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CS FOCUS

T he IEEE Computer 
Society’s lineup of 13 
peer-reviewed tech-

nical magazines covers cut-
ting-edge topics ranging from 
software design and computer 
graphics to Internet comput-
ing and security, from scien-
tifi c applications and machine 
intelligence to cloud migration 
and microchip design. Here are 
highlights from recent issues.

Computer

Deep Learning for the 
Internet of Things
How can the advantages of 
deep learning be brought to 
the emerging world of embed-
ded Internet of Things (IoT) 
devices? The authors of this 
article from the May 2018 issue 
of Computer discuss several core 
challenges in embedded and 

mobile deep learning, as well as 
recent solutions demonstrating 
the feasibility of building IoT 
applications that are powered 
by eff ective, effi  cient, and reli-
able deep-learning models. 

Computing in Science & 
Engineering

Touching Data: Enhancing 
Visual Exploration of Flow 
Data with Haptics
Using the example of interac-
tive exploration of a beating 
heart, the authors of this article 
from the May/June 2018 issue 
of Computing in Science & Engi-
neering demonstrate how data 
exploration and analysis can 
be further improved by adding 
haptics. This combination of 
sensory information input leads 
to the notion of visuo-haptic 
visualization.

Magazine 
Roundup
Editor: Lori Cameron
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IEEE Annals of the History 
of Computing

Thomas Harold (“Tommy”) 
Flowers: Designer of the 
Colossus Codebreaking 
Machines
During World War II, English engi-
neer Tommy Flowers (1905–1998) 
designed the world’s fi rst program-
mable electronic computer, Colos-
sus, to solve a problem posed by 
a mathematician at the Govern-
ment Code and Cypher School at 
Bletchley Park. After Colossus was 
made public, Flowers began to win 
broader attention and was invited 
to address various computing 
groups and to document his work. 
Learn more in the January–March 
2018 issue of IEEE Annals of the 
History of Computing.

IEEE Cloud Computing

What is “Cloud”? It is Time to 
Update the NIST Defi nition?
IaaS, PaaS, and SaaS were formally 
defi ned in 2011 (Internet as a ser-
vice, platform as a service, and 
software as a service, respectively). 
Have these defi nitions held up in the 
fast-moving world of cloud comput-
ing? Enter the National Institute of 
Standards and Technology (NIST), 
a US government entity that for-
mally defi nes standards, metrics, 
and the like. After several years of 
work, industry collaboration, and 
multiple review cycles, they released 
the fi nal version of the widely cited 
“The NIST Defi nition of Cloud Com-
puting” in 2011. But should this 
defi nition be updated for 2018 and 
beyond? Read more in the May/June 
2018 issue of IEEE Cloud Computing.

IEEE Computer Graphics 
and Applications

Sally Weber: Making Art from 
Light
Bruce Campbell of Rhode Island 
School of Design and Francesca 
Samsel of the University of Texas at 
Austin caught up with artist Sally 
Weber after having been transfi xed 
by her latest work, inFLUX, from 
her exhibition ELEMENTAL at the 
Butler Institute of American Art in 
Youngstown, Ohio. The authors of 
this article from the May/June 2018 
issue of IEEE Computer Graphics 
and Applications believe that as an 
artist who has worked with light 
as her medium during her distin-
guished career, Weber has valu-
able insight to share with CG&A’s 
readership. 

IEEE Intelligent Systems

Identifying SCADA Systems 
and Their Vulnerabilities on 
the Internet of Things: A Text-
Mining Approach
Supervisory Control and Data 
Acquisition (SCADA) systems 
allow operators to control critical 
infrastructure. Vendors are increas-
ingly integrating Internet technol-
ogy into these devices, making 
them more susceptible to cyberat-
tacks. Identifying and assessing 
vulnerabilities of SCADA devices 
using Shodan, a search engine 
that contains records about pub-
licly available Internet-connected 
devices, can help mitigate cyber-
attacks. The authors of this arti-
cle from the March/April 2018 
issue of IEEE Intelligent Systems 
present a principled approach to 

systematically identify all SCADA 
devices on Shodan and then 
assess the vulnerabilities of the 
devices with a state-of-the-art tool.

IEEE Internet Computing

Analytics without Tears or 
Is There a Way for Data to 
Be Anonymized and Yet Still 
Useful?
In this article from the May/June 
2018 issue of IEEE Internet Com-
puting, the authors discuss the 
new requirements for policies and 
mechanisms to retain privacy when 
analyzing users’ data. More and 
more information is being gath-
ered about all of us, and used for a 
variety of reasonable commercial 
goals—recommendations, targeted 
advertising, optimizing product reli-
ability or service delivery: the list 
goes on and on. However, the risks 
of leakage or misuse also grow. 
Recent years have seen the devel-
opment of a number of tools and 
techniques for limiting these risks, 
ranging from improved security for 
processing systems to increased 
control over what is disclosed in 
the results. Most of these tools and 
techniques will require agreements 
on when and how they are used 
and how they interoperate. 

IEEE Micro

Architectural Risk
Designing a system involves the 
risk that a design will fail to meet 
its performance goals. While risk 
assessment and management are 
typically treated independently from 
performance, they are more tightly 
linked than one might expect. 
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Risk-minimizing and performance-
optimizing designs might not be the 
same, and new techniques to help 
make smarter choices between the 
two are needed. Surprisingly, even 
simple performance/risk tradeoff s 
are nearly impossible to reason 
about with intuition alone. Read 
more in the May/June 2018 issue of 
IEEE Micro.

IEEE MultiMedia

360-Degree Virtual-Reality 
Cameras for the Masses
To make virtual reality (VR) cam-
eras more accessible to the public, 
devices must be aff ordable, porta-
ble, reliable, high quality, and user 
friendly. In this article from the 
January–March 2018 issue of IEEE 
MultiMedia, the authors describe 
the challenges in meeting these 
goals and the techniques that 
Kandao–a VR startup company 
based in China–used to conquer 
them when designing its Obsidian 
cameras.

IEEE Pervasive Computing

Making Everyday Interfaces 
Accessible: Tactile Overlays 
by and for Blind People
Making a physical environment 
accessible to blind people gener-
ally requires sighted assistance. 
VizLens and Facade put visually 
impaired users at the center of a 
crowdsourced, computer-vision-
based workfl ow that lets them 
make the environment accessible 
on their own terms. Read more 
about these applications in the 
April–June 2018 issue of IEEE Per-
vasive Computing.

IEEE Security & Privacy

The Privacy Paradox of 
Adolescent Online Safety: A 
Matter of Risk Prevention or 
Risk Resilience?
By taking a more “teen-centric” 
(instead of a “parent-centric”) 
approach to adolescent online 
safety, researchers and designers 
can help teens foster a stronger 
sense of personal agency for regu-
lating their own online behaviors 
and managing online risks. Tech-
nology should support teens in 
their developmental goals, includ-
ing information seeking, learning 
about rules and boundaries, and 
maintaining social relationships, 
in addition to keeping them safe 
from online risks. However, this 
goal will only be accomplished 
once we listen more intently to 
teens as end users. Read more 
in the March/April 2018 issue of 
IEEE Security & Privacy.

IEEE Software

On the Defi nition of 
Microservice Bad Smells
Code smells and architectural 
smells (also called bad smells) are 
symptoms of poor design that can 
hinder code understandability and 
decrease maintainability. Several 
bad smells have been defi ned in 
the literature for both generic and 
specifi c architectures. However, 
cloud-native applications based 
on microservices can be aff ected 
by other types of issues. To iden-
tify a set of microservice-specifi c 
bad smells, researchers collected 
evidence of bad practices by 
interviewing 72 developers with 

experience in developing systems 
based on microservices. Then, 
they classifi ed the bad practices 
into a catalog of 11 microservice-
specifi c bad smells frequently 
considered harmful by practitio-
ners. The results can be used by 
practitioners and researchers as 
a guideline to avoid experiencing 
the same diffi  cult situations in the 
systems they develop. Read more 
in the May/June 2018 issue of IEEE 
Software.

IT Professional

The New Threats of 
Information Hiding: The Road 
Ahead
A recent trend involves exploiting 
various information-hiding tech-
niques to empower malware—for 
example, to bypass mobile device 
security frameworks or to exfi ltrate 
sensitive data. The authors of this 
article from the May/June 2018 
issue of IT Professional provide 
an overview of information-hiding 
techniques that can be utilized by 
malware. They showcase exist-
ing and emerging threats that 
use diff erent types of data-hiding 
mechanisms (not just those adopt-
ing classical covert channels), 
with the goal of monitoring these 
threats and proposing effi  cient 
countermeasures.

Com puting Now

The Computing Now website 
(computingnow.computer.org) fea-
tures computing news and blogs, 
along with articles ranging from 
peer-reviewed research to opinion 
pieces by industry leaders. 
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A rtifi cial intelligence (AI) is rapidly trans-
forming our world through self-driving 
cars, personal digital assistants, and 

medical advances such as training computers 
to read and interpret pathology reports to reveal 
insights that could lead to increased disease pre-
vention and detection. However, the rise of AI 
means that more and more lives are in the hands 
of machines, so cultivating trust in AI is para-
mount—as is ensuring that AI agents act ethically. 

