1

The negotiation process is repeated until
both the requesting and the requested

device reach a consensus on the
negotiated content

CSG 1 CSG 2 ASG 1

GRASP
negotiation

Figure 4. Autonomic IPv6 Prefix Management in Large-scale ISP Networks. The message chart of this scenario is
presented on the right. (DHCP stands for Dynamic Host Configuration Protocol.)

network management system to
obtain all the IPs for services. Sim-
ilarly, eNodeB will establish a PW
for service between the CSG and
the ASG. Finally, this new eNodeB
comes into service.

In this scenario, prefix manage-
ment still depends on human plan-
ning even with DHCPv6-PD because
of the lack of information about the
appropriate prefix length that each
router should request. In addition,
once the PW for service between
the CSG and the ASG is estab-
lished, the endpoints’ requirement
of timely resource assignments is
incompatible to existing protocols.
In this case, ANIMA’s model is pro-
posed as a solution to achieve the
self-configuration — for instance,
to enable dynamic IPv6 address
space management in large-scale
networks.

This article originally appeared in
IEEE Internet Computing, vol. 27, no. 5, 2017.

38	 July 2018	 Published by the IEEE Computer Society � 2469-7087/18/$33.00 © 2018 IEEE

JPEG at 25: Still Going Strong

P hotographic images are taken for granted

today as part of the multimedia mix of

information we use daily to communicate in

both our personal and professional lives. An

enabling technology for this is the photo-

graphic coding technique, universally known

as JPEG, which is celebrating its 25th anniver-

sary of receiving approval as standard this year.

Where did JPEG come from, and what are the

fundamental components that have given it

longevity?

The Origins
The image compression technique used for

applications as diverse as photography, web-

pages, medical imaging, and public records is

JPEG, named after the original International

Standards Organization (ISO)/International

Telegraph and Telephone Consultative Com-

mittee (CCITT) Joint Photographic Experts

Group, established in November of 1986. The

group developed the technique in the late

1980s and produced the international standard,

formally known as Int’l Telecommunication

Union (ITU)-T T.81, in the early 1990s.1

How It All Began

In the early 1980s, some of the leading telecom-

munication service providers around the world

were launching videotex services: information

services delivered over analog telephone lines

to a terminal based on a television set or to an

inexpensive dedicated terminal (see Figure 1).

Such services were also delivered to PCs once

they became available. The technology was

primitive by today’s standards. The data rates

available using a modem over a copper tele-

phone pair were generally 1,200 (download)/75

(upload) bits/s, although up to 4,800 bits/s was

possible.

Later in the decade, the 64 kbits/s integrated

services digital network (ISDN) was introduced,

andmany assumed it would eventually become

widely available. At that time, Cathode Ray

Tube displays were capable of resolutions up to

640 � 400 pixels, and advanced televisions had

text and graphics display controllers for tele-

text. Some even had microprocessors, but RAM

was expensive and was typically limited to a

few kilobytes. Following the Commodore Pet

and Apple 2 computers, the IBM PC was

launched. These early machines had displays

supporting graphics and color, but they didn’t

have photographic display capability.

With the advent of ISDN, telecommunica-

tion companies’ research centers looked for

ways to improve their videotex service offerings

by enhancing display capabilities, using com-

puter (geometric) graphic and photographic

image coding techniques. However, photo-

graphic images contain a lot of information.

The ITU-R Digital Studio Television Picture

Standard recommendation2 was taken as refer-

ence for this early work on picture coding. A

full-frame 601 picture has 720 � 575 pixels, as

illustrated in Figure 2. It uses a color encoding

system known as YCbCr 4:2:2. The chromi-

nance components, Cr and Cb, have half the

resolution of the luminance component Y. All

components are represented by 8 bits, giving an

average of 16 bits per pixel, requiring 828

kbytes per frame for storage and transmission.

Even at the ISDN rate of 64 kbits/s, it would

takemore than 104 s to transmit a full frame.

A great impetus to the international devel-

opment and evaluation of picture coding tech-

niques was the formation of the European

Strategic Program for Research in Information

Technology (ESPRIT) project 563—Photovideo-

tex Image Compression Algorithms (PICA) in

1985 (Table 1 lists this and other historicalmile-

stones).3,4 The consortium of seven partners

had experience in telecommunications, broad-

casting, and computing (see Table 2). The core

team included picture coding experts from

leading European telecommunication laborato-

ries already involved in international standards

activity (see Figure 3). Throughout the PICA

GrahamHudson,
Alain L�eger,
Birger Niss,

and Istv�an Sebesty�en
Original JPEG

Development Team
Members

,

Touradj Ebrahimi
Ecole Polytechnique F�ed�erale de LausanneIndustryandStandards

1070-986X/17/$33.00�c 2017 IEEE Published by the IEEE Computer Society96

www.computer.org/computingedge� 39

project’s lifetime (1985–1988), key contribu-

tions were made to the JPEG technical kernel

and to application requirements and the evalu-

ation of coding techniques. In particular, the

project developed and evaluated 10 techniques,

and two were submitted for standardization

(and one of those two was the central part of

the future JPEG standard).

Evolving International Standards

Videotex standards were being worked on by

international standards bodies responsible for

text, graphic, and image coding at CCITT, CEPT

(Conf�erence Europ�eenne des Administrations

des Postes et T�el�ecommunications), and ISO.

Digital image coding work had typically focused

on facsimile, slow-scan television, and telecon-

ferencing. The early work on photographic

coding initiated by three European telecommu-

nication labs—British Telecom Labs, CSELT

(Centro Studi e Laboratori Telecomunicazioni),

and CCETT (Centre Commun d’�etudes de

T�el�evision et T�el�ecommunications)—was pre-

sented to the international standards bodies,

first in 1982 at CEPT, and later to ISO and

CCITT.

In 1982, ISO TC97/SC2 established Working

Group 8, chaired by Zak Muscati (Department

of Communications of Canada) and later by

Hiroshi Yasuda (Nippon Telegraph and Tele-

phone, Japan). The working group was estab-

lished to define the principles of graphic and

photographic coding. Early in 1986, during a

meeting in Boston, the scope and progress of

the ESPRIT project was presented to this group.

In CCITT Study Group VIII (SGVIII), a special

rapporteur’s group was formed in 1985 to inves-

tigate new forms of image communication. The

group was initially chaired byManfredWorlitzer

(Deutsche Bundespost, Germany). Then, in

1987, Istv�an Sebesty�en (Siemens, Germany)

took over. The group analyzed the different cod-

ing types (text, graphic, geometric, incremental,

and photographic) required for different tele-

communication services (facsimile, teletext,

videotex, and teleconferencing), and they for-

mulated requirements for common components

for image communications.

Realizing the importance of picture coding

for future multimedia communication services,

in July 1986, the leaders of the CCITT and ISO

groups proposed that the ISO Photographic

Expert Group (PEG) should become a joint

working group (JPEG) to select a high-perform-

ance photographic image compression techni-

que, with CCITT setting the service

requirements and ISO providing the coding

expertise. The first meeting of JPEG under the

chairmanship of Graham Hudson (British Tele-

com, UK) was in November 1986 in Parsippany,

New Jersey. Following the agreement of a tech-

nique for standardization in 1988, GregWallace

(Digital Equipment Corporation, US) took over

the chair until the JPEG standard was approved

first by the ITU and later by the Joint Technical

Committee 1 of ISO and IEC.

TheWish List

The JPEG working group aimed to find and

standardize a compression technique that

could be used for a broad range of continuous

tone images for applications, ranging from

(a) (b)

Figure 1. Information services delivered over an

analog telephone line to an inexpensive

dedicated terminal: (a) the Minitel terminal in

France (source: CCETT; used with permission) and

(b) a photovideotex page on the Prestel terminal in

the UK (source British Telecom; used with

permission).

720 Pixels

Cr

Y

Cb

Y

Cr 8 bits

Cb 8 bits

Y 8 bitsY 8 bits

575 Lines

Figure 2. The Digital Studio Television Standard.

It uses 8 bits for the luminance component but

half the resolution for the two 8-bit chrominance

components, giving an average of 16 bits per pixel,

requiring 828 kbytes per frame to store and

transmit data.

A
p
ril–Ju

n
e
2
0
1
7

97

JPEG at 25: Still Going Strong

P hotographic images are taken for granted

today as part of the multimedia mix of

information we use daily to communicate in

both our personal and professional lives. An

enabling technology for this is the photo-

graphic coding technique, universally known

as JPEG, which is celebrating its 25th anniver-

sary of receiving approval as standard this year.

Where did JPEG come from, and what are the

fundamental components that have given it

longevity?

The Origins
The image compression technique used for

applications as diverse as photography, web-

pages, medical imaging, and public records is

JPEG, named after the original International

Standards Organization (ISO)/International

Telegraph and Telephone Consultative Com-

mittee (CCITT) Joint Photographic Experts

Group, established in November of 1986. The

group developed the technique in the late

1980s and produced the international standard,

formally known as Int’l Telecommunication

Union (ITU)-T T.81, in the early 1990s.1

How It All Began

In the early 1980s, some of the leading telecom-

munication service providers around the world

were launching videotex services: information

services delivered over analog telephone lines

to a terminal based on a television set or to an

inexpensive dedicated terminal (see Figure 1).

Such services were also delivered to PCs once

they became available. The technology was

primitive by today’s standards. The data rates

available using a modem over a copper tele-

phone pair were generally 1,200 (download)/75

(upload) bits/s, although up to 4,800 bits/s was

possible.

Later in the decade, the 64 kbits/s integrated

services digital network (ISDN) was introduced,

andmany assumed it would eventually become

widely available. At that time, Cathode Ray

Tube displays were capable of resolutions up to

640 � 400 pixels, and advanced televisions had

text and graphics display controllers for tele-

text. Some even had microprocessors, but RAM

was expensive and was typically limited to a

few kilobytes. Following the Commodore Pet

and Apple 2 computers, the IBM PC was

launched. These early machines had displays

supporting graphics and color, but they didn’t

have photographic display capability.

With the advent of ISDN, telecommunica-

tion companies’ research centers looked for

ways to improve their videotex service offerings

by enhancing display capabilities, using com-

puter (geometric) graphic and photographic

image coding techniques. However, photo-

graphic images contain a lot of information.

The ITU-R Digital Studio Television Picture

Standard recommendation2 was taken as refer-

ence for this early work on picture coding. A

full-frame 601 picture has 720 � 575 pixels, as

illustrated in Figure 2. It uses a color encoding

system known as YCbCr 4:2:2. The chromi-

nance components, Cr and Cb, have half the

resolution of the luminance component Y. All

components are represented by 8 bits, giving an

average of 16 bits per pixel, requiring 828

kbytes per frame for storage and transmission.

Even at the ISDN rate of 64 kbits/s, it would

takemore than 104 s to transmit a full frame.