Two articles in this issue of ComputingEdge
focus on AI. In IEEE Internet Computing’s “Design-
ing Ethical Personal Agents,” the authors consider 
engineering personal agents that act ethically, 
understanding applicable social norms and users’ 
preferred values. In IEEE Annals of the History of 
Computing’s “Do Computers Follow Rules Once 
Followed by Workers?,” the author refutes the 
claim that computers often carry out tasks using 
procedures nearly identical to those used by 
humans, arguing that this claim misdirects our 
attention in studying the relationship between pre- 
and post-automatic computing divisions of labor.

The growing adoption of AI is driving more 
organizations to turn to high-performance comput-
ing (HPC), as more computing power is needed to 
quickly parse large datasets. In Computing in Sci-
ence & Engineering’s “Large-Scale Calculations for 
Material Sciences Using Accelerators to Improve 
Time- and Energy-to-Solution,” the author pres-
ents the idea that the solution to the problem of 
required electrical power for next-generation HPC 
systems lies in introducing novel machine archi-
tectures, such as those employing many-core 
processors and specialized accelerators. In IEEE 
Micro’s “If You Build It, Will They Come?,” the 
authors posit that the goal of architects should be 
to pursue architectural agility to lower the barri-
ers to developing innovative and disruptive solu-
tions—an example of this can be found in HPC’s 
use of GPUs.

Autonomic networking brings together HPC 
and AI—in IEEE Internet Computing’s “Autonomic 
Networking: Architecture Design and Standardiza-
tion,” the authors explain that autonomic network-
ing (where systems self-manage and self-heal) 

The Rise of Artifi cial Intelligence
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is a promising solution to the ever-increasing 
management complexity of dynamic network 
environments. 

Art and graphics play a large role in comput-
ing. In IEEE Computer Graphics and Applications’ 
“JPEG at 25: Still Going Strong,” original JPEG 
development team members provide a brief his-
tory of JPEG and the fundamental components 
that have given it longevity. In IEEE MultiMedia’s 
“Sally Weber: Making Art from Light,” the authors 
interview Sally Weber, a holographic artist who 
communicates through light. The authors believe 
she has much of value to share with the IEEE 
Computer Society’s readership.

Finally, this issue of ComputingEdge delves into 
two aspects of the Internet of Things (IoT): soft-
ware architecture options and the IoT ecosystem. 

In IEEE Software’s “A Taxonomy of IoT Client 
Architectures,” the authors defi ne a taxonomy 
of software architecture options for IoT devices, 
from the most limited sensing devices to high-
end devices and developer frameworks. In IEEE 
Internet Computing’s “A Revised View of the IoT 
Ecosystem,” Google’s Vinton G. Cerf says that the 
frequency and sheer number of devices to be con-
fi gured within an IoT network can leave the door 
open to some frightening possibilities. 

IEEE Pervasive Computing explores the many facets of pervasive and ubiquitous 
computing with research articles, case studies, product reviews, conference reports, 

departments covering wearable and mobile technologies, and much more.

Keep abreast of rapid technology change by subscribing today!

www.computer.org/pervasive

Read your subscriptions through 
the myCS publications portal at 
http://mycs.computer.org.
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COLUMN: Natural Web Interfaces 

Designing Ethical Personal 
Agents 

The authors consider the problem of engineering 

ethical personal agents. Such an agent would 

understand the applicable social norms and its 

users’ preferences among values. It would act or 

recommend actions that promote preferred values, 

especially, in scenarios where the norms conflict. 

As personal agents weave themselves into the very 
fabric of our lives, it is crucial that those agents respect 
their users’ values and act ethically. We understand a 

value as what is right or good according to an individual and ethics as a system of values. 
Rokeach1 proposed two types of values—terminal values, referring to desired end-states of ex-
istence, and instrumental values, referring to modes of behavior or means to achieve the terminal 
values.  

A socially intelligent personal agent (SIPA) would understand social contexts, including appli-
cable norms, and help its users flexibly navigate those norms. Additionally, an ethical SIPA must 
understand terminal values, such as security, happiness, and recognition, and its actions must 
respect instrumental values such as honesty, helpfulness, and forgiveness.  

Engineering ethical SIPAs faces two main challenges. First, a SIPA must recognize the relevant 
values and reason about the users’ preferences over those values in order to choose an ethical 
action. A SIPA’s action may simultaneously promote and demote different values.2 For instance, 
a SIPA’s action to share its user’s location with family members promotes safety but demotes 
privacy.  

Second, since people may have conflicting preferences on values,3 a SIPA’s decision about 
which values to promote or demote affects other users. For example, a teenager may prefer pri-
vacy over safety, but his parents may prefer the reverse. A SIPA’s action to share the teenager’s 
location affects both the teenager and the parents. Thus, an ethical SIPA must reason not only 
about its user’s values and preferences, but also about those of others in the social context. 

SOCIAL NORMS 
Social norms are central to a social context. A norm characterizes interactions between autono-
mous parties. We adopt Singh’s representation4 in which a norm is directed from a subject to an 

Nirav Ajmeri 
North Carolina State University 

Hui Guo 
North Carolina State University 

Pradeep K. Murukannaiah 
Rochester Institute of Technology 

Munindar P. Singh 
North Carolina State University 
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object, as a conditional relationship involving an antecedent (which brings an instance of the 
norm in force) and a consequent (which brings the norm instance to completion). A new instance 
is generated whenever a norm applies. This representation yields clarity on who is accountable, 
when, for what, and to whom. A norm has four core elements, expressed as N(subject; object; 
antecedent; consequent), where N specifies the norm type. We consider norms of three types: 

Commitment, C(subject; object; antecedent; consequent), means that its subject commits to its 
object to ensuring the consequent if the antecedent holds. For instance, consider a user, Aron, 
and his mother, Eevee. (We draw names from Pokémon anime.) Aron, who has poor night vi-
sion, could be committed to his mother, Eevee, that whenever he is out, he will keep Eevee in-
formed of his location. Therefore, Aron is accountable for sharing his location to Eevee 
whenever he is out at night, which we write as: 

C(Aron, Eevee, notHomeAron  evening, shareAronLoc) 

Authorization, A(subject; object; antecedent; consequent), means that its subject is authorized 
by its object for bringing about the consequent if the antecedent holds. Although the authorized 
party can decide not to take up the authorization, the authorizing party must support the author-
ized condition if called upon.5 That is, the authorizing party is accountable for ensuring success 
of the authorization’s consequent if its antecedent holds. For example, Aron could authorize 
Eevee to access Aron’s location if he is not at home before evening, which we write as: 

A(Aron, Eevee, notHomeAron  evening, accessAronLoc) 

Prohibition, P(subject; object; antecedent; consequent), means that its subject is forbidden by its 
object from bringing about the consequent if the antecedent holds. The subject is accountable for 
ensuring the consequent remains false. For instance, Eevee could be prohibited at all times by 
Aron from sharing his location to someone else, which we write as: 

P(Eevee, Aron, , shareAronLoc) 

A sanction is an action, positive or negative, by a subject toward an object in response to the 
latter satisfying or violating a norm.6 

SIPAS AND VALUES 
To illustrate our ideas, consider Pikachu, a location sharing SIPA. Pikachu may share its user’s 
geolocation and social context, including place (such as a bar or theater), companions, and activi-
ty. Importantly, Pikachu must ethically decide whether to share the user’s details with no one, 
everyone (public), or specific people. 

Example 1 Aron values safety. Also, he has a commitment to his mother, Eevee, that he will 
share his location with her when he is not home. Sharing locations promotes safety. One even-
ing, Aron meets a friend at The Flying Saucer, a local pub. Knowing Aron’s commitments and 
values, Pikachu shares with Eevee that Aron is at The Flying Saucer with a friend. 

C-share-AE = C(Aron, Eevee, , shareLocWithEevee) 

shareLocWithEevee  Sat(C-share-AE)  safety ↑ 

Example 2 Aron values safety and social recognition, and commits to Eevee as before. Aron is 
attending a scientific conference in Stockholm. Sharing Aron’s location with Eevee satisfies his 
commitment and promotes safety. Sharing Aron’s location publicly additionally promotes social 
recognition. Thus, Pikachu shares publicly that Aron is in Stockholm attending a scientific con-
ference. 

shareLocWithEevee  Sat(C-share-AE)  safety ↑ 

shareLocWithAll  Sat(C-share-AE)  safety ↑ social-recognition ↑ 

Example 3 Continuing Example 2, Dr. Drampa, Aron’s academic advisor, is attending the same 
conference. Dr. Drampa values privacy and prohibits his students from sharing location publicly 
when they are with Dr. Drampa. Now, by sharing Aron’s location publicly, Pikachu promotes 
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Designing Ethical Personal 
Agents 

The authors consider the problem of engineering 

ethical personal agents. Such an agent would 

understand the applicable social norms and its 

users’ preferences among values. It would act or 

recommend actions that promote preferred values, 

especially, in scenarios where the norms conflict. 

As personal agents weave themselves into the very 
fabric of our lives, it is crucial that those agents respect 
their users’ values and act ethically. We understand a 

value as what is right or good according to an individual and ethics as a system of values. 
Rokeach1 proposed two types of values—terminal values, referring to desired end-states of ex-
istence, and instrumental values, referring to modes of behavior or means to achieve the terminal 
values.  