A great impetus to the international devel-

opment and evaluation of picture coding tech-

niques was the formation of the European

Strategic Program for Research in Information

Technology (ESPRIT) project 563—Photovideo-

tex Image Compression Algorithms (PICA) in

1985 (Table 1 lists this and other historicalmile-

stones).3,4 The consortium of seven partners

had experience in telecommunications, broad-

casting, and computing (see Table 2). The core

team included picture coding experts from

leading European telecommunication laborato-

ries already involved in international standards

activity (see Figure 3). Throughout the PICA

GrahamHudson,
Alain L�eger,
Birger Niss,

and Istv�an Sebesty�en
Original JPEG

Development Team
Members

,

Touradj Ebrahimi
Ecole Polytechnique F�ed�erale de LausanneIndustryandStandards

1070-986X/17/$33.00�c 2017 IEEE Published by the IEEE Computer Society96

40	 ComputingEdge� July 2018

photovideotex (the web had not yet been

invented) to press photos and medical images.5

They set about defining a set of mandatory

requirements. An essential feature was the abil-

ity to adjust the compression factor (the reduc-

tion in data) versus the final quality to match

the needs of the application.

With restricted data-rate transmission chan-

nels, the group considered it mandatory to pro-

vide a progressive picture build-up.6 The idea

was to quickly deliver a crude (lower resolu-

tion/quality) image for instant display, which

could subsequently be improved in several

stages until the highest quality was achieved.

This facility also provides pictures of different

resolution and accuracy to be held on a data-

base and delivered to match the capability of

the output device. Sequential build-up, where a

full-quality image is built up, from top to bot-

tom and line by line, was also needed for rapid

picture file transfer.

The JPEG working group also realized that

some applications, such as medical imaging

and document archiving, required a final image

to be identical to the original. This is referred to

as lossless, reversible, or exact coding.

Many of the applications (such as audio-

graphic conferencing and remote screen shar-

ing) presenting an image to a display required

the decompression in real time. This was a

challenge with the technology of the time

(that is, with IBM’s PC Advanced Technology

(AT) machine, with a 20MHz 386 processor or

dedicated digital signal processors7), so the

three algorithms in competition after the

January 1987 Copenhagen meeting were

required to show demonstrations of the real-

time decoding.

Choosing the Algorithm

The JPEG working group set out to define a pro-

cedure to select a coding technique. For a tech-

nique to be considered as a candidate for

standardization, the proposer had to provide a

full technical description and a set of agreed

test pictures encoded/decoded at different com-

pression factors. At the first JPEG meeting (Par-

sippany, Nov. 1986), 14 different techniques

were presented, but only 12 proposals were offi-

cially registered in Darmstadt in March 1987, at

the second JPEG meeting. The candidates

included examples ofmost compression techni-

ques known to the scientific community at the

time, such as predictive coding, block coding,

Table 2. The seven partners of the European

Strategic Program for Research in Information

Technology (ESPRIT) project 563—Photovideotex

Image Compression Algorithms (PICA).

Company Country

BT Labs UK

IBA UK

KTAS Denmark

DNL Netherlands

CSELT Italy

CCETT—FT Labs France

Nixdorf Germany

Table 1. Historical milestones.

Date/location Milestones

1982 Introduce image coding for videotex at CEPT (Conf�erence Europ�eenne des Administrations des Postes et

T�el�ecommunications)

June 1985, Ipswich Launch the European Photovideotex Image Compression Algorithms (PICA) project

November 1986, Parsippany ISO and CCITT form Joint Photographic Experts Group (JPEG)

March 1987, Darmstadt Register coding schemes and define requirements and selection process

June 1987, Copenhagen Hold initial selection meeting—10 techniques reduced to 3

October 1987, Washington Revise specification and hold first selection process

December 1987, Winchester Revise specification and hold second (final) selection process

January 1988, Copenhagen Hold final selection meeting—adaptive cosine transform (ADCT) technique chosen

June 1989, Rennes Refine and consolidate the ADCT technique by the JPEG international team

1989 Write the JPEG draft international standard with ITU/ISO/IEC common template

1992 Approve JPEG as Recommendation ITU-T T.81

1993 Approve JPEG as ISO/IEC 10918-1 Standard

IE
E
E
M
u
lt
iM

e
d
ia

Industry and Standards

98

www.computer.org/computingedge� 41

cosine transform, vector quantization, and

combinations of these. The key requirements

for candidates for the final selection process

were as follows:

� provide and present full documentation of

the technique including functionality,

principles, and implementation;

� prepare and conduct subjective testing of

new nonstandard test images for bit rates

(0.08 bit/pixel, 0.25 bit/pixel, 0.75 bit/

pixel, and 2.25 bit/pixel);

� demonstrate a prototype 64 kbits/s real-time

decoder with progressive build-up; and

� submit executable code.

Three techniques stood out at the initial selec-

tion process at KTAS in Copenhagen in June

1987—the European (PICA) adaptive cosine

transform (ADCT) technique, the US (IBM) dif-

ferential pulse code modulation (DPCM)-based

technique, and the Japanese block truncation

coding scheme. These three techniques were

used as the basis for further development by

international teams led by Europe (Alain L�eger),

US (Joan Mitchell), and Japan (Yasuhiro Yama-

zaki) respectively, for the final selection meeting

held at the Copenhagen Telecom Company

(KTAS) Laboratories in January 1988.

For the final selection, the test requirements

were increased. Subjective testing took place

at 2.25 bits per pixel, 0.75 bpp, 0.25 bpp, and

0.08 bpp using five new test images for which

the candidate algorithms were not trained (see

Figure 4). A double stimulus technique was

employed, whereby images were compared

with the original.8

It was evident from the subjective testing

(see Figure 5) that the ADCT technique pro-

duced higher-quality results for all of the com-

pression stages. Excellent results were achieved

at 0.75 bpp (20:1 compression) and results

indistinguishable from the original were pro-

duced at 2.25 bpp. ADCT real-time decompres-

sion was demonstrated in software on an IBM

PC AT with a 20MHz 386 processor. The group

unanimously agreed to develop a standard

based on this ADCT technique.9,10

Key Technical Choices
Here we explain the key technical decisions the

JPEG group made during the building process

of the JPEG compression scheme and format.

The Transform

The scientific literature shows the optimum

transform is the Karhunen-Loeve Transform

(KLT). The KLT analyzes the image and extracts

the principle components, thus compacting

the energy very efficiently. However, it’s com-

putationally intensive—far more than realisti-

cally achievable in the late 1980s. Furthermore,

the calculated transformation kernel depends

on the image content, so it must be calculated

for each image.

Various other simpler transforms were exam-

ined during the development of JPEG: high and

low correlation transforms, where all opera-

tions can be done using only shifts and adds,

and the discrete cosine transform (DCT), which

can be calculated using very fast algorithms

(like the Fast Fourier Transform). DCT was by

far the best of the second-best options, with an

energy compaction approaching the KLT. It was

therefore decided to continue with DCT as the

transform of choice.

Discrete wavelet transform (DWT) appeared

later (with the orthogonal version appearing in

1987), which avoids blocking artifacts, but it

wasn’t feasible with the hardware of the day

and with the speed requirements (real-time

decoding at ISDN 64 kilobits per second).

JPEG2000 was standardized later (after 2000)

with DWT, but it was never intended to replace

ADCT in JPEG (1992).

Block Size

From an energy compaction point of view, the

optimum block size should be one where the

pixels in an average block are correlated. Using

too small a block size misses important pixel-

to-pixel correlation. Using too large a block size

Figure 3. The JPEG core team included picture coding experts from all over the

world, including leading worldwide telecommunication and IT laboratories

already involved in international standards activity.

A
p
ril–Ju

n
e
2
0
1
7

99

photovideotex (the web had not yet been

invented) to press photos and medical images.5

They set about defining a set of mandatory

requirements. An essential feature was the abil-

ity to adjust the compression factor (the reduc-

tion in data) versus the final quality to match

the needs of the application.

With restricted data-rate transmission chan-

nels, the group considered it mandatory to pro-

vide a progressive picture build-up.6 The idea

was to quickly deliver a crude (lower resolu-

tion/quality) image for instant display, which

could subsequently be improved in several

stages until the highest quality was achieved.

This facility also provides pictures of different

resolution and accuracy to be held on a data-

base and delivered to match the capability of

the output device. Sequential build-up, where a

full-quality image is built up, from top to bot-

tom and line by line, was also needed for rapid

picture file transfer.

The JPEG working group also realized that

some applications, such as medical imaging

and document archiving, required a final image

to be identical to the original. This is referred to

as lossless, reversible, or exact coding.

Many of the applications (such as audio-

graphic conferencing and remote screen shar-

ing) presenting an image to a display required

the decompression in real time. This was a

challenge with the technology of the time

(that is, with IBM’s PC Advanced Technology

(AT) machine, with a 20MHz 386 processor or

dedicated digital signal processors7), so the

three algorithms in competition after the

January 1987 Copenhagen meeting were

required to show demonstrations of the real-

time decoding.

Choosing the Algorithm

The JPEG working group set out to define a pro-

cedure to select a coding technique. For a tech-

nique to be considered as a candidate for

standardization, the proposer had to provide a

full technical description and a set of agreed

test pictures encoded/decoded at different com-

pression factors. At the first JPEG meeting (Par-

sippany, Nov. 1986), 14 different techniques

were presented, but only 12 proposals were offi-

cially registered in Darmstadt in March 1987, at

the second JPEG meeting. The candidates

included examples ofmost compression techni-

ques known to the scientific community at the

time, such as predictive coding, block coding,

Table 2. The seven partners of the European

Strategic Program for Research in Information

Technology (ESPRIT) project 563—Photovideotex

Image Compression Algorithms (PICA).

Company Country

BT Labs UK

IBA UK

KTAS Denmark

DNL Netherlands

CSELT Italy

CCETT—FT Labs France

Nixdorf Germany

Table 1. Historical milestones.

Date/location Milestones

1982 Introduce image coding for videotex at CEPT (Conf�erence Europ�eenne des Administrations des Postes et

T�el�ecommunications)

June 1985, Ipswich Launch the European Photovideotex Image Compression Algorithms (PICA) project

November 1986, Parsippany ISO and CCITT form Joint Photographic Experts Group (JPEG)

March 1987, Darmstadt Register coding schemes and define requirements and selection process

June 1987, Copenhagen Hold initial selection meeting—10 techniques reduced to 3

October 1987, Washington Revise specification and hold first selection process

December 1987, Winchester Revise specification and hold second (final) selection process

January 1988, Copenhagen Hold final selection meeting—adaptive cosine transform (ADCT) technique chosen

June 1989, Rennes Refine and consolidate the ADCT technique by the JPEG international team

1989 Write the JPEG draft international standard with ITU/ISO/IEC common template

1992 Approve JPEG as Recommendation ITU-T T.81

1993 Approve JPEG as ISO/IEC 10918-1 Standard

IE
E
E
M
u
lt
iM

e
d
ia

Industry and Standards

98

42	 ComputingEdge� July 2018

tries to take advantage of a correlation that

might not exist.

Working with the typical image sizes of the

late 1980s (720 � 575 pixels), 4 � 4 blocks were

too small to catch important correlations, and

16 � 16 blocks often contained uncorrelated

pixels and increased calculation complexity for

no gain. So out came the 8� 8 block!