A socially intelligent personal agent (SIPA) would understand social contexts, including appli-
cable norms, and help its users flexibly navigate those norms. Additionally, an ethical SIPA must 
understand terminal values, such as security, happiness, and recognition, and its actions must 
respect instrumental values such as honesty, helpfulness, and forgiveness.  

Engineering ethical SIPAs faces two main challenges. First, a SIPA must recognize the relevant 
values and reason about the users’ preferences over those values in order to choose an ethical 
action. A SIPA’s action may simultaneously promote and demote different values.2 For instance, 
a SIPA’s action to share its user’s location with family members promotes safety but demotes 
privacy.  

Second, since people may have conflicting preferences on values,3 a SIPA’s decision about 
which values to promote or demote affects other users. For example, a teenager may prefer pri-
vacy over safety, but his parents may prefer the reverse. A SIPA’s action to share the teenager’s 
location affects both the teenager and the parents. Thus, an ethical SIPA must reason not only 
about its user’s values and preferences, but also about those of others in the social context. 

SOCIAL NORMS 
Social norms are central to a social context. A norm characterizes interactions between autono-
mous parties. We adopt Singh’s representation4 in which a norm is directed from a subject to an 
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Aron’s social recognition, but demotes Dr. Drampa’s privacy and violates Aron’s prohibition by 
Dr. Drampa. In contrast, by sharing his location with Eevee, Pikachu does not promote social 
recognition, and does not violate the prohibition or demote Dr. Drampa’s privacy. Since Aron 
fears potential sanctions for violating Dr. Drampa’s prohibition more than he prefers social 
recognition, Pikachu shares Aron’s location only with Eevee. 

P-privacy-AD = P(Aron, Drampa, SameLoc, ShareLocWithAll) 

shareLocWithAll  Sat(C-share-AE)  Vio(P-privacy-AD)  safety ↑   
social-recognition ↑  privacy ↓ 

shareLocWithEevee  Sat(C-share-AE)  Sat(P-privacy-AD)  safety ↑   
social-recognition ↓  privacy ↑ 

Example 4 Aron is with Chansey on a midnight hike at Pilot Mountain. Chansey values privacy, 
and prohibits location sharing with all (just as Dr. Drampa does). However, Aron prefers safety 
to privacy in this context. Knowing these, Pikachu shares Aron’s location with all his friends 
(which includes Eevee). Note that sharing with friends, is both safer and less privacy violating 
than sharing with all and does not violate Aron’s prohibition from Chansey. 

P-privacy-AC = P(Aron, Chansey, SameLoc, ShareLocWithAll) 
shareLocWithAll  Sat(C-share-AE)  Vio(P-privacy-AC)  safety ↓  privacy ↓  
shareLocWithFriends  Sat(C-share-AE)  safety ↑  privacy ↓ 

These examples demonstrate the complexity of ethical decision making. To act ethically, a SIPA 
must (1) acquire information about context, social norms, and values; (2) reason about actions 
despite conflicts among and between norms and values; and (3) potentially communicate its 
reasoning (arguments) to other SIPAs to avoid sanctions.7 We need a systematic method to sup-
port SIPAs in accomplishing these nontrivial tasks. 

VALAR: A FRAMEWORK FOR ETHICAL AGENTS 
We propose Valar to engineer SIPAs that can understand preferences among values and reason 
about them to make policy decisions as exemplified above. Valar extends Arnor7 with values and 
provides a four-step method to model stakeholders, contexts, social norms, and values. 

Stakeholder modeling identifies the stakeholders, their goals, and relevant actions of a SIPA. A 
SIPA’s stakeholder is either its user or someone affected by its actions. A stakeholder’s goal 
defines what states he or she prefers. An action represents a step a SIPA may take. 

Context modeling identifies contexts in which stakeholders interact. A context refers to the 
relevant circumstance of decision making, and it is crucial in determining which goals to bring 
about and which actions to perform.8 

Social modeling identifies the norms and sanctions (see sidebar) associated with a stakeholder’s 
goals and a SIPA’s actions. The social norms and sanctions characterize the social architecture in 
which SIPAs act and interact. 

Value modeling identifies the relevant values and stakeholders’ preferences among those values, 
and how each action by the SIPA promotes or demotes the identified values. A stakeholder’s 
value preference specifies what outcomes are morally superior to others in the stakeholder’s 
judgment. Stakeholders’ preferences among values provide a basis for choosing which goal to 
bring about or which norm to satisfy. 

Figure 1 illustrates the main components of a Valar SIPA. A SIPA maintains (1) a model of the 
stakeholders, including their goals and values; (2) a world model, including its current state (con-
text), and preconditions and effects of available actions; and (3) the social model, including ap-
plicable norms and sanctions. Using this information, the SIPA’s decision module determines an 
ethical action that would be most compatible with its stakeholders’ value preferences and the 
applicable norms. The SIPA may perform the  determined action or recommend it to its user 
depending on the application. 
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Figure 1. A conceptual model outlining decision making by a Valar SIPA. 

Reasoning. A SIPA can choose to satisfy or violate norms by identifying stakeholders’ contex-
tual preferences among the values that these norms promote or demote. Following Sotala’s ap-
proach,9 a SIPA learns to maximize a reward function based on its stakeholders’ values. For 
simplicity, a SIPA maintains each stakeholder’s preferences as vectors of numeric weights on the 
various values—the higher the weight, the more important the corresponding value is for that 
stakeholder. Therefore, we can compute the extent to which an action promotes a stakeholder’s 
values, or the aggregated value gain, as a weighted sum. A SIPA maintains the weight vector of 
different values under each social context, and respects values by choosing an action that pro-
duces the maximum aggregated gain. 

EVALUATION: POTENTIAL BENEFIT OF VALUES 
Evaluation is a challenge with any approach that involves informal, subjectively defined con-
cepts such as ethics and values. We conducted a small empirical study to investigate if under-
standing the values promoted and demoted by a SIPA’s potential actions and the stakeholders’ 
preferences among the values could guide the SIPA to select actions that yield a pleasant social 
experience to its stakeholders.  

Twenty-four graduate and nine undergraduate computer science students participated in our 
study, which was approved by North Carolina State University’s Institutional Review Board 
(IRB). 

We asked the participants to imagine they were in a given context—a combination of place (first 
column of Table 1); time of day of visit; and companions (alone, a colleague, crowd, a family 
member, or a friend). Each context was tagged as safe, unsafe, sensitive (disclosure of which 
may be harmful to the participants or their companions), or not sensitive. 

Each participant completed two surveys to select a check-in policy (action) appropriate for that 
context. The first survey did not provide awareness of the values promoted or demoted by a shar-
ing policy; the second survey provided awareness of the relevant values. Each survey asked for 
(1) a check-in policy ordered from high to low privacy preservation: share with none, compan-
ions, common friends (of companions), and all; and (2) a confidence in the selected check-in 
policy on a Likert scale of 1 (very low) to 5 (very high). 

Making an informed decision. Figure 2 shows the violin plots for reported check-in policies for 
each of the eight places. We observe that an understanding of values significantly changes partic-
ipants’ policy choices in the contexts of hiking and hurricane. In these contexts, location sharing 
promotes safety but demotes privacy, and participants generally preferred the former.  
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Aron’s social recognition, but demotes Dr. Drampa’s privacy and violates Aron’s prohibition by 
Dr. Drampa. In contrast, by sharing his location with Eevee, Pikachu does not promote social 
recognition, and does not violate the prohibition or demote Dr. Drampa’s privacy. Since Aron 
fears potential sanctions for violating Dr. Drampa’s prohibition more than he prefers social 
recognition, Pikachu shares Aron’s location only with Eevee. 

P-privacy-AD = P(Aron, Drampa, SameLoc, ShareLocWithAll) 

shareLocWithAll  Sat(C-share-AE)  Vio(P-privacy-AD)  safety ↑   
social-recognition ↑  privacy ↓ 

shareLocWithEevee  Sat(C-share-AE)  Sat(P-privacy-AD)  safety ↑   
social-recognition ↓  privacy ↑ 

Example 4 Aron is with Chansey on a midnight hike at Pilot Mountain. Chansey values privacy, 
and prohibits location sharing with all (just as Dr. Drampa does). However, Aron prefers safety 
to privacy in this context. Knowing these, Pikachu shares Aron’s location with all his friends 
(which includes Eevee). Note that sharing with friends, is both safer and less privacy violating 
than sharing with all and does not violate Aron’s prohibition from Chansey. 

P-privacy-AC = P(Aron, Chansey, SameLoc, ShareLocWithAll) 
shareLocWithAll  Sat(C-share-AE)  Vio(P-privacy-AC)  safety ↓  privacy ↓  
shareLocWithFriends  Sat(C-share-AE)  safety ↑  privacy ↓ 

These examples demonstrate the complexity of ethical decision making. To act ethically, a SIPA 
must (1) acquire information about context, social norms, and values; (2) reason about actions 
despite conflicts among and between norms and values; and (3) potentially communicate its 
reasoning (arguments) to other SIPAs to avoid sanctions.7 We need a systematic method to sup-
port SIPAs in accomplishing these nontrivial tasks. 

VALAR: A FRAMEWORK FOR ETHICAL AGENTS 
We propose Valar to engineer SIPAs that can understand preferences among values and reason 
about them to make policy decisions as exemplified above. Valar extends Arnor7 with values and 
provides a four-step method to model stakeholders, contexts, social norms, and values. 

Stakeholder modeling identifies the stakeholders, their goals, and relevant actions of a SIPA. A 
SIPA’s stakeholder is either its user or someone affected by its actions. A stakeholder’s goal 
defines what states he or she prefers. An action represents a step a SIPA may take. 

Context modeling identifies contexts in which stakeholders interact. A context refers to the 
relevant circumstance of decision making, and it is crucial in determining which goals to bring 
about and which actions to perform.8 

Social modeling identifies the norms and sanctions (see sidebar) associated with a stakeholder’s 
goals and a SIPA’s actions. The social norms and sanctions characterize the social architecture in 
which SIPAs act and interact. 

Value modeling identifies the relevant values and stakeholders’ preferences among those values, 
and how each action by the SIPA promotes or demotes the identified values. A stakeholder’s 
value preference specifies what outcomes are morally superior to others in the stakeholder’s 
judgment. Stakeholders’ preferences among values provide a basis for choosing which goal to 
bring about or which norm to satisfy. 

Figure 1 illustrates the main components of a Valar SIPA. A SIPA maintains (1) a model of the 
stakeholders, including their goals and values; (2) a world model, including its current state (con-
text), and preconditions and effects of available actions; and (3) the social model, including ap-
plicable norms and sanctions. Using this information, the SIPA’s decision module determines an 
ethical action that would be most compatible with its stakeholders’ value preferences and the 
applicable norms. The SIPA may perform the  determined action or recommend it to its user 
depending on the application. 

18March/April 2018 www.computer.org/internet



14	 ComputingEdge�  July 2018

 

 

 NATURAL WEB INTERFACES 

Table 1. The p-values indicating the difference in selected check-in policy and confidence when 
participants are aware and not aware of values promoted by each policy. 

Context Attribute Policy p Confidence p 

Graduation ceremony Not sensitive 0.07 <0.01 

Conference presentation Not sensitive 0.32 0.07 

Library Safe 0.85 0.59 

Airport Safe 0.08 0.23 

Hiking at night Unsafe <0.01 0.02 

Stuck in a hurricane Unsafe 0.01 0.01 

Bar with fake ID Sensitive 0.83 0.53 

Drug rehab Sensitive 0.14 0.48 
 

Making a confident decision. We observe that participants are more confident in making policy 
decisions for scenarios where they are made aware of the privacy, fame, and safety values. 

We evaluated the corresponding statistical hypotheses via Wilcoxon’s ranksum-test. Table 1 
summarizes our results for eight conceptual places. The p-values obtained indicate that, in some 
contexts, the participants’ decisions before and after they are primed with values are significantly 
different. Importantly, in some contexts, participants’ confidence increases significantly when 
they are primed with values. 

RELATED WORK 
Kayal et al.10 propose a value-based model for resolving conflicts between norms, especially 
social commitments. Their empirical results indicate that values can be used to predict users’ 
preferences when resolving conflicts. Kayal et al.’s model can supplement Valar, which goes 
beyond conflict resolution, providing constructs and mechanisms to develop value-driven ethical 
SIPAs. 

Dechesne et al.3 develop a model of norms and culture, represented by values, to study norm 
compliance. They concur that values are important in deciding whether or not a norm should be 
introduced. Borning and Muller11 motivate Value Sensitive Design to incorporate values in in-
formation technology, and highlight that values may differ widely across cultures and contexts. 

Riedl and Harrison12 argue that it is not easy for developers to exhaustively enumerate values, 
and propose that agents use sociocultural knowledge in stories, such as crowdsourced narratives, 
to learn values. 

CONCLUSION AND FUTURE DIRECTIONS 
We propose Valar, an agent-oriented software engineering method, to design ethical SIPAs that 
can reason about context, norms, values, and preferences among values. The preliminary results 
from our pilot study indicate that priming with values offers significant guidance to participants 
in making policy decisions. We conjecture that when SIPAs are made aware of such value pref-
erences, they will choose ethical actions and offer a high-quality social experience to the stake-
holders. However, these results are based on a small and biased sample without interaction with 
a production SIPA. 
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Figure 2. Policy when not aware of values versus when aware of values. 

This topic suggests interesting future directions. One, to evaluate the effectiveness of Valar via a 
developer study. Two, to crowdsource data about values and decision making about sharing 
policies on a much larger scale. Three, to employ machine learning to assist SIPAs in learning 
value preferences of stakeholders, and accordingly select policies. 
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Table 1. The p-values indicating the difference in selected check-in policy and confidence when 
participants are aware and not aware of values promoted by each policy. 

Context Attribute Policy p Confidence p 

Graduation ceremony Not sensitive 0.07 <0.01 

Conference presentation Not sensitive 0.32 0.07 

Library Safe 0.85 0.59 

Airport Safe 0.08 0.23 

Hiking at night Unsafe <0.01 0.02 

Stuck in a hurricane Unsafe 0.01 0.01 

Bar with fake ID Sensitive 0.83 0.53 

Drug rehab Sensitive 0.14 0.48 
 

Making a confident decision. We observe that participants are more confident in making policy 
decisions for scenarios where they are made aware of the privacy, fame, and safety values. 

We evaluated the corresponding statistical hypotheses via Wilcoxon’s ranksum-test. Table 1 
summarizes our results for eight conceptual places. The p-values obtained indicate that, in some 
contexts, the participants’ decisions before and after they are primed with values are significantly 
different. Importantly, in some contexts, participants’ confidence increases significantly when 
they are primed with values. 

RELATED WORK 
Kayal et al.10 propose a value-based model for resolving conflicts between norms, especially 
social commitments. Their empirical results indicate that values can be used to predict users’ 
preferences when resolving conflicts. Kayal et al.’s model can supplement Valar, which goes 
beyond conflict resolution, providing constructs and mechanisms to develop value-driven ethical 
SIPAs. 

Dechesne et al.3 develop a model of norms and culture, represented by values, to study norm 
compliance. They concur that values are important in deciding whether or not a norm should be 
introduced. Borning and Muller11 motivate Value Sensitive Design to incorporate values in in-
formation technology, and highlight that values may differ widely across cultures and contexts. 

Riedl and Harrison12 argue that it is not easy for developers to exhaustively enumerate values, 
and propose that agents use sociocultural knowledge in stories, such as crowdsourced narratives, 
to learn values. 

CONCLUSION AND FUTURE DIRECTIONS 
We propose Valar, an agent-oriented software engineering method, to design ethical SIPAs that 
can reason about context, norms, values, and preferences among values. The preliminary results 
from our pilot study indicate that priming with values offers significant guidance to participants 
in making policy decisions. We conjecture that when SIPAs are made aware of such value pref-
erences, they will choose ethical actions and offer a high-quality social experience to the stake-
holders. However, these results are based on a small and biased sample without interaction with 
a production SIPA. 
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Do Computers Follow Rules Once  
Followed by Workers?

Bjorn Westergard

I n his 2014 paper “Polanyi’s Paradox and the Shape of 
Employment Growth,” economist David Autor puts for-
ward a very general historical thesis (emphasis added):

When a computer processes a company’s payroll, 
alphabetizes a list of names, or tabulates the age 
distribution of residents in each U.S. Census enumer-
ation district, it is “simulating” a work process that 
would, in a previous era, have been done by humans 
using nearly identical procedures. The principle of 
computer simulation of workplace tasks has not fun-
damentally changed since the dawn of the computer 
era. But its cost has. … This remarkable cost decline 
creates strong economic incentives for firms to sub-
stitute ever-cheaper computing power for relatively 
expensive human labor, with attendant effects on 
employers’ demand for employees.

How could a historian of computing adjudicate this 
claim? How can we determine whether the procedures used 
by humans and computers are similar, let alone “nearly 
identical”? Part and parcel with this framing of the issue is 
Autor’s assertion that the inability of workers to articulate 
the rules they follow when carrying out a task constitutes 
an impediment to writing software to automate it and his 
suggestion that this impediment might be overcome with 
machine learning techniques, which putatively infer these 
“tacit rules” from a wealth of examples.

Underwriting this view is a theory—henceforth, “the 
ALM theory”—first laid out by Autor, Levy, and Murnane 
in The Skill Content Content of Recent Technological Change 
(2003) and The New Division of Labor (2004), which builds 
upon Michael Polanyi’s epistemology and attendant con-
ceptions of rule following.