Today, with 4K and 8K and higher display

resolutions, larger block sizes (16 � 16 or even

higher) are an obvious consideration.

Psychovisual Quantization

Having performed the discrete cosine transform

on an 8 � 8 block, 64 pixel values have been

transformed into 64 amplitudes of 2D cosine

functions of various frequencies. The eye, how-

ever, is not equally sensitive to all frequencies.

Low-frequency variation within the 8 � 8 block

is much more visible than high-frequency varia-

tion. This is where quantization comes into play:

low frequencies are represented with higher

accuracy than high frequencies without jeopard-

izing the visual content of the blocks.11 This is

generally what provides lossy compression.

During the development of JPEG, research-

ers considered (and experimented with) the

quantization of the less visible dark areas.

Blocks with low DC values (dark blocks) could

be quantized more harshly than blocks with

medium or high DC values. Experiments

showed, however, a prominent problem with

such content-dependent strategies: adjacent

blocks treated with different quantization

matrices are visually different and thus add

heavily to the annoying blocking artifacts that

are seen at high compression without really

improving the compression rate. In JPEG, all

blocks in a given channel are quantized with

the same quantization values.

Modeling and Encoding

Transformation and quantization together pro-

duce datasets with a statistical structure that

lends itself to complementary compression.

The process to ensure this is themodeling (opti-

mal-source symbols selection) and encoding of

the selected symbols. Given that the majority

of the quantized amplitudes are either zero or

very small, and that most of the nonzero or

larger quantized amplitudes pertain to the low

frequencies, KTAS (primarily Jørgen Vaaben)

devised an ingenious way to encode these using

value pairs. The first value in the pair tells how

many zero amplitudes to skip before the next

nonzero amplitude (run length), and the sec-

ond value in the pair tells how many bits are

necessary to represent that amplitude. The

value pair is then followed by the amplitude.

When there are nomore nonzero amplitudes in

the block, an end-of-block code is emitted.

The statistical distribution of these value

pairs is heavily skewed toward small values of

both runs and number of bits, so the 2D

Figure 4. Some JPEG test pictures (source: JPEG; used with permission). These are examples of images

used for the first and final selection process for the coding technique. (Note that these are the reproduced

images. Credits for the original versions are (from left to right, top row) IBA, SMPTE, and CCETT; (bottom

row) Roy Vivian, EBU, and Roy Vivian/IBA).

IE
E
E
M
u
lt
iM

e
d
ia

Industry and Standards

100

www.computer.org/computingedge� 43

Huffman coding was the obvious choice. With

this encoding scheme (lossless entropy coding),

significantly higher compression rates were

obtained in JPEG.

Baseline and Profiles

In the early stages of drafting the standard

(1988), the group proposed producing a kernel

that fulfills most of the expected requirements

of videotex and envisioned image telecommu-

nication services. The results of the final selec-

tion formed the basic kernel (baseline) JPEG

system. Most significantly, a royalty-free base-

line system was created. On this foundation,

other profiles were added like layers of an onion

for specific applications and for options such as

arithmetic coding. Such options might have

been royalty bearing. The baseline coding

scheme structure is robust and has a very low

algorithmic complexity, making it easy to

understand and implement. The baseline is suf-

ficient for the many applications and is heavily

used.

This patent strategy for the JPEG baseline

and options proved to be most successful in

supporting market penetration of the JPEG

algorithm. On this basis, the Independent JPEG

Group (an informal open source group under

the leadership of Tom Lane) released an open

source JPEG code in October 1991 (based on

the draft JPEG standard). At that time, the Inter-

net and the web badly needed a still-picture

compression standard.

Later (2000–2002), it turned out that legally,

the ITU, ISO, or IEC patent policy did not per-

mit a royalty-free (RF) baseline with royalty-

bearing (RB) options. Only Fair, Reasonable,

and Non-Discriminatory (FRAND) terms were

permitted for the whole standard. This has led

to some patent litigation cases, which dimin-

ished between 2005 and 2006 when all the

argued patents were running out. However, for

future similar standardization projects, ideally,

a Standards Developing Organization with a

mixed RF and FRAND patent policy would be

required.

DC-AC Prediction

A vital part of image compression is de-correla-

tion. DCT is close to optimal for de-correlating

the values within the 8 � 8 pixel blocks. In the

standard, the DC value of the preceding block is

used as the predictor for the current block. Dur-

ing the development of JPEG, a scheme for a

more advanced inter-block de-correlation,

using AC prediction, was considered. Based on

the DC values of neighboring blocks, AC values

in the center block can be predicted. However,

JPEG has not integrated this scheme due to

increased complexity. Instead, it was suggested

as a decoder-only option.

Lossless

Most early JPEG research efforts went into the

development of the higher compression (lossy)

mode. However, lossless coding was essential to

certain applications, as was a JPEG requirement.

Even though integer DCT would have pro-

vided the first choice, straightforward differen-

tial pulse code modulation (DPCM) was chosen

by JPEG for the lossless mode. DPCM is applied

in the pixel domain, where the value of a given

pixel in a given color component is represented

by the difference between the true value and a

predicted value, and then compressed with a

straightforward entropy coding technique

(Huffman). Seven DPCM predictors are defined

in the standard.

Excellent

Good

Fair

Poor

Bad

Q
ua

lit
y

0.08 0.25 0.75 2.25
Compression (bit/pixel)

key to abbreviations

ADCT: Adaptive Discrete Cosine Transform

ABAC: Adaptive Binary Arithmetic Coding

BSPC: Block Separated Progressive Coding

ADCT
BSPC
ABAC

(a) (b)

Figure 5. Subjective testing: (a) results from the test, conducted at (b) KTAS in Copenhagen (source Joint Photographic Experts

Group; used with permission).

A
p
ril–Ju

n
e
2
0
1
7

101

tries to take advantage of a correlation that

might not exist.

Working with the typical image sizes of the

late 1980s (720 � 575 pixels), 4 � 4 blocks were

too small to catch important correlations, and

16 � 16 blocks often contained uncorrelated

pixels and increased calculation complexity for

no gain. So out came the 8� 8 block!

Today, with 4K and 8K and higher display

resolutions, larger block sizes (16 � 16 or even

higher) are an obvious consideration.

Psychovisual Quantization

Having performed the discrete cosine transform

on an 8 � 8 block, 64 pixel values have been

transformed into 64 amplitudes of 2D cosine

functions of various frequencies. The eye, how-

ever, is not equally sensitive to all frequencies.

Low-frequency variation within the 8 � 8 block

is much more visible than high-frequency varia-

tion. This is where quantization comes into play:

low frequencies are represented with higher

accuracy than high frequencies without jeopard-

izing the visual content of the blocks.11 This is

generally what provides lossy compression.

During the development of JPEG, research-

ers considered (and experimented with) the

quantization of the less visible dark areas.

Blocks with low DC values (dark blocks) could

be quantized more harshly than blocks with

medium or high DC values. Experiments

showed, however, a prominent problem with

such content-dependent strategies: adjacent

blocks treated with different quantization

matrices are visually different and thus add

heavily to the annoying blocking artifacts that

are seen at high compression without really

improving the compression rate. In JPEG, all

blocks in a given channel are quantized with

the same quantization values.

Modeling and Encoding

Transformation and quantization together pro-

duce datasets with a statistical structure that

lends itself to complementary compression.

The process to ensure this is themodeling (opti-

mal-source symbols selection) and encoding of

the selected symbols. Given that the majority

of the quantized amplitudes are either zero or

very small, and that most of the nonzero or

larger quantized amplitudes pertain to the low

frequencies, KTAS (primarily Jørgen Vaaben)

devised an ingenious way to encode these using

value pairs. The first value in the pair tells how

many zero amplitudes to skip before the next

nonzero amplitude (run length), and the sec-

ond value in the pair tells how many bits are

necessary to represent that amplitude. The

value pair is then followed by the amplitude.

When there are nomore nonzero amplitudes in

the block, an end-of-block code is emitted.

The statistical distribution of these value

pairs is heavily skewed toward small values of

both runs and number of bits, so the 2D

Figure 4. Some JPEG test pictures (source: JPEG; used with permission). These are examples of images

used for the first and final selection process for the coding technique. (Note that these are the reproduced

images. Credits for the original versions are (from left to right, top row) IBA, SMPTE, and CCETT; (bottom

row) Roy Vivian, EBU, and Roy Vivian/IBA).

IE
E
E
M
u
lt
iM

e
d
ia

Industry and Standards

100

44	 ComputingEdge� July 2018

With real-life images, the compression can

vary substantially (25–30 percent) with the

choice of predictor. Typical compression factors

between 2 and 3 can be obtained, depending

on the complexity of the image and, notably,

the pixel noise in the image. JPEG LS, based on

the LOCO-I algorithm, was standardized with

Huffman coding in 1999 and with extensions

such as arithmetic coding in 2003. JPEG LS can

typically give compression factors better than

four.

At its creation, the goal of JPEG was a com-

mon compression scheme able to handle bi-

level, halftone, and natural images. However,

following the subjective testing of images, it was

agreed that bi-level and halftone images would

need a specific compression scheme. That gave

birth to the Joint Bi-level Image Group (JBIG) in

1988, which resulted in ITU-T Recommenda-

tions ITU-T.82 (1993) and T.88 (2000). Later, the

JPEG2000 project also fulfilled this “original”

(but given up) JPEG requirement.

T he ISO/IEC-ITU JPEG image compression

standard is celebrating the 25th anniver-

sary of the approval of the JPEG standard (see

Figure 6). JPEGwas the first international stand-

ard adopted for compression of natural tone

digital images.12 It is remarkable, even to those

involved in its creation, that the compression

technique has shown such resilience, providing

the foundation for future extensions of JPEG,

including JPEG2000, JPEG XT, and High Effi-

ciency Video Coding (HEVC)-intra. MM

References

1. ITU-T T.81 Information Technology—Digital Com-

pression and Coding of Continuous-Tone Still

Images—Requirements and Guidelines, Int’l Tele-

communication Union, 1992.

2. ITU-R Recommendation 601: Encoding Parameters of

Digital Television for Studios, Int’l Telecommunica-

tion Union, Feb. 1982.

3. G. Hudson et al., “PICA-Photovideotex Image

Compression Algorithms,” ESPRIT ‘86: Results and

Achievements, Elsevier, 1987, pp. 413–421.

4. A. L�eger, H. Poulsen, andM. Guglielmo, “Still Pic-

ture Compression Algorithm for Photovideotex on

ISDN,” Proc. 5th Ann. Esprit Conf. (ETW), 1988, pp.

1101–1108.

5. A. L�eger, T. Omachi, and G. Wallace, “The JPEG Still

Picture Compression Algorithm and Its

Applications,” SPIE J. Optical Engineering, vol. 30,

no. 7, 1991, pp. 947–954.

6. W.B. Pennebaker, J. Vaaben, and J. Mitchell,

“Progressive Coding in the Emerging JPEG Com-

pression Standard,” Proc. Picture Coding Symp.

(PCS), Mar. 1990, pp. 26–28.

7. A. L�eger, “Implementation of Fast Discrete Cosine

Transform for Full Color Videotex Services and Ter-

minals,” Proc. IEEE Global Telecommunications Conf.

(Globecom), 1984, pp. 333–337.

8. H. Poulsen, R. Vivian, and G. Wallace, “Subjective

Testing Results for Still Picture Compression Algo-

rithms for International Standardization,” Proc. IEEE

Global Telecommunications Conf. (Globecom),

1988, pp. 1022–1027.

9. G. Hudson, H. Yasuda, and I. Sebestyen, “The Inter-

national Standardization of a Still Picture Compres-

sion Technique,” Proc. IEEE Global Telecommunications

Conf. (Globecom), 1988, pp. 1016–1021.

10. A. L�eger, J. Mitchell, and Y. Yamazaki, “Still Picture

Compression Algorithms Evaluated for

JPEG
Figure 6. The JPEG logo. The ISO/IEC-ITU JPEG

image compression standard is celebrating its 25th

anniversary of approval. Throughout the years,

other milestones of the standard have been

celebrated at various events, such as at EPFL,

Lausanne, Switzerland in 2013 and at a town-hall

of Cesson-S�evign�e, Rennes, France in 2014 and at

the cultural center of Saint-Malo, France and at

the University of Leipzig, Germany in 2016.

IE
E
E
M
u
lt
iM

e
d
ia

Industry and Standards

102

www.computer.org/computingedge 45

International Standardization,” Proc. IEEE Global

Telecommunications Conf. (Globecom), 1988, pp.

1028–1032.

11. H. Lohscheller, “A Subjectively Adapted Image

Communication System,” IEEE Trans. Communica-

tions, Dec. 1984, pp. 1316–1322.

12. W.B. Pennebaker and J.L. Mitchell, JPEG Still Image

Data Compression Standard, Van Nostrand Rein-

hold Publishers, 1992.

Graham Hudson was a multimedia development

manager at British Telecom Research Laboratories

when working on the JPEG standard. He was the first

chairman of ISO JPEG and chairman of the European

PICA project. Contact him at graham.p.hudson@

gmail.com.

Alain L�eger was head of the research lab in knowl-

edge processing at France Telecom Labs (Direction of

Research), but when working on the JPEG standard,

he was head of the videotex image coding group. He

was chairman of the ISO JPEG-ADCT group. Contact

him at a-t.leger@wanadoo.fr.

Birger Nisswas a systems developer of the Copenha-

gen Telephone Company when working on the JPEG

standard. He was a member of the image coding/

interpretation ISO JPEG-ADCT group in 1985. Con-

tact him at birger.niss@mail.tele.dk.

Istv�an Sebesty�en is the Secretary General of Ecma

International. When working on the JPEG standard,

he was the chief engineer at Siemens and the CCITT

special rapporteur for New Image Communication.

Contact him at istvan@sebestyen.de.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

103

With real-life images, the compression can

vary substantially (25–30 percent) with the

choice of predictor. Typical compression factors

between 2 and 3 can be obtained, depending

on the complexity of the image and, notably,

the pixel noise in the image. JPEG LS, based on

the LOCO-I algorithm, was standardized with

Huffman coding in 1999 and with extensions

such as arithmetic coding in 2003. JPEG LS can

typically give compression factors better than

four.

At its creation, the goal of JPEG was a com-

mon compression scheme able to handle bi-

level, halftone, and natural images. However,

following the subjective testing of images, it was

agreed that bi-level and halftone images would

need a specific compression scheme. That gave

birth to the Joint Bi-level Image Group (JBIG) in

1988, which resulted in ITU-T Recommenda-

tions ITU-T.82 (1993) and T.88 (2000). Later, the

JPEG2000 project also fulfilled this “original”

(but given up) JPEG requirement.

T he ISO/IEC-ITU JPEG image compression

standard is celebrating the 25th anniver-

sary of the approval of the JPEG standard (see

Figure 6). JPEGwas the first international stand-

ard adopted for compression of natural tone

digital images.12 It is remarkable, even to those

involved in its creation, that the compression

technique has shown such resilience, providing

the foundation for future extensions of JPEG,

including JPEG2000, JPEG XT, and High Effi-

ciency Video Coding (HEVC)-intra. MM

References

1. ITU-T T.81 Information Technology—Digital Com-

pression and Coding of Continuous-Tone Still

Images—Requirements and Guidelines, Int’l Tele-

communication Union, 1992.

2. ITU-R Recommendation 601: Encoding Parameters of

Digital Television for Studios, Int’l Telecommunica-

tion Union, Feb. 1982.

3. G. Hudson et al., “PICA-Photovideotex Image

Compression Algorithms,” ESPRIT ‘86: Results and

Achievements, Elsevier, 1987, pp. 413–421.

4. A. L�eger, H. Poulsen, andM. Guglielmo, “Still Pic-

ture Compression Algorithm for Photovideotex on

ISDN,” Proc. 5th Ann. Esprit Conf. (ETW), 1988, pp.

1101–1108.

5. A. L�eger, T. Omachi, and G. Wallace, “The JPEG Still

Picture Compression Algorithm and Its

Applications,” SPIE J. Optical Engineering, vol. 30,

no. 7, 1991, pp. 947–954.

6. W.B. Pennebaker, J. Vaaben, and J. Mitchell,

“Progressive Coding in the Emerging JPEG Com-

pression Standard,” Proc. Picture Coding Symp.

(PCS), Mar. 1990, pp. 26–28.

7. A. L�eger, “Implementation of Fast Discrete Cosine

Transform for Full Color Videotex Services and Ter-

minals,” Proc. IEEE Global Telecommunications Conf.

(Globecom), 1984, pp. 333–337.

8. H. Poulsen, R. Vivian, and G. Wallace, “Subjective

Testing Results for Still Picture Compression Algo-

rithms for International Standardization,” Proc. IEEE

Global Telecommunications Conf. (Globecom),

1988, pp. 1022–1027.

9. G. Hudson, H. Yasuda, and I. Sebestyen, “The Inter-

national Standardization of a Still Picture Compres-

sion Technique,” Proc. IEEE Global Telecommunications

Conf. (Globecom), 1988, pp. 1016–1021.

10. A. L�eger, J. Mitchell, and Y. Yamazaki, “Still Picture

Compression Algorithms Evaluated for

JPEG
Figure 6. The JPEG logo. The ISO/IEC-ITU JPEG

image compression standard is celebrating its 25th

anniversary of approval. Throughout the years,

other milestones of the standard have been

celebrated at various events, such as at EPFL,

Lausanne, Switzerland in 2013 and at a town-hall

of Cesson-S�evign�e, Rennes, France in 2014 and at

the cultural center of Saint-Malo, France and at

the University of Leipzig, Germany in 2016.

IE
E
E
M
u
lt
iM

e
d
ia

Industry and Standards

102

This article originally appeared in
IEEE MultiMedia, vol. 24, no. 2, 2017.

www.computer.org/silverbullet
*Also available at iTunes

This series of in-depth interviews with
prominent security experts features Gary

McGraw as anchor. IEEE Security & Privacy
magazine publishes excerpts of the 20-minute

conversations in article format each issue.

46	 July 2018	 Published by the IEEE Computer Society � 2469-7087/18/$33.00 © 2018 IEEE

DEPARTMENT: ART ON GRAPHICS

Sally Weber:
Making Art from Light

We caught up with Sally Weber (www.sallyweber.com)

after having been transfixed by experiencing her latest

work, inFLUX, in her exhibition, ELEMENTAL (a current

installation) at the Butler Institute of American Art, in

Youngstown, OH. As an artist who has worked with light

as her medium for a distinguished career, we believe

Sally has much of value to share with our readership.

Weber is a holographic artist who completed her graduate
work at the Center for Advanced Visual Studies at MIT under
Otto Piene. While at MIT, she was able to explore holography
and produce several solar installations through the facilities of

the Regional Laser Center in the George R. Harrison Spectroscopy Laboratory.

Like graphic artists and data visualization specialists who use models of light and color to pre-
sent content for screen and paper, Sally works to communicate with light but through media such
as holography and laser traces. She works to find a resonance in the materials and representa-
tions in order to provide unique experiences of light to elicit insight regarding phenomena not
easily experienced at human spatial and temporal scale. Her iterative process includes exploring
tangible materials to find an art piece composition that can transfix an audience—an experiential
state of being that results in lingering long enough to appreciate the art while wondering about
the underlying communication.

Upon experiencing her art, one can think through the aspects of her pieces that make the experi-
ence of them so compelling and what technologies might possibly need to provide as affordances
to make such experiences transfixing using virtual reality technologies.

Through her environmental art Sally took on the challenge of how to bring art into a larger envi-
ronment, by working from the outside in. She studied the nature of a place and then made art that
was site specific—back when public art was just starting to come to light. Seattle was one of the
first locations that had a public art program and by the time she moved out to California, she was
right in the middle of it. In doing larger architectural scale work—using sunlight to illuminate
holographic art installations—she didn’t think of a hologram as a little thing. She thought of
landscape and the idea of bringing light and color into a building so that it became a time
piece—a way to capture an experience of something that was always in motion. Examples of
earlier work include Lightscape (Figure 1) and FocalPoint (Figure 2)

Sally Weber
Resonance Studio

Bruce Campbell
Rhode Island School of
Design

Francesca Samsel
University of Texas—
Austin

Editors:
Bruce Campbell
bcampbel01@risd.edu

Francesca Samsel
figs@cat.utexas.edu

8
IEEE Computer Graphics and Applications Published by the IEEE Computer Society

0272-1716/18/$33.00 USD ©2018 IEEEMay/June 2018

www.computer.org/computingedge� 47

 COMPUTER GRAPHICS & APPLICATIONS

Figure 1. LightScape,is a solar installation using holographic optical elements and acrylic. Sited on
Kresge Lawn, Massachusetts Institute of Technology, Cambridge, Massachusetts. Designed to
reflect the sun’s arc across the site and Kresge Auditorium’s curved roof. The holographic elements
float above the ground and alter in color with the sun’s angle and the viewer’s distance from the
installation. Photo credit: Sally Weber. (Used with permission.)

Figure 2. FocalPoint.is a solar water fountain, 12’x 4’x 8’, with holographic optical elements, glass
pipes, steel, and a water system. Designed to focus sunlight into 3 lines of light that scan across
the floor and walls in response to the sun’s motion. Installed here at the Boston Museum of Science
overlooking the Charles River, Boston, Massachusetts. Photo credit: Sally Weber. (Used with
permission.)

9May/June 2018 www.computer.org/cga

DEPARTMENT: ART ON GRAPHICS

Sally Weber:
Making Art from Light

We caught up with Sally Weber (www.sallyweber.com)

after having been transfixed by experiencing her latest

work, inFLUX, in her exhibition, ELEMENTAL (a current

installation) at the Butler Institute of American Art, in

Youngstown, OH. As an artist who has worked with light

as her medium for a distinguished career, we believe

Sally has much of value to share with our readership.