The ALM theory was developed in response to an 
economic literature that argued that adoption of com-
puter technology—at the level of the industry, firm, or 
worksite—increases demand for the labor of those with a 
postsecondary education at the expense of those without. It 
was thought that in the race between education (supplying 
computer-complementary skills) and technology (creating 

demand for them), technology had and would prevail, driv-
ing up the wage premia of more educated workers.1

This “canonical model” of “skills-biased technical 
change” employed a binary classification scheme of “more- 
and less-skilled workers, often operationalized as college- 
and non-college-educated workers.” As the 1990s wore 
on economists found slowing growth in the college wage 
premium and nonmonotonic inequality growth difficult to 
account for in this framework. Subtler distinctions needed 
to be drawn.2

For these, economists pursuing the “task approach” 
looked to databases of job descriptions, such as the Depart-
ment of Labor’s Dictionary of Occupational Titles and its 
successor O*NET, to “[measure] the tasks performed in 
jobs rather than the educational credentials of workers 
performing those jobs.”3 They would conclude, contrary 
to the existing skill-biased technical change literature, 
that beginning in the late 1970s, computerization had 
issued in “job polarization” or “the simultaneous growth 
of high-education, high-wage and low-education, low-
wages jobs.”4

The task approach drops the assumption that edu-
cational attainment determines work activity in favor of 
two production functions: one characterizing how labor 
and computer capital inputs combine to perform tasks, 
another characterizing how task performances com-
bine to produce outputs (i.e., goods, services). The firm 
is taken to be a locus of task assignment and execution  
in which managers play a key role in “organizing tasks 
into jobs.”5

The heart of the ALM theory, which is meant to pro-
vide an interpretation of the data collected using the “task 
approach,” is the “ALM hypothesis”:6

(1) that computer capital substitutes for workers in 
carrying out a limited and well-defined set of cognitive 
and manual activities, those that can be accomplished 
by following explicit rules (what we term “routine 
tasks”); and (2) that computer capital complements 
workers in carrying out problem-solving and complex 
communication activities (“nonroutine tasks”).
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In addition to being “routine” or “nonroutine,” tasks 
are also either “manual” or “cognitive.” Example classifi-
cations include record keeping, calculation, repetitive cus-
tomer service (routine cognitive), medical diagnosis, legal 
writing, managing others (nonroutine cognitive), picking/
sorting, repetitive assembly (routine manual), janitorial 
work, truck driving, and removing paper clips from docu-
ments7 (nonroutine manual).8

Routine tasks are “those that can be accomplished 
by following explicit rules” (equivalently: “precise, well- 
understood procedures” or “instructions”).9 To count as 
sufficiently “rules-based”10 (“procedural,” “codifiable”) 
a task must be susceptible to being “fully described in a 
sequence of if-then-do steps.”11

Autor found the existing “skills-biased technical 
change” literature deficient for having failed “to answer 
the question of what it is that computers do.”12 To fill this 
lacuna, he suggests that what computers do (“fundamen-
tally”) is follow “procedures meticulously laid out by pro-
grammers.”13 Routine tasks, then, are “tasks that follow 
an exhaustive set of rules and hence are readily amenable to 
computerization”14 (emphasis added).

Nonroutine tasks, by contrast, are those we “only tacitly 
understand how to perform”:15

But the scope for substitution [of computer capital for 
labor] is bounded: engineers cannot program a com-
puter to simulate a process that they (or the scientific 
community at large) do not explicitly understand. This 
constraint is more binding than one might initially 
surmise because there are many tasks that we under-
stand tacitly and accomplish effortlessly for which we 
do not know the explicit “rules” or procedures. I refer 
to this constraint as Polanyi’s paradox, following 
Michael Polanyi’s (1966) observation that, “We know 
more than we can tell.” When we break an egg over 
the edge of a mixing bowl, identify a distinct species 
of bird based only on a fleeting glimpse, write a per-
suasive paragraph, or develop a hypothesis to explain 
a poorly understood phenomenon, we are engaging in 
tasks that we only tacitly understand how to perform.

Autor muses that programming is no longer the only 
way a machine can come by the rules it follows. Advances 
in “machine learning” have opened the way to “pro-
gram[ming] a machine to master the task autonomously 
by studying successful examples of the task being carried 
out by others,” thereby “inferring the rules that we tacitly 
apply but do not explicitly understand” (emphasis added). The 
machine running such algorithmically generated code can-
not, alas, “‘tell’ programmers why they do what they do.”16

The economist Daniel Susskind has recently put for-
ward a critique of the ALM theory on this point.17 Granting 
that “a machine must be set an explicit set of programmed 
rules,” he insists that the ALM theorists erred in asserting 
that “these explicit rules must originate with, and precisely 
reflect, the thinking process of a human being.” Rather than 
“allowing us to uncover more of the tacit rules that human 
beings follow in performing ‘non-routine’ tasks” machine 
learning systems “allow us to perform tasks with systems 
and machines that follow rules which do not need to reflect 
the rules that human beings follow at all, tacit or other-
wise.” Neural networks that classify skin discolorations, 
for example, can “derive a set of diagnostic ‘rules’ that do 
not need to reflect those that a dermatologist might follow.” 
Therefore, not only can computer capital be expected to 
substitute for labor in the execution “routine” tasks—those 
for which we can exhaustively state the rules we follow—
but also “routinizable” tasks—which have “features that 
make it more or less feasible to articulate a set of rules for a 
machine to follow.”

There are two central conceptual issues with both the 
ALM theory and Susskind’s critique thereof. Clarity on 
these points can help us to avoid historiographic missteps.

First, the pivotal notion of an “exhaustive” set of rules 
is obscure. In the first half of the ALM hypothesis, the ALM 
theorists do not merely wish to remind us that computer 
capital can substitute for labor in carrying out those tasks 
that we can accomplish by programming a computer (a near 
tautology). Rather, they wish to explain this susceptibility 
to “[codification] … in software” of certain work rules (the 
explanandum) by reference to the “exhaustiveness” of those 
rules (the explanans).

If the “exhaustiveness” of work rules is simply defined 
as their susceptibility to “codification,” there is no distinc-
tion between explanans and explanandum, and the ALM 
theory is explanatorily vacuous (as would be the case if 
Susskind’s “routinizibility” superseded the ALM theorists’ 
“routineness,” as he proposes).

The ALM theorists, on the other hand, require but do not 
provide a criterion of specificity (“exhaustiveness”) distinct 
from the aforementioned susceptibility that is applicable to 
rules for (e.g.) identifying bird species and multiplying num-
bers alike. But as sociologist Kjeld Schmidt points out, “the 
criterion of adequate specification of skilled performance is 
surely whether the specification serves the purpose for which 
it is given.”18 Pace Autor, experienced chefs can provide 
rules specific enough to guide apprentices in cracking eggs 
(“no, no, strike the flattest part of the egg, like this!”). It is a 
mistake to think that “even if an account is satisfactory to the 
practitioners (masters and apprentices alike) for their practi-
cal purposes, something can be construed as unsaid.”19 An 
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engineer writing a program for an egg-cracking robot might 
define the “flattest” part of the egg in terms of the second 
derivative of a curve fit to a raster image of the egg, etc.—but 
this is not a more precise statement of the chef’s rule. It is dif-
ferent rule for a different (but related) purpose (writing soft-
ware to crack eggs) (cf. Shanker on algorithms).20

Second, it is unclear what following a tacit rule would 
entail. The philosopher Stuart Shanker reminds us that in 
everyday usage “to say of an agent that he/she/it is follow-
ing a rule, then he/she/it must exhibit the ability to, e.g., 
instruct, explain, correct, or justify his/her/its behaviour 
by reference to the expression of the rule.”21 The ALM the-
orists flout everyday usage. If, for example, we say an indi-
vidual’s ability to identify a bird’s species involves the “tacit 
application” of rules (an application without awareness of 
a rule the individual cannot express), how can we account 
for a mistake in identification? The philosopher and social 
scientist Nigel Pleasants wryly surveys our various (and var-
iously baffling) options: “have they selected the wrong tacit 
rule; misapplied the correct tacit rule; or followed no tacit 
rule at all?”22 By the same token, it is equally meaningless to 
assert that “machine learning” programs produce rules that 
resemble (Autor) or do not resemble (Susskind) the rules 
tacitly followed by workers, because these latter rules are (ex 
hypothesi) ineffable, and thus unavailable for comparison.

But can’t we compare those work rules that can be 
made “explicit” with the “procedures meticulously laid out 
by programmers” in “stored instructions (programs)”23 that 
“computers follow”24 and find that they are “nearly identi-
cal”? No, because the computing artifacts in question do not 
follow rules.25 But their users do, at least some of the time.

In fact, a “new division of labor” did accompany the dif-
fusion of computing artifacts, but it remained a division of 
labor among human beings. There certainly are algorithms 
that were applied to tasks both before and after the advent 
of stored program digital computers, but in these cases the 
transition was not from human to machine application of a 
given algorithm, but from application in one set of occupa-
tions (e.g., clerk, computer, the managers thereof) to appli-
cation in another (e.g., engineer, programmer). To demon-
strate that the same rules were applied by two such groups, 
the historian must show that those in the latter appealed to 
rules expressed by those in the former.