Weber is a holographic artist who completed her graduate
work at the Center for Advanced Visual Studies at MIT under
Otto Piene. While at MIT, she was able to explore holography
and produce several solar installations through the facilities of

the Regional Laser Center in the George R. Harrison Spectroscopy Laboratory.

Like graphic artists and data visualization specialists who use models of light and color to pre-
sent content for screen and paper, Sally works to communicate with light but through media such
as holography and laser traces. She works to find a resonance in the materials and representa-
tions in order to provide unique experiences of light to elicit insight regarding phenomena not
easily experienced at human spatial and temporal scale. Her iterative process includes exploring
tangible materials to find an art piece composition that can transfix an audience—an experiential
state of being that results in lingering long enough to appreciate the art while wondering about
the underlying communication.

Upon experiencing her art, one can think through the aspects of her pieces that make the experi-
ence of them so compelling and what technologies might possibly need to provide as affordances
to make such experiences transfixing using virtual reality technologies.

Through her environmental art Sally took on the challenge of how to bring art into a larger envi-
ronment, by working from the outside in. She studied the nature of a place and then made art that
was site specific—back when public art was just starting to come to light. Seattle was one of the
first locations that had a public art program and by the time she moved out to California, she was
right in the middle of it. In doing larger architectural scale work—using sunlight to illuminate
holographic art installations—she didn’t think of a hologram as a little thing. She thought of
landscape and the idea of bringing light and color into a building so that it became a time
piece—a way to capture an experience of something that was always in motion. Examples of
earlier work include Lightscape (Figure 1) and FocalPoint (Figure 2)

Sally Weber
Resonance Studio

Bruce Campbell
Rhode Island School of
Design

Francesca Samsel
University of Texas—
Austin

Editors:
Bruce Campbell
bcampbel01@risd.edu

Francesca Samsel
figs@cat.utexas.edu

8
IEEE Computer Graphics and Applications Published by the IEEE Computer Society

0272-1716/18/$33.00 USD ©2018 IEEEMay/June 2018

48	 ComputingEdge� July 2018

 THEME ARTICLE: ART ON GRAPHICS

Weber’s work is complex and wide ranging in media and content. Focusing on her current exhi-
bition inFLUX below, Weber speaks of the work, the process and underlying principles in her
own words:

“The themes within inFLUX have been percolating for over many years. I had worked with la-
sers and optics for quite a number of years and knew it wasn’t a holography piece but one that
could get to the jitter—the inherent jitter that is in everything. Jitter, like that in Brownian mo-
tion, is the constant movement of molecules. If you have a glass of water and you pour some
milk into it, over time the whole glass of water will become milky. All the molecules bouncing
off of each other are actually doing the mixing. For me it doesn’t matter what scale—it’s a meta-
phor in that everything is jittering. You can see images from the Large Hadron particle collider at
CERN and that’s what they are trying to capture—the motion that is a result of collisions which
defines what particles exist and what’s going on with them as a result of the collisions.

“Light as photons, the particles of light, are always in motion. People generally tend to think of
light as just all pervasive, but it is dimensional. Light is always moving and we go through this
matrix of movement—affecting not just us but everything. InFlux became a metaphor for that
kind of movement—not as a rhythmic kind of pendulum motion, like to and fro, that we think of
as its resonance dependent on the length of the pendulum, but the movement of objects that in-
teract with each other—a physical representation of what is happening all the time, independent
of scale. We ‘jitter’ or interact with each other in some of the same ways when we meet up with
someone, have a conversation, walk by them, etc. The way we move, it’s a dance, a synchronici-
ty that takes place all the time, unconsciously, and is something that has been roaming around in
my head for a long time.

“I knew I wanted the light to be the functional aspect of inFLUX, the active ingredient doing the
drawing and leaving a trace of its path, so that people could find a place where they were just
caught—and in art when you get caught there can be a moment of silence. You are caught where
you aren’t thinking and you aren’t just emoting, but are transfixed as if through to the solar plex-
us. As an artist, occasionally, I hope to catch someone before words. In that place there is experi-
ence. I aim for that ongoing sense of wonder when one has to stop long enough to see and feel.
Otherwise it goes right past you or you go right past it.

“There is a concept in Buddhism that is not a process of cause and effect but when everything
arises at once. If one thinks of nature as cyclic, instead of linear, with everything arising at once,
you can’t pull it apart. So if instead of looking at the separate parts, which science has done to be
able to consider parts separately in order to delve into it, you are looking at the whole matrix of
the web and the structure in between it as if you are looking at the negative space. I think I have
been fascinated by what keeps things together and how one part impacts the other. So to make
things that naturally have limits, you try to expand those limits so that people’s experiences take
them to someplace else.

“You can take the experience of a total eclipse and try to capture it through pictures but that isn’t
going to do it. It’s because the whole world that you know changes in a matter of moments when
you finally get to totality.

“A few years ago an astronomer said to me, ‘for a photon it is always present.’ I loved that. You
take that sentence in and you think you get it, and you don’t quite get it at the same time. That
paradox is exactly that place requiring lingering—the tension between the known and the un-
known is right there. For me, light is everything from looking at a star and being right there
while at the same time you are right here, as well as thinking of light not just as a surface, or a
totality of reflected surfaces, but as the stuff out here, in the air between us. From the start holog-
raphy offers a unique medium: to be able to bring light to a conceptual mode where you think of
it as an object but it is not, it is really a field of light. It’s taking the physicality away but giving
light a sense of boundary and that sense of boundary makes us ask what else is just a boundary
that we consider solid? And thinking about the permeability between these media and how deli-
cate that is or how robust.

10May/June 2018 www.computer.org/cga

www.computer.org/computingedge� 49

 COMPUTER GRAPHICS & APPLICATIONS

Figure 3. Laser pendulums draw in the sand leaving a trace of their path as color patterns building
up over time as InFLUX, a two-part laser pendulum installation, in ELEMENTAL, solo exhibition at
the Butler Institute of American Art, Youngstown, Ohio. Photo credit: Sally Weber. (Used with
permission.)

“If you can do something that just shakes people a little bit it’s as if they are looking at a new
vista. They suddenly ask “oh my gosh, what is that?” In the case of leaving traces of light in the
sand and people not knowing why, it allows that expansion.

“Little kids are great—they will kneel down spontaneously to look closely. Adults get caught up
in the motion and look up to see what is causing it while the kids don’t bother—because they are
watching the motion and color and hearing the sounds whirling with the twisting and twisting of
the actions that you can’t take all in at once. And yet it’s leaving a trace by drawing so you can
see it over time—building up layers of these colored patterns that gradually fade and that are
illuminated by the lasers and then glow.

“Physically the exhibit consists of white sand down on the floor and the pendulums above it (see
Figure 3). I watch where they go and adjust things accordingly and I put what I call magic dust,
that is basically different pigments, down on the sand so you can see glow in different colors.
Depending on when the lights are low or are off, you really see how over time they build up.
They remind me of nebula because of the same kind of looking into the depths of something and
trying to ascertain from photographs what is in front and what is in back—the brightness is obvi-
ously on top here but there is this complexity underneath. That complexity is all that the light
drew over time. It is gradually fading or being reinforced continually.”

11May/June 2018 www.computer.org/cga

 THEME ARTICLE: ART ON GRAPHICS

Weber’s work is complex and wide ranging in media and content. Focusing on her current exhi-
bition inFLUX below, Weber speaks of the work, the process and underlying principles in her
own words:

“The themes within inFLUX have been percolating for over many years. I had worked with la-
sers and optics for quite a number of years and knew it wasn’t a holography piece but one that
could get to the jitter—the inherent jitter that is in everything. Jitter, like that in Brownian mo-
tion, is the constant movement of molecules. If you have a glass of water and you pour some
milk into it, over time the whole glass of water will become milky. All the molecules bouncing
off of each other are actually doing the mixing. For me it doesn’t matter what scale—it’s a meta-
phor in that everything is jittering. You can see images from the Large Hadron particle collider at
CERN and that’s what they are trying to capture—the motion that is a result of collisions which
defines what particles exist and what’s going on with them as a result of the collisions.

“Light as photons, the particles of light, are always in motion. People generally tend to think of
light as just all pervasive, but it is dimensional. Light is always moving and we go through this
matrix of movement—affecting not just us but everything. InFlux became a metaphor for that
kind of movement—not as a rhythmic kind of pendulum motion, like to and fro, that we think of
as its resonance dependent on the length of the pendulum, but the movement of objects that in-
teract with each other—a physical representation of what is happening all the time, independent
of scale. We ‘jitter’ or interact with each other in some of the same ways when we meet up with
someone, have a conversation, walk by them, etc. The way we move, it’s a dance, a synchronici-
ty that takes place all the time, unconsciously, and is something that has been roaming around in
my head for a long time.

“I knew I wanted the light to be the functional aspect of inFLUX, the active ingredient doing the
drawing and leaving a trace of its path, so that people could find a place where they were just
caught—and in art when you get caught there can be a moment of silence. You are caught where
you aren’t thinking and you aren’t just emoting, but are transfixed as if through to the solar plex-
us. As an artist, occasionally, I hope to catch someone before words. In that place there is experi-
ence. I aim for that ongoing sense of wonder when one has to stop long enough to see and feel.
Otherwise it goes right past you or you go right past it.

“There is a concept in Buddhism that is not a process of cause and effect but when everything
arises at once. If one thinks of nature as cyclic, instead of linear, with everything arising at once,
you can’t pull it apart. So if instead of looking at the separate parts, which science has done to be
able to consider parts separately in order to delve into it, you are looking at the whole matrix of
the web and the structure in between it as if you are looking at the negative space. I think I have
been fascinated by what keeps things together and how one part impacts the other. So to make
things that naturally have limits, you try to expand those limits so that people’s experiences take
them to someplace else.

“You can take the experience of a total eclipse and try to capture it through pictures but that isn’t
going to do it. It’s because the whole world that you know changes in a matter of moments when
you finally get to totality.

“A few years ago an astronomer said to me, ‘for a photon it is always present.’ I loved that. You
take that sentence in and you think you get it, and you don’t quite get it at the same time. That
paradox is exactly that place requiring lingering—the tension between the known and the un-
known is right there. For me, light is everything from looking at a star and being right there
while at the same time you are right here, as well as thinking of light not just as a surface, or a
totality of reflected surfaces, but as the stuff out here, in the air between us. From the start holog-
raphy offers a unique medium: to be able to bring light to a conceptual mode where you think of
it as an object but it is not, it is really a field of light. It’s taking the physicality away but giving
light a sense of boundary and that sense of boundary makes us ask what else is just a boundary
that we consider solid? And thinking about the permeability between these media and how deli-
cate that is or how robust.

10May/June 2018 www.computer.org/cga

50	 ComputingEdge� July 2018

 THEME ARTICLE: ART ON GRAPHICS

Figure 4. A series of stills from inFLUX at the Butler Institute of American Art. Each laser draws in
the sand by illuminating pigments, which glow in response to the light. Over time, patterns emerge
and fade to be redrawn as the pendulums interact, collide, twist and pass by each other. Photo
credit: Sally Weber. (Used with permission.)

Selected frames of inFLUX in action are shown in Figure 4. A video of inFLUX can be found at
(URL). For further information about Sally Weber and her work, see www.sallyweber.com.

ABOUT THE AUTHORS
Sally Weber is an independent artist at Resonance Studio. She received her Master’s de-
gree in Art & Visual Studies from Massachusetts Institute of Technology. Her research in-
terests include applying holography and laser technologies in support of art and
visualization. Contact her at info@sallyweber.com.

Bruce Campbell is faculty within the Web Design + Interaction department at the Rhode
Island School of Design. He received his PhD in systems engineering from the University
of Washington after a professional period pursuing information science application to com-
plex information spaces. His research interests include data visualization and user-centric
interaction techniques. Contact him at bcampbel01@risd.edu.

Francesca Samsel is a research associate at the University of Texas–Austin. She received
her MFA in sculpture from the University of Washington. Her research interests include the
intersections between art science and technology. Contact her at figs@cat.utexas.edu.

Contact department editor Bruce Campbell at bcampbel01@risd.edu or department editor
Francesca Samsel at figs@cat.utexas.edu.

12May/June 2018 www.computer.org/cga

This article originally appeared in
IEEE Computer Graphics and Applications,
vol. 38, no. 3, 2018.

2469-7087/18/$33.00 © 2018 IEEE	 Published by the IEEE Computer Society	 July 2018� 510 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E MAY/JUNE 2018 | IEEE SOFTWARE 83

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

A Taxonomy of IoT Client
Architectures
Antero Taivalsaari and Tommi Mikkonen

AT THE TECHNICAL level, the
Internet of Things (IoT) is all about
turning physical objects and every-
day things into digital data products
and services—bringing new value and
meaning by making previously life-
less things more intelligent. Effectively,
this means adding computing capabili-
ties and cloud connectivity to hitherto
unconnected devices, as well as adding
back-end services and web or mobile
apps for viewing and analyzing data
and controlling those devices.

IoT systems are end-to-end sys-
tems consisting of four basic ar-
chitectural elements that tend to
be pretty much identical in all IoT
solutions.1 Devices are the physi-
cal hardware elements that collect
sensor data and might perform ac-
tuation. Gateways collect, prepro-
cess, and transfer sensor data from
devices and might deliver actuation

requests from the cloud to devices.
The cloud platform—usually offered
as a software-as-a-service solution—
has a number of important roles,
including data acquisition, data ana-
lytics, and device management and
actuation. Applications range from
simple web-based data visualiza-
tion dashboards to highly domain-
specifi c mobile apps.

A wide spectrum of software
architecture options exists for IoT
devices, ranging from very simple,
limited sensing devices to devices fea-
turing fully fl edged OSs and devel-
oper APIs. In this article, we defi ne
a simple taxonomy of these options
based on a number of industrial and
academic IoT development projects
carried out in the past four years.
(For two examples, see health.nokia
.com/es/en/steel-hr and wiki.mozilla
.org/Connected_Devices/Projects.)

Software Architecture Options
IoT systems involve various design
drivers and tradeoffs. Important fac-
tors include cost, update capabilities,
dynamic programmability, security,
energy effi ciency, and communica-
tion latency. These factors largely
determine the architecture options
we describe next.2

On a high level, the software
architecture choices for IoT client
devices fall into the following seven
categories, ranging from simple to
more complex:

• no-OS architectures,
• RTOS (real-time OS)

architectures,
• language-runtime architectures,
• full-OS architectures,
• app-OS architectures,
• server-OS architectures, and
• container-OS architectures.

From the Editors

The Internet of Things (IoT) makes the world programmable. IoT software embeds

numerous resources, from sensors and actuators on the edge, all the way to auto-

mation platforms in the cloud. Antero Taivalsaari and Tommi Mikkonen share their

project experiences at Nokia Health and Mozilla Connected Devices, distilled into

different stacks of increasing complexity for deploying such software across many

different kinds of Things. —Cesare Pautasso and Olaf Zimmermann

52	 ComputingEdge� July 2018

INSIGHTS

84 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

No-OS Architectures
The vast majority of today’s IoT de-
vices are really simple. Smart light
bulbs, thermostats, remotely con-
trolled electricity plugs, air quality
sensors, and ID tags or badges don’t
require complex software stacks.

Such simple IoT devices don’t
need an OS or application platform.
All the software is written specifi-
cally for the device, and software
development typically is in-house.
So, third-party-developer support
is unnecessary. Support for firm-
ware updates might be limited or
nonexistent.

Given the fixed nature of soft-
ware in such low-end devices, the
amount of RAM and flash memory
can be minimized. In many cases,
only a few kilobytes or tens of kilo-
bytes of RAM will suffice.

For battery-operated low-end
devices, network communication
optimization plays a major role. Com-
munication protocols such as MQTT
(MQ Telemetry Transport), LWM2M
(Lightweight Machine-to-Machine),
and CoAP (Constrained Application
Protocol) are important, whereas
more-capable devices tend to use
HTTP-based communication and
more verbose data formats such as
JSON (JavaScript Object Notation)
or XML.

RTOS Architectures
For slightly more capable devices
supporting a richer set of sensors,
an RTOS might be beneficial. Pop-
ular open source and commercial
RTOSs provide convenient devel-
oper toolkits and a basic set of APIs
supporting second-party software
development. They also support im-
portant product features such as se-
cure firmware updates.

Software development for RTOS-
based IoT devices is usually in-house

because such devices typically don’t
provide public third-party-developer
APIs or the ability to reprogram the
device dynamically (apart from per-
forming a full firmware update).
Typical development languages for
RTOS-based devices are C or C11,
although even assembly code might
be used in some areas.

The memory requirements of
RTOS-based architectures are com-
parable to no-OS architectures,
often necessitating as little as a few
tens of kilobytes of RAM and a few
hundred kilobytes of flash memory.
Devices in this category are often
battery-operated, thus placing many
requirements on optimizing network
connectivity and energy consump-
tion more broadly.

Language-Runtime Architectures
Some IoT development boards sup-
port a specific built-in language run-
time or virtual machine (VM). For
instance, the popular Espruino (www
.espruino.com) and Tessel 2 (tessel
.io) boards support JavaScript appli-
cations, while Pycom’s WiPy boards
(pycom.io/development-boards) enable
Python development.

Compared to no-OS or RTOS
solutions, language-runtime-based
IoT devices are significantly more ca-
pable. They can support third-party
application development and dy-
namic changes—updating the device
software (or parts thereof) dynami-
cally without having to reflash the
entire firmware.

At the conceptual and techni-
cal levels, language-runtime-based
IoT devices are very similar to early
mobile-app development platforms
such as the Java 2 Platform, Micro
Edition (J2ME). In J2ME, a dynamic
language runtime served as the porta-
ble execution layer that enabled third-
party application development and

the creation of developer-friendly
application interfaces. Such capabili-
ties leverage the interactive nature of
the dynamic languages, allowing
flexible interpretation and execution
of code on the fly, without compro-
mising the security of the underlying
execution environment and device.
Basically, applications run in a sand-
box that provides only limited access
to the underlying platform features.

At the implementation level,
language-runtime-based IoT devices
typically have an RTOS underneath.
In that sense, these devices can be
seen as the next evolutionary step
up from devices built on the RTOS
architecture.

The technical capabilities and
memory requirements of devices
based on a language-runtime ar-
chitecture vary considerably on the
basis of the supported languages.
The VMs’ size and complexity also
vary considerably. Minimalistic pro-
gramming languages such as Forth
might require only a few tens of kilo-
bytes of dynamic memory, whereas
Python or JavaScript VMs require at
least several hundreds of kilobytes
or preferably multiple megabytes of
RAM. Correspondingly, the mini-
mum amount of flash or ROM mem-
ory can also range from a few tens
of kilobytes to several megabytes.
However, storage memory is now so
inexpensive that its cost only mar-
ginally affects a device’s total price.

Full-OS Architectures
The next level up from a language-
runtime architecture is IoT devices
that are powerful enough to run a
full (typically Linux-based) OS. The
Raspberry Pi 3 is a great example of
such a device.

The presence of a full OS brings
many benefits, such as built-in sup-
port for secure file transfers, user

www.computer.org/computingedge� 53

INSIGHTS

 MAY/JUNE 2018 | IEEE SOFTWARE 85

accounts, device management, se-
curity updates, mature development
toolchains, and numerous other fea-
tures. The generic nature of devices
supporting a full-OS architecture
also makes it possible to effortlessly
run various types of third-party ap-
plications and services, including the
aforementioned language runtimes.

Compared to no-OS or RTOS
architectures, full-OS stacks have
significantly higher memory and
CPU requirements. For instance,
the desire to run a Linux-based OS
in a device bumps the RAM require-
ments from a few tens or hundreds
of kilobytes (for an RTOS-based
solution) to half a megabyte at a
minimum. The significantly higher
energy consumption requirements
make it difficult to employ such de-
vices in use cases that require bat-
tery operation—except in tablet- or
laptop-sized solutions with a battery
capacity of at least a few thousand
milliampere hours.

App-OS Architectures
At the current high end of the IoT
device spectrum are wearable-device
platforms such as Android Wear
(www.android.com/wear) and Apple
watchOS (www.apple.com/watchos).
These platforms are in many ways
comparable to mobile-phone-app
platforms from three to five years
ago. They provide rich platform ca-
pabilities and third-party-developer
APIs; however, they also bump up
the minimum hardware require-
ments considerably. For instance,
Android Wear and watchOS require
a minimum of half a gigabyte (512
Mbytes) of RAM—over 10,000
times more than the few tens of ki-
lobytes of RAM required for simple
IoT sensor devices.

The processing-power require-
ments of app-OS devices are also

dramatically higher than in the sim-
plest microcontroller-based IoT de-
vices. Typically, an ARM Cortex-A
class processor is mandated. (For
instance, Android Wear currently
requires, at a minimum, an ARM
A7 processor running at 1.2 GHz.)
This limits the maximum battery
duration to a few days, or only a few
hours in highly intensive use.

Server-OS Architectures
Much to nearly everybody’s surprise,
JavaScript surpassed the other pro-
gramming languages in popularity in
2016.3 Whereas JavaScript was origi-
nally designed in the mid-1990s as
a simple scripting language for web
browsers, in recent years its use has
rapidly spread into various other areas.
Its current success can be attributed
especially to the Node.js ecosystem
(nodejs.org), which has popularized
the use of JavaScript in server-side de-
velopment too. Thus, JavaScript has
become the lingua franca for web de-
velopment from client to cloud.

The popularity of Node.js has cre-
ated interest in IoT devices that can
host a webserver. For instance, the
Tessel 2 board can run the Node.js
stack and even serve as a standalone
webserver. Similarly, Raspberry Pi
devices are commonly used for run-
ning the Node.js stack and other
webservers.