Although this historiographic maxim has not, to my 
knowledge, been stated before, leading historians of com-
puting already act in accord with it. For example, when 
Knuth argues that distribution-sorting algorithms “were 
used [by machine operators] to sort punched cards for many 
years, long before electronic computers existed”26 before 
being “adapted to computer programming,” he identifies a 
paper by computer scientist H.H. Seward27 (1954) as having 

been crucial in convincing computer users that “radix sort-
ing within a computer” was feasible. In other words, he jus-
tifies his claim that the same rules were applied by machine 
operators in sorting and computer users in writing sorting 
programs by providing us with an example of an appeal by a 
representative of the latter group (Seward) to expressions of 
rules followed by the former.28 
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In addition to being “routine” or “nonroutine,” tasks 
are also either “manual” or “cognitive.” Example classifi-
cations include record keeping, calculation, repetitive cus-
tomer service (routine cognitive), medical diagnosis, legal 
writing, managing others (nonroutine cognitive), picking/
sorting, repetitive assembly (routine manual), janitorial 
work, truck driving, and removing paper clips from docu-
ments7 (nonroutine manual).8

Routine tasks are “those that can be accomplished 
by following explicit rules” (equivalently: “precise, well- 
understood procedures” or “instructions”).9 To count as 
sufficiently “rules-based”10 (“procedural,” “codifiable”) 
a task must be susceptible to being “fully described in a 
sequence of if-then-do steps.”11

Autor found the existing “skills-biased technical 
change” literature deficient for having failed “to answer 
the question of what it is that computers do.”12 To fill this 
lacuna, he suggests that what computers do (“fundamen-
tally”) is follow “procedures meticulously laid out by pro-
grammers.”13 Routine tasks, then, are “tasks that follow 
an exhaustive set of rules and hence are readily amenable to 
computerization”14 (emphasis added).

Nonroutine tasks, by contrast, are those we “only tacitly 
understand how to perform”:15

But the scope for substitution [of computer capital for 
labor] is bounded: engineers cannot program a com-
puter to simulate a process that they (or the scientific 
community at large) do not explicitly understand. This 
constraint is more binding than one might initially 
surmise because there are many tasks that we under-
stand tacitly and accomplish effortlessly for which we 
do not know the explicit “rules” or procedures. I refer 
to this constraint as Polanyi’s paradox, following 
Michael Polanyi’s (1966) observation that, “We know 
more than we can tell.” When we break an egg over 
the edge of a mixing bowl, identify a distinct species 
of bird based only on a fleeting glimpse, write a per-
suasive paragraph, or develop a hypothesis to explain 
a poorly understood phenomenon, we are engaging in 
tasks that we only tacitly understand how to perform.

Autor muses that programming is no longer the only 
way a machine can come by the rules it follows. Advances 
in “machine learning” have opened the way to “pro-
gram[ming] a machine to master the task autonomously 
by studying successful examples of the task being carried 
out by others,” thereby “inferring the rules that we tacitly 
apply but do not explicitly understand” (emphasis added). The 
machine running such algorithmically generated code can-
not, alas, “‘tell’ programmers why they do what they do.”16

The economist Daniel Susskind has recently put for-
ward a critique of the ALM theory on this point.17 Granting 
that “a machine must be set an explicit set of programmed 
rules,” he insists that the ALM theorists erred in asserting 
that “these explicit rules must originate with, and precisely 
reflect, the thinking process of a human being.” Rather than 
“allowing us to uncover more of the tacit rules that human 
beings follow in performing ‘non-routine’ tasks” machine 
learning systems “allow us to perform tasks with systems 
and machines that follow rules which do not need to reflect 
the rules that human beings follow at all, tacit or other-
wise.” Neural networks that classify skin discolorations, 
for example, can “derive a set of diagnostic ‘rules’ that do 
not need to reflect those that a dermatologist might follow.” 
Therefore, not only can computer capital be expected to 
substitute for labor in the execution “routine” tasks—those 
for which we can exhaustively state the rules we follow—
but also “routinizable” tasks—which have “features that 
make it more or less feasible to articulate a set of rules for a 
machine to follow.”

There are two central conceptual issues with both the 
ALM theory and Susskind’s critique thereof. Clarity on 
these points can help us to avoid historiographic missteps.

First, the pivotal notion of an “exhaustive” set of rules 
is obscure. In the first half of the ALM hypothesis, the ALM 
theorists do not merely wish to remind us that computer 
capital can substitute for labor in carrying out those tasks 
that we can accomplish by programming a computer (a near 
tautology). Rather, they wish to explain this susceptibility 
to “[codification] … in software” of certain work rules (the 
explanandum) by reference to the “exhaustiveness” of those 
rules (the explanans).

If the “exhaustiveness” of work rules is simply defined 
as their susceptibility to “codification,” there is no distinc-
tion between explanans and explanandum, and the ALM 
theory is explanatorily vacuous (as would be the case if 
Susskind’s “routinizibility” superseded the ALM theorists’ 
“routineness,” as he proposes).

The ALM theorists, on the other hand, require but do not 
provide a criterion of specificity (“exhaustiveness”) distinct 
from the aforementioned susceptibility that is applicable to 
rules for (e.g.) identifying bird species and multiplying num-
bers alike. But as sociologist Kjeld Schmidt points out, “the 
criterion of adequate specification of skilled performance is 
surely whether the specification serves the purpose for which 
it is given.”18 Pace Autor, experienced chefs can provide 
rules specific enough to guide apprentices in cracking eggs 
(“no, no, strike the flattest part of the egg, like this!”). It is a 
mistake to think that “even if an account is satisfactory to the 
practitioners (masters and apprentices alike) for their practi-
cal purposes, something can be construed as unsaid.”19 An 
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Large-Scale Calculations for Material Sciences 
Using Accelerators to Improve Time- and 
Energy-to-Solution

Markus Eisenbach | Oak Ridge National Laboratory

U
nderstanding the properties of materials is im-
portant for a wide range of engineering applica-
tions and for answering fundamental questions in 
condensed-matter physics and materials science. 

While existing computational capabilities are sufficient to 
provide both highly accurate results for simple, idealized 
systems and approximate results for larger systems, the ca-
pabilities needed for ab initio investigations of realistic 
materials, including defects and disorder at operating tem-
peratures, are beyond the practical limits of current systems. 

A major and growing impediment to delivering the 
computational performance needed for next-generation ma-
terials science breakthroughs—and similar breakthroughs 

in any number of other scientific domains—is the amount 
of power consumed by widely deployed computer archi-
tectures. Indeed, power requirements for state-of-the-art 
leadership computing facilities are now measured in units 
of megawatts and aren’t scalable for many practical rea-
sons. This is one of the major drivers for the introduction of 
new machine architectures, such as those designed around  
many-core processors and specialized accelerators. 

Toward Modeling Realistic Materials
Although the ground-state properties of a pure compound can 
readily be calculated with density functional theory (DFT) to-
day, real materials—structures with atomic impurities, crystal 
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defects, dislocations, grain boundaries, and other low 
symmetry structures—have to be considered. Yet, 
the calculation of even the ground state for realistic 
models of systems of more than 1,000 atoms is a 
daunting problem for current computer systems. 

The need for computational resources at least 
an order of magnitude more powerful than current 
machines also arises from the need to calculate the 
finite temperature properties of these materials. Re-
alistic materials are significantly more complex than 
idealized materials and need the consideration of a 
significantly larger number of possible configurations 
arising from chemical order and atomic displace-
ments, consequently requiring more computational 
resources. A relevant length scale can be obtained by 
considering the thickness of a magnetic domain wall, 
typically a few hundred atomic layers thick. 

A computational super-cell to describe the ther-
modynamics of such a system will require more than 
100,000 atoms, which is 100 times larger than the 
cell sizes used in current-generation computations. 
Going beyond the static behavior of magnetic sys-
tems requires the inclusion of magnetic kinetics in 
the calculations, driving the need for computational 
resources capable of calculating realistic systems at 
finite temperatures well into exascale computing.

One approach to tackling this problem is to 
use the locally self-consistent multiple scattering 
(LSMS) method, which was designed to efficiently 
perform scalable first-principles calculations of ma-
terials and condensed-matter systems. The usual 
approach of finding the solution of the Kohn-Sham 
equation that underpins DFT relies on expanding 
the electron wave functions in a way that assumes 
an ideal, “defectless” periodic crystal with a small 
cell of representative atoms. This traditional ap-
proach scales with the cube of the system size.

An alternative expression for the solution of 
the Kohn-Sham equation that contains all the nec-
essary information to calculate the physical quanti-
ties can be elegantly formulated in the context of 
the multiple scattering theory for electrons, also 
known as the Kohn-Korringa-Rostoker (KKR) 
method. In real space, this allows linear scaling 
in the number of total atoms in the system for all 
electron first-principles calculations. Additionally, 
the main computational requirement of this meth-
od lies in inverting dense complex matrices, as the 
code achieves high compute intensity and benefits 
from highly optimized dense linear algebra librar-
ies, such as BLAS and LAPACK. 

The computational efficiency of LSMS led to 
its recognition as an outstanding achievement in 

high-performance computing (HPC), winning the 
prestigious ACM Gordon Bell Prize in 1998 for 
enabling the efficient first-principles calculations 
of ground-state properties of realistic models of 
materials with disorder or internal nanostructure. 

More recently, the capabilities of LSMS have 
been expanded to investigate the behavior of ma-
terial properties at finite temperatures. With the 
extended ability to perform calculations for large 
simulation cells addressed with the original version 
of LSMS, calculations of these finite temperature 
behaviors require the calculation and sampling of 
a large number of configurations that the atomic 
sites in these cells can occupy.

This capability was achieved by combining the 
LSMS code with the Wang-Landau Monte Carlo 
method to systematically sample randomly selected 
configurations of simulation cells to compute a 
system’s finite temperature behavior, resulting in 
the WL-LSMS code. This sampling of configura-
tions introduced an additional level of parallelism 
that enables the scaling of these calculations to the 
largest currently available HPC architectures. Thus 
WL-LSMS was one of the earliest codes to achieve 
double-precision performance beyond the PFLOP/s 
mark, which resulted in it being recognized with a 
Gordon Bell Prize in 2009.

Exploiting the GPU
The large-scale, first-principles simulations enabled 
with LSMS has allowed a research team using Oak 
Ridge Leadership Computing Facility’s Titan su-
percomputer to investigate magnetism in large 
structures and, by using the first-principles-based 
Monte Carlo simulation, to obtain finite tempera-
ture behavior of magnetic materials and alloys. Un-
derstanding phase transitions in alloys is of funda-
mental importance in materials science, and the de-
sign of new materials relies on the knowledge of the 
thermodynamic properties of the different phases. 
Hence, there’s a desire to be able to calculate prop-
erties such as phase transition temperatures and 
specific heat of alloys from first principles. 

The advances in available computational re-
sources have made it possible to consider direct 
simulation of the order-disorder transition in solid-
solution alloys without resorting to fitting to mod-
els or the need to resort to mean field theories. For 
example, the team has been able to calculate the 
ordering transition in brass (Cu0.5Zn0.5) without 
model parameters, where the atoms randomly oc-
cupy the lattice sites at high temperature to a regu-
lar order at low temperature. 
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The emergence of hybrid, accelerator-based 
HPC architectures has opened the door to signifi-
cant on-node, multithreaded parallelism. To be 
able to take advantage of these new capabilities of 
multithreaded and accelerated architectures, the 
WL-LSMS data layout was restructured to enable 
bundling multiple atoms into a single MPI process 
and allow multithreaded execution of multi-atom 
and multi-energy calculations on a single node. 

For the GPU accelerators available on Titan, the 
team focused on porting the matrix inversion in the 
multiple scattering part of LSMS to the GPUs, as 
this part is responsible for roughly 95 percent of all 
the floating-point operations in the code. The matrix 
inversion algorithm for general complex matrices 
employed in LSMS consists of multiple matrix-ma-
trix multiplications and inversions of small subma-
trices. The matrix-matrix multiplications employ the 
routines provided in cuBLAS, while the sub-block 
inversion uses an optimized matrix inversion algo-
rithm that performs LU factorization (a method that 
transforms a square matrix to two triangular matri-
ces) completely on the GPU device without needing 
data communication with the CPU host.

To assess the power efficiency of LSMS’s GPU 
port, the team measured Titan’s instantaneous power 
consumption during the execution of the WL-LSMS 
code. Figure 1 shows the power consumption over 
time of a simulated cell of 1,024 iron atoms. An 
identical simulation was performed using a GPU-
optimized, CPU-only version of the code. The dif-
ferent phases of the calculation are clearly visible in 
the power consumption graph, where the high power 
requirement of LSMS’s computationally intensive 
dense linear algebra calculations are interspersed with 
the low power demand of the Monte Carlo and com-
munication part of the Wang-Landau calculation. 
The code’s execution pattern is clearly visible in this 
power trace, both for the CPU and GPU versions. 
This measurement utilized 18,561 of Titan’s nodes, 
equivalent to 99 percent of the system’s capacity. 
The GPU-accelerated code executes 8.6 times faster 
than the version of the code that doesn’t utilize ac-
celerators, achieving a sustained performance of 14.5 
Pflops versus 1.86 Pflops for the nonaccelerated code. 

Moreover, the energy consumption for this calcu-
lation of the GPU version was 3,500 kilowatt hours, 
while the identical calculation using only CPUs con-
sumed 25,700 kilowatt hours. Consequently, while 
the peak instantaneous power consumption of the ac-
celerated version of LSMS is 30 percent higher than 
the nonaccelerated version, the simultaneous speedup 
results in a 7.3-fold reduction in energy to solution. 

At the same time, LSMS maintains scalability and 
achieves weak scaling efficiency of 96 percent when 
scaling from a 16-atom calculation on 4 Titan nodes 
to 65,536 atoms on 16,384 nodes. 

These results illustrate the benefits of exploring 
new, more power-efficient architectures by refac-

toring algorithms and, in the process, enabling new 
scientific capabilities. 
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Figure 1. Power consumption of WL-LSMS on identical runs of 
1,024 iron atoms on 18,561 nodes of Titan. The power trace 
shows 20 Monte Carlo steps for each walker. The GPU-enabled 
version of the code shows significantly increased instantaneous 
power consumption, with 14.5 Pflops sustained performance for 
GPU code versus 1.86 Pflops for CPU only. Runtime is 8.6x faster 
for the accelerated code, and energy consumed is 7.3x less. The 
GPU-accelerated code consumed 3,500 kWh, and the CPU-only 
code consumed 25,700 kWh for the same calculation.
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defects, dislocations, grain boundaries, and other low 
symmetry structures—have to be considered. Yet, 
the calculation of even the ground state for realistic 
models of systems of more than 1,000 atoms is a 
daunting problem for current computer systems. 

The need for computational resources at least 
an order of magnitude more powerful than current 
machines also arises from the need to calculate the 
finite temperature properties of these materials. Re-
alistic materials are significantly more complex than 
idealized materials and need the consideration of a 
significantly larger number of possible configurations 
arising from chemical order and atomic displace-
ments, consequently requiring more computational 
resources. A relevant length scale can be obtained by 
considering the thickness of a magnetic domain wall, 
typically a few hundred atomic layers thick. 

A computational super-cell to describe the ther-
modynamics of such a system will require more than 
100,000 atoms, which is 100 times larger than the 
cell sizes used in current-generation computations. 
Going beyond the static behavior of magnetic sys-
tems requires the inclusion of magnetic kinetics in 
the calculations, driving the need for computational 
resources capable of calculating realistic systems at 
finite temperatures well into exascale computing.

One approach to tackling this problem is to 
use the locally self-consistent multiple scattering 
(LSMS) method, which was designed to efficiently 
perform scalable first-principles calculations of ma-
terials and condensed-matter systems. The usual 
approach of finding the solution of the Kohn-Sham 
equation that underpins DFT relies on expanding 
the electron wave functions in a way that assumes 
an ideal, “defectless” periodic crystal with a small 
cell of representative atoms. This traditional ap-
proach scales with the cube of the system size.

An alternative expression for the solution of 
the Kohn-Sham equation that contains all the nec-
essary information to calculate the physical quanti-
ties can be elegantly formulated in the context of 
the multiple scattering theory for electrons, also 
known as the Kohn-Korringa-Rostoker (KKR) 
method. In real space, this allows linear scaling 
in the number of total atoms in the system for all 
electron first-principles calculations. Additionally, 
the main computational requirement of this meth-
od lies in inverting dense complex matrices, as the 
code achieves high compute intensity and benefits 
from highly optimized dense linear algebra librar-
ies, such as BLAS and LAPACK. 

The computational efficiency of LSMS led to 
its recognition as an outstanding achievement in 

high-performance computing (HPC), winning the 
prestigious ACM Gordon Bell Prize in 1998 for 
enabling the efficient first-principles calculations 
of ground-state properties of realistic models of 
materials with disorder or internal nanostructure. 

More recently, the capabilities of LSMS have 
been expanded to investigate the behavior of ma-
terial properties at finite temperatures. With the 
extended ability to perform calculations for large 
simulation cells addressed with the original version 
of LSMS, calculations of these finite temperature 
behaviors require the calculation and sampling of 
a large number of configurations that the atomic 
sites in these cells can occupy.

This capability was achieved by combining the 
LSMS code with the Wang-Landau Monte Carlo 
method to systematically sample randomly selected 
configurations of simulation cells to compute a 
system’s finite temperature behavior, resulting in 
the WL-LSMS code. This sampling of configura-
tions introduced an additional level of parallelism 
that enables the scaling of these calculations to the 
largest currently available HPC architectures. Thus 
WL-LSMS was one of the earliest codes to achieve 
double-precision performance beyond the PFLOP/s 
mark, which resulted in it being recognized with a 
Gordon Bell Prize in 2009.

Exploiting the GPU
The large-scale, first-principles simulations enabled 
with LSMS has allowed a research team using Oak 
Ridge Leadership Computing Facility’s Titan su-
percomputer to investigate magnetism in large 
structures and, by using the first-principles-based 
Monte Carlo simulation, to obtain finite tempera-
ture behavior of magnetic materials and alloys. Un-
derstanding phase transitions in alloys is of funda-
mental importance in materials science, and the de-
sign of new materials relies on the knowledge of the 
thermodynamic properties of the different phases. 
Hence, there’s a desire to be able to calculate prop-
erties such as phase transition temperatures and 
specific heat of alloys from first principles. 

The advances in available computational re-
sources have made it possible to consider direct 
simulation of the order-disorder transition in solid-
solution alloys without resorting to fitting to mod-
els or the need to resort to mean field theories. For 
example, the team has been able to calculate the 
ordering transition in brass (Cu0.5Zn0.5) without 
model parameters, where the atoms randomly oc-
cupy the lattice sites at high temperature to a regu-
lar order at low temperature. 