By default, Node.js assumes the
availability of at least 1.5 Gbytes of
RAM. However, it can be config-
ured to operate with considerably
less memory, starting from a few
tens of megabytes. Besides Node.js,
there are several other webserver of-
ferings that are more tailored to em-
bedded environments.

Container-OS Architectures
Container-based software architec-
tures have recently become popular,

especially in cloud back-end develop-
ment.4 A container is a standalone,
portable, executable package of a
piece of software that includes every-
thing needed to run it: code, runtime,
system tools, system libraries, and
settings. Popular implementations in-
clude Docker and CoreOS rkt.

Containers isolate applications
from one another and the underlying
OS infrastructure, while providing
an added layer of protection for the
application. This guarantees that the
software will always run the same
way regardless of its physical execu-
tion environment.

At the technical level, containers
are effectively a lighter-weight OS
virtualization mechanism. Unlike
OS VMs such as VirtualBox or VM-
ware Workstation, containers don’t
virtualize a complete guest OS but
share the underlying OS with other
containers.

Given the independence of the
physical execution environment that
containers can provide, they’re also
an attractive choice for IoT devel-
opment, especially in light of IoT
devices’ current technical diversity.
Thus, although container technolo-
gies add considerable overhead com-
pared to traditional binary software,
they’re already being used with IoT
devices. For instance, Docker can
already be used on Raspberry Pi
devices.5

From a purely technical view-
point, container-based architectures
are definitely a viable option for IoT
devices if adequate memory and
other resources are available.4 At a
minimum, the host environment typ-
ically must have several gigabytes of
RAM available, thus making this ap-
proach unsuitable for the vast major-
ity of today’s IoT devices. Although
container-based IoT devices might
seem excessive today, we see them as

INSIGHTS

84 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

No-OS Architectures
The vast majority of today’s IoT de-
vices are really simple. Smart light
bulbs, thermostats, remotely con-
trolled electricity plugs, air quality
sensors, and ID tags or badges don’t
require complex software stacks.

Such simple IoT devices don’t
need an OS or application platform.
All the software is written specifi-
cally for the device, and software
development typically is in-house.
So, third-party-developer support
is unnecessary. Support for firm-
ware updates might be limited or
nonexistent.

Given the fixed nature of soft-
ware in such low-end devices, the
amount of RAM and flash memory
can be minimized. In many cases,
only a few kilobytes or tens of kilo-
bytes of RAM will suffice.

For battery-operated low-end
devices, network communication
optimization plays a major role. Com-
munication protocols such as MQTT
(MQ Telemetry Transport), LWM2M
(Lightweight Machine-to-Machine),
and CoAP (Constrained Application
Protocol) are important, whereas
more-capable devices tend to use
HTTP-based communication and
more verbose data formats such as
JSON (JavaScript Object Notation)
or XML.

RTOS Architectures
For slightly more capable devices
supporting a richer set of sensors,
an RTOS might be beneficial. Pop-
ular open source and commercial
RTOSs provide convenient devel-
oper toolkits and a basic set of APIs
supporting second-party software
development. They also support im-
portant product features such as se-
cure firmware updates.

Software development for RTOS-
based IoT devices is usually in-house

because such devices typically don’t
provide public third-party-developer
APIs or the ability to reprogram the
device dynamically (apart from per-
forming a full firmware update).
Typical development languages for
RTOS-based devices are C or C11,
although even assembly code might
be used in some areas.

The memory requirements of
RTOS-based architectures are com-
parable to no-OS architectures,
often necessitating as little as a few
tens of kilobytes of RAM and a few
hundred kilobytes of flash memory.
Devices in this category are often
battery-operated, thus placing many
requirements on optimizing network
connectivity and energy consump-
tion more broadly.

Language-Runtime Architectures
Some IoT development boards sup-
port a specific built-in language run-
time or virtual machine (VM). For
instance, the popular Espruino (www
.espruino.com) and Tessel 2 (tessel
.io) boards support JavaScript appli-
cations, while Pycom’s WiPy boards
(pycom.io/development-boards) enable
Python development.

Compared to no-OS or RTOS
solutions, language-runtime-based
IoT devices are significantly more ca-
pable. They can support third-party
application development and dy-
namic changes—updating the device
software (or parts thereof) dynami-
cally without having to reflash the
entire firmware.

At the conceptual and techni-
cal levels, language-runtime-based
IoT devices are very similar to early
mobile-app development platforms
such as the Java 2 Platform, Micro
Edition (J2ME). In J2ME, a dynamic
language runtime served as the porta-
ble execution layer that enabled third-
party application development and

the creation of developer-friendly
application interfaces. Such capabili-
ties leverage the interactive nature of
the dynamic languages, allowing
flexible interpretation and execution
of code on the fly, without compro-
mising the security of the underlying
execution environment and device.
Basically, applications run in a sand-
box that provides only limited access
to the underlying platform features.

At the implementation level,
language-runtime-based IoT devices
typically have an RTOS underneath.
In that sense, these devices can be
seen as the next evolutionary step
up from devices built on the RTOS
architecture.

The technical capabilities and
memory requirements of devices
based on a language-runtime ar-
chitecture vary considerably on the
basis of the supported languages.
The VMs’ size and complexity also
vary considerably. Minimalistic pro-
gramming languages such as Forth
might require only a few tens of kilo-
bytes of dynamic memory, whereas
Python or JavaScript VMs require at
least several hundreds of kilobytes
or preferably multiple megabytes of
RAM. Correspondingly, the mini-
mum amount of flash or ROM mem-
ory can also range from a few tens
of kilobytes to several megabytes.
However, storage memory is now so
inexpensive that its cost only mar-
ginally affects a device’s total price.

Full-OS Architectures
The next level up from a language-
runtime architecture is IoT devices
that are powerful enough to run a
full (typically Linux-based) OS. The
Raspberry Pi 3 is a great example of
such a device.

The presence of a full OS brings
many benefits, such as built-in sup-
port for secure file transfers, user

54	 ComputingEdge� July 2018

INSIGHTS

86 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

an important step toward fully iso-
morphic IoT system architectures,
which we discuss in the next section.

Observations and Trends
The selection of a software archi-
tecture for IoT devices depends on
the expected use, the power bud-
get, and the need to support dy-
namic programming or third-party
development. Table 1 summarizes
the architecture options. In general,

the more capable the underlying ex-
ecution environment is, the more
feasible it is to run various types of
software architectures, platforms,
and applications on it.

In particular, we make the fol-
lowing six observations.

First, energy consumption require-
ments heavily influence the software
architecture choice. In practice, one
of the most significant differentiating
features driving or even dictating the

selection of the software architecture
in most IoT devices is the battery. A
battery-operated IoT device typically
has strict minimum operating-time
requirements. Furthermore, a de-
vice’s form factor plays a significant
role in determining the right trade-
offs, thus also impacting the type of
software architecture the device can
support.

Second, the availability of inex-
pensive off-the-shelf hardware is

Table 1. Software architecture options for IoT devices.*

Feature

Architecture option

No OS or RTOS
Language
runtime Full OS App OS Server OS Container OS

Typical devices Simple sensor
devices,
heartbeat
sensors,
lightbulbs, and
so on

Feature watches,
more advanced
sensing devices

“Maker” devices,
generic sensing
solutions

High-end
smartwatches

Solutions
benefiting from
a portable
webserver and
edge-computing
capabilities

Solutions
benefiting from
fully isomorphic
apps—that is,
code that can be
migrated between
the cloud and the
edge

Minimum required
RAM

Tens of kilobytes Hundreds of
kilobytes

A few megabytes Hundreds of
megabytes

Tens of
megabytes

Gigabytes

Typical
communication
protocols

Constrained
(MQTT, LWM2M,
CoAP)

Constrained
(MQTT, LWM2M,
CoAP)

Standard Internet
protocols (HTTP,
HTTPS)

Standard Internet
protocols (HTTP,
HTTPS)

Standard Internet
protocols (HTTP,
HTTPS)

Standard Internet
protocols (HTTP,
HTTPS)

Typical
development
language

C or assembly Java, JavaScript,
Python

C or C11 Java, Objective C,
Swift

JavaScript Various

Libraries None or system-
specific

Language-
specific generic
libraries

OS libraries,
generic UI
libraries

Platform libraries Node.js npm
modules

Various

Dynamic software
updates

Firmware updates
only

Yes Yes Yes Yes Yes

Third-party apps
supported

No Yes Yes Yes Yes Yes

Isomorphic apps
possible

No Yes Only if the
hardware
architectures are
binary compatible

Yes Yes Yes

* RTOS 5 real-time operating system, VM 5 virtual machine, MQTT 5 MQ Telemetry Transport, LWM2M 5 Lightweight Machine-to-Machine, and CoAP 5 Constrained Application Protocol.

www.computer.org/computingedge� 55

INSIGHTS

MAY/JUNE 2018 | IEEE SOFTWARE 87

driving the industry toward “overly
capable” IoT devices. That is, the
recent emergence of inexpensive
IoT chips, development boards, and
maker kits is leading to IoT devices
and solutions that have more pro-
cessing power and memory than are
actually needed. Given this, it might
often be simpler and much more
affordable to buy stock hardware in-
stead of building custom hardware
solutions. Furthermore, the extra ca-
pacity can be benefi cial—for exam-
ple, for improved security features.

Third, software development for
IoT devices is very similar to clas-
sic embedded-systems development
and is thus bringing back the need
for embedded-software-development
skills and education.6 This is in con-
trast with recent software industry
survey reports that emphasize the
importance of higher-level program-
ming skills.7

Fourth, in the next 5 to 10 years,
the availability of software contain-
ers and virtualization technologies
in IoT devices will lead the indus-
try to isomorphic IoT system archi-
tectures. In these architectures, the
devices, gateways, and cloud will
be able to run exactly the same soft-
ware components and services. This
will allow fl exible migration of code
between any element in the over-
all system. In such an architecture,
there don’t have to be any technical
differences between software that
runs on the back end or on the net-
work edge. Rather, when necessary,
software can freely roam between
the cloud and the edge in a seamless,
liquid fashion.

Fifth, along the way toward iso-
morphic systems, edge computing
will play an increasingly important
role. Given IoT devices’ rapidly in-
creasing computing and storage ca-
pacities, it’s clear that in the future,

computation and intelligence will be
increasingly balanced between the
cloud and the edge (IoT devices and
gateways). This could be very benefi -
cial because the ability to preprocess
data in IoT devices (and gateways) al-
lows for lower latencies and can sig-
nifi cantly reduce unnecessary data
traffi c between the devices and the
cloud. Together with the emergence
of mesh networking and low-power
wide-area networking (LPWAN)
technologies, edge computing can be
expected to signifi cantly alter the to-
pologies and overall software archi-
tecture of IoT systems.

Finally, interoperability is still a
major issue. Today, most IoT systems
expect that devices will work only
with their “own” cloud back end.
Similarly, the most common way to
use a device is through a specifi c ap-
plication that’s associated with only
one particular vendor’s devices. Even
though signifi cant convergence has
occurred in the past few years, we’re

still several years away from univer-
sal Programmable World standards
as envisioned by Bill Wasik8 and dis-
cussed in our previous IEEE Soft-
ware article.1

A ccording to a popular
saying—often attributed to
Mark Twain—history does

not repeat itself, but it rhymes. At
the moment, there’s still much di-
versity in the IoT device space. In
many ways, the IoT device market
today resembles the early evolution
of the PC market before the domi-
nant PC platforms were established
in the early 1980s. Interesting par-
allels also exist between today’s IoT
devices and the evolution of mobile
phones in the late 1990s and early
2000s. Although the vast majority
of IoT devices today have very sim-
ple software stacks, we foresee stack
complexity increasing rapidly be-
cause of hardware evolution and the

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ANTERO TAIVALSAARI is a Bell Labs Fellow at Nokia Technologies.

Contact him at antero.taivalsaari@nokia.com.

TOMMI MIKKONEN is a professor of software engineering at the

University of Helsinki. Contact him at tommi.mikkonen@helsinki.fi .

INSIGHTS

86 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

an important step toward fully iso-
morphic IoT system architectures,
which we discuss in the next section.

Observations and Trends
The selection of a software archi-
tecture for IoT devices depends on
the expected use, the power bud-
get, and the need to support dy-
namic programming or third-party
development. Table 1 summarizes
the architecture options. In general,

the more capable the underlying ex-
ecution environment is, the more
feasible it is to run various types of
software architectures, platforms,
and applications on it.

In particular, we make the fol-
lowing six observations.

First, energy consumption require-
ments heavily influence the software
architecture choice. In practice, one
of the most significant differentiating
features driving or even dictating the

selection of the software architecture
in most IoT devices is the battery. A
battery-operated IoT device typically
has strict minimum operating-time
requirements. Furthermore, a de-
vice’s form factor plays a significant
role in determining the right trade-
offs, thus also impacting the type of
software architecture the device can
support.

Second, the availability of inex-
pensive off-the-shelf hardware is

Table 1. Software architecture options for IoT devices.*

Feature

Architecture option

No OS or RTOS
Language
runtime Full OS App OS Server OS Container OS

Typical devices Simple sensor
devices,
heartbeat
sensors,
lightbulbs, and
so on

Feature watches,
more advanced
sensing devices

“Maker” devices,
generic sensing
solutions

High-end
smartwatches

Solutions
benefiting from
a portable
webserver and
edge-computing
capabilities

Solutions
benefiting from
fully isomorphic
apps—that is,
code that can be
migrated between
the cloud and the
edge

Minimum required
RAM

Tens of kilobytes Hundreds of
kilobytes

A few megabytes Hundreds of
megabytes

Tens of
megabytes

Gigabytes

Typical
communication
protocols

Constrained
(MQTT, LWM2M,
CoAP)

Constrained
(MQTT, LWM2M,
CoAP)

Standard Internet
protocols (HTTP,
HTTPS)

Standard Internet
protocols (HTTP,
HTTPS)

Standard Internet
protocols (HTTP,
HTTPS)

Standard Internet
protocols (HTTP,
HTTPS)

Typical
development
language

C or assembly Java, JavaScript,
Python

C or C11 Java, Objective C,
Swift

JavaScript Various

Libraries None or system-
specific

Language-
specific generic
libraries

OS libraries,
generic UI
libraries

Platform libraries Node.js npm
modules

Various

Dynamic software
updates

Firmware updates
only

Yes Yes Yes Yes Yes

Third-party apps
supported

No Yes Yes Yes Yes Yes

Isomorphic apps
possible

No Yes Only if the
hardware
architectures are
binary compatible

Yes Yes Yes

* RTOS 5 real-time operating system, VM 5 virtual machine, MQTT 5 MQ Telemetry Transport, LWM2M 5 Lightweight Machine-to-Machine, and CoAP 5 Constrained Application Protocol.

56	 ComputingEdge� July 2018

INSIGHTS

88 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

general desire to support edge com-
puting, software containers, and iso-
morphic IoT system architectures.

References
 1. A. Taivalsaari and T. Mikkonen,

“A Roadmap to the Programmable

World: Software Challenges in the

IoT Era,” IEEE Software, vol. 34,

no. 1, 2017, pp. 72–80.

 2. D. Spinellis, “Software-Engineering

the Internet of Things,” IEEE Soft-

ware, vol. 34, no. 1, 2017, pp. 4–6.

 3. D. Cassel, “JavaScript Popularity Sur-

passes Java, PHP in the Stack Over-

flow Developer Survey,” The New

Stack, 18 Mar. 2016; thenewstack

.io/javascript-popularity-surpasses

-java-php-stack-overflow-developer

-survey.

 4. A. Celesti et al., “Exploring Container

Virtualization in IoT Clouds,” Proc.

2016 IEEE Int’l Conf. Smart Com-

puting (SMARTCOMP 16), 2016.

 5. M. Richardson, “Docker Comes to

Raspberry Pi,” blog, 30 Aug. 2016;

www.raspberrypi.org/blog

/docker-comes-to-raspberry-pi.

 6. C. Weir and J. Noble, Small Memory

Software: Patterns for Systems with

Limited Memory, Addison-Wesley,

2000.

 7. Developer Economics State of the

Developer Nation Q1 2016, Slash-

Data, 2016; www.developereconomics

.com/reports/developer-economics

-state-of-developer-nation-q1-2016.

 8. B. Wasik, “In the Programmable

World, All Our Objects Will Act as

One,” Wired, 14 May 2013; www

.wired.com/2013/05/internet-of

-things-2.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

IEEE Computer Society’s Conference Publishing Services (CPS) is now offering
conference program mobile apps! Let your attendees have their conference
schedule, conference information, and paper listings in the palm of their hands.

The conference program mobile app
works for Android devices, iPhone,
iPad, and the Kindle Fire.

CONFERENCES
in the Palm of Your Hand

For more information please contact cps@computer.org

This article originally appeared in
IEEE Software, vol. 35, no. 3,
2018.

2469-7087/18/$33.00 © 2018 IEEE	 Published by the IEEE Computer Society	 July 2018� 57
72 Published by the IEEE Computer Society 1089-7801/17/$33.00 © 2017 IEEE IEEE INTERNET COMPUTING

Backspace

A Revised View of the
IoT Ecosystem
Vinton G. Cerf • Google

F or a long time, I had the idea that configu-
ration of a suite (ensemble) of Internet of
Things (IoT) devices would be an infrequent

process — for example, when you bought a new
device, sold, transferred, or superannuated an
older one. However, my thinking has evolved.
Sticking with the residential paradigm for a
moment, although the ideas seem equally appli-
cable to industrial settings, it’s becoming clearer
that many devices will come and go with the
residents, guests, workmen, emergency services
personnel, and others who might have reason to
enter the premises and have need to “control” at
least a part of it while present.

This leads me to believe that an IoT ensemble
must actually be in a kind of continuous configu-
ration mode, anticipating the arrival and depar-
ture of all manner of Internet-enabled devices.
Among the implications is the notion that the local
IoT management system needs to expect that new
devices will need to be configured into the sys-
tem and others to depart — it needs to sense their
arrivals and departures and to react accordingly.

Not every device that arrives must be config-
ured into the system, nor must every device that
leaves be deconfigured. Indeed, some devices
must be recognized when in remote locations,
to be authoritative with regard to access to data
and ability to exert controls. Others should be
ignored even when on the premises. This implies
that there must be a highly active process for
discovering and qualifying devices to become
part of the local IoT ecosystem and to be recog-
nized as authoritative even when not local.

By extension, these devices must be able to
present bona fides to the residential IoT control
system when called upon to do so. The process
must be painless for users, but assure household
authorities that only devices (and people) that
should be granted access are properly identified.

This strikes me as a nontrivial design challenge;
the ecosystem will need some serious think-
ing about standards to achieve interoperability
across a multitude of potential “players” that
might be encountered.

The Bluetooth technology-pairing mecha-
nism offers an example of device discovery and
a means of confirming that a selected device
should become associated with another. For
example, cars equipped with Bluetooth technol-
ogy can detect the presence of another Blue-
tooth device if the latter is put into a beaconing
mode. The car typically serves as the master and
discovers a beaconing slave. The master sends
the slave a locally generated random number,
typically displayed on the slave device. Users
are asked to verify that both the master and slave
are displaying the same random number before
the master adopts the slave. Protocols like this
are already in use to allow controllers to incor-
porate new IoT devices into an ensemble. In a
residential setting, we can easily imagine a home
controller that detects and configures new devices
into its universe, and that can be told to forget
an adopted slave when it should be deconfigured
(upon the departure of a visitor, for example) or to
remember the device and to have a means to rec-
ognize it again even when it’s remote and com-
municating — for example, via the Internet.

H ere’s a scary thought: what if a device is
adopted that’s corrupted, and it has a back-

door allowing remote access to a residential net-
work of devices?

Vinton G. Cerf is vice president and chief Internet evangelist

at Google, and past president of ACM. He’s widely known

as one of the “fathers of the Internet.” He’s a Fellow of

IEEE and ACM. Contact him at vgcerf@gmail.com.

This article originally appeared in
IEEE Internet Computing, vol. 21, no. 5,
2017.

SUBSCRIBE AND SUBMIT
For more information on paper submission, featured articles, calls for papers,
and subscription links visit:

www.computer.org/tbd

IEEE TRANSACTIONS ON

BIG DATASUBMIT
TODAY

The IEEE Transactions on Big Data (TBD) publishes peer reviewed articles with big data as the main
focus. The articles provide cross disciplinary innovative research ideas and applications results for
big data including novel theory, algorithms and applications. Research areas for big data include, but
are not restricted to, big data analytics, big data visualization, big data curation and management,
big data semantics, big data infrastructure, big data standards, big data performance analyses,
intelligence from big data, scientific discovery from big data security, privacy, and legal issues specific
to big data. Applications of big data in the fields of endeavor where massive data is generated are of
particular interest.

SCOPE

Training that
sharpens your edge
in Cisco, IT security,

MS Enterprise, Oracle
and more.

Certifi cations
and exam preparation

that set you apart.

Industry intelligence,
including Computer, myCS,

Computing Now, and
myComputer.

Over 200 annual
conferences and technical

events held worldwide.

300-plus chapters
and more than 30

technical committees
keep you

connected.

Access to
hundreds of

books, 13 technical
magazines and

20 research journals.

Deep discounts
on magazines, journals,
conferences, symposia

and workshops.

Opportunities to
get involved through

speaking, publishing and
volunteering opportunities.

Scholarships awarded
to computer science

and engineering student
members each year.

A robust jobs board,
plus videos, articles
and presentations to

help you land that next
opportunity.

IEEE Computer Society—keeping you ahead
of the game. Get involved today.

www.computer.org/membership

IEEE COMPUTER SOCIETY:
Be at the Center of It All

IEEE Computer Society membership puts you at the
heart of the technology profession—and helps you grow with it.

Here are 10 reasons why you need to belong.