This article originally appeared in 
Computing in Science & Engineering, vol. 19, no. 1, 2017.
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All hardware companies face a conun-
drum. Should they continue the evolu-
tionary trend of their current products, 
or build riskier products that have the 
potential for greater reward but carry a 
higher probability of failure? The safe 
course, and one that many custom-
ers ask for, is the former. However, as 
Clayton Christensen points out in The 
Innovator’s Dilemma, “most companies 
with a practiced discipline of listening 
to their best customers and identify-
ing new products that promise greater 
profitability and growth are rarely able 
to build a case for investing in disrup-
tive technologies until it is too late.”1

Computer hardware companies 
expend enormous resources to suc-
cessfully improve their products in an 
evolutionary fashion. Single-threaded 
processor performance has been improv-
ing at a rate of 15 to 20 percent per year 
by utilizing both process technology 
and architectural improvements.2 These 
improvements, however, are increasingly 
difficult to achieve. Using data from 
Moein Khazraee and colleagues,3 Fig-
ure 1 shows that a processor’s cost per 
operation, as defined by a combina-
tion of fabrication, nonrecurring engi-
neering (NRE), and packaging costs, 
has not significantly improved in the 
past decade. However, performance 
improvements are flattening out due to 

power restrictions and the breakdown 
of Dennard scaling. For instance, Intel 
is no longer relying on the tick-tock 
model, which it rode to market dom-
inance for the past decade, due to the 
declining benefits of process technol-
ogy scaling.4

Sustaining versus Disruptive 
Technology
Christensen describes the evolutionary 
process of improvements using the sus-
taining technology S-curve (see Figure 2). 
For every successful technology, the per-
formance metric is initially flat during 
development, rapidly improves for a 
period of time, and flattens out again 
when the product and/or technology 
reaches maturity. Sustaining technolo-
gies are dominating the processor indus-
try, and these technologies are reaching 
a plateau.

Sometimes a disruptive technol-
ogy with a new S-curve will enter the 
landscape, as shown in Figure 2. Dis-
ruptive technologies do not go head 
to head with mainstream technolo-
gies, but they do have features that a 
few fringe markets value. Typically, 
disruptive technologies initially under-
perform, but then rapidly match and 
exceed the previous technology. Suc-
cessful companies not only ride their 
sustaining S-curves but generate new, 

disruptive curves to improve perfor-
mance as the current technology curve 
flattens out. Microprocessors were 
once a disruptive technology,1 and 
the computing landscape over the past  
few decades is littered with disruptive 
technologies, from minicomputers to 
PCs to smartphones to cloud comput-
ing. In all these cases, the disruptive 
technology yielded worse performance 
in the near-term when using the same 
cost function as mainstream technology. 
However, as Christensen maintains, dis-
ruptive technologies eventually redefine  
how performance is measured.

Recent examples of disruptive 
technologies in processor architecture 
include GPUs and Arm servers. GPUs 
were originally designed for 3D graph-
ics processing, but have made signifi-
cant inroads first in high-performance 
computing (HPC) and more recently 
in machine learning. For applications 
that are similar to those found in 
SPECint, GPUs underperform gen-
eral-purpose processors. However, 
for targeted HPC applications and 
machine learning, GPUs are over-
whelmingly superior.

Arm processors originally tar-
geted power-constrained embedded 
domains, but have more recently 
entered the server market with prod-
uct offerings from companies such as 
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Cavium and Qualcomm that address 
multicore throughput computing.5,6 
A new S-curve could develop for these 
specialized throughput-based server 
products—enabled by highly paralleliz-
able shared-memory applications—just 
as it did with HPC and machine learn-
ing in the GPU market.

It took the GPU market nearly 
two decades to make headway outside 
of graphics applications, and the Arm 
server market has resulted in several 
failures. Christensen notes that this 
commonplace in disruptive markets is 
where “[it] is simply impossible to pre-
dict with any useful degree of precision 
how disruptive products will be used 
or how large their markets will be.” 
So, how does one innovate in a rapidly 
changing technology landscape where 
the underlying cost function is in flux? 
How does a company keep up with the 
necessary and expensive evolutionary 
changes, yet also prepare for and justify 
expending valuable resources investi-
gating disruptive technologies that are 
inevitable?

The Case for Agility
Companies and their mainstream cus-
tomers alike are notoriously bad at pre-
dicting what disruptive products will 
take root in the marketplace. There are 
many instances of high-profile devel-
opments that flopped. For example, it 
is unlikely you are reading this article 
on your Apple Newton while listen-
ing to music on your Microsoft Zune. 
Conversely, some disruptive technol-
ogies have found success in surprising 
places such as GPUs. Innovation in a 
rapidly changing landscape is difficult 
and prone to failure. Therefore, we 
posit that architects, rather than trying 
to predict the future, should pursue 
agility in order to accelerate innova-
tion while minimizing costs. Hard-
ware companies, architects, and the 
underlying design methodologies and 
infrastructure must be nimble enough 
to deal with disruptive technologies 
that come from within and outside the 

current technology landscape. The rest 
of the article presents some ideas on 
how this may be accomplished.

Agile Architecture
In his book The Lean Startup: How 
Today’s Entrepreneurs Use Continuous 
Innovation to Create Radically Success-
ful Business,7 Eric Ries writes about 
software companies that use agile 
software development strategies. The 
premise is to deliver prototypes as 
quickly as possible, even if haphazardly 
put together, to get early customer 
feedback. The goal is to use customer 
feedback to drive product features and 
direction through a process of continu-
ous development. If you consider how 
frequently the apps on your phone are 
updated, or the look and feel of social 
networking sites evolve, you have seen 
agile software practices in action.

Facebook, for example, uses agile  
coding practices. As Kent Beck 
explains,8 one of the basic practices at 
Facebook is reversibility. If a decision is 
reversible, it does not require the rig-
orous testing that irreversible decisions 
require. Code is also released incremen-
tally to a small subset of users, which 
enables changes to be rolled back with 
minimal disruption if a problem is 
found.9 The challenge for the hard-
ware industry is how to adapt a similar  
agile methodology without incur-
ring large overheads. We address this 

challenge in both traditional processor 
hardware methodologies and innova-
tive methodologies utilized by large 
computing companies.

Processor Agility
Prior to the ASIC revolution of the 
past few decades, hardware prototypes 
were a common means of achieving 
the rapid development and early feed-
back cycle. Old technologies such as 
wire-wrap, breadboards, programma-
ble logic devices (PLDs), and low-cost 
printed circuit boards (PCBs) enabled 
hardware companies to quickly build 
and iterate on products. This meth-
odology is no longer feasible given the 
complexity and cost of processor devel-
opment both in terms of engineering 
time and fabrication costs.3
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All hardware companies face a conun-
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tionary trend of their current products, 
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course, and one that many custom-
ers ask for, is the former. However, as 
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Computer hardware companies 
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processor performance has been improv-
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when the product and/or technology 
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gies are dominating the processor indus-
try, and these technologies are reaching 
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Sometimes a disruptive technol-
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ruptive technologies do not go head 
to head with mainstream technolo-
gies, but they do have features that a 
few fringe markets value. Typically, 
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perform, but then rapidly match and 
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cessful companies not only ride their 
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flattens out. Microprocessors were 
once a disruptive technology,1 and 
the computing landscape over the past  
few decades is littered with disruptive 
technologies, from minicomputers to 
PCs to smartphones to cloud comput-
ing. In all these cases, the disruptive 
technology yielded worse performance 
in the near-term when using the same 
cost function as mainstream technology. 
However, as Christensen maintains, dis-
ruptive technologies eventually redefine  
how performance is measured.

Recent examples of disruptive 
technologies in processor architecture 
include GPUs and Arm servers. GPUs 
were originally designed for 3D graph-
ics processing, but have made signifi-
cant inroads first in high-performance 
computing (HPC) and more recently 
in machine learning. For applications 
that are similar to those found in 
SPECint, GPUs underperform gen-
eral-purpose processors. However, 
for targeted HPC applications and 
machine learning, GPUs are over-
whelmingly superior.

Arm processors originally tar-
geted power-constrained embedded 
domains, but have more recently 
entered the server market with prod-
uct offerings from companies such as 
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Automated design methodology and  
reuse. Companies today rely on 
improved design methodologies and 
reusability to reduce design time and 
cost. Design methodologies have made 
great strides in the past two decades, 
resulting in shorter design cycle times and 
an expanded product portfolio using the 
same fundamental components. Most 
processors, even those designed for high 
performance, are mostly or completely 
synthesized. The Arm roadmap has 
synthesized cores operating at 3 GHz, 
and AMD, Intel, and IBM extensively 
use automated tools throughout their 
design.10–12 In addition, companies uti-
lize a modular design methodology such 
that multiple products can be developed 
using the same basic components.

Both Intel and AMD use their 
respective base core designs and inno-
vative packaging technologies to build 
products ranging from low-power 
mobile parts to multicore server  
products.13 Similarly, silicon compa-
nies such as Cavium and Nvidia have 
been able to create a family of devices 
with varying price/performance points 
from the same basic design by utilizing 
flexible chip layouts that let designers 
vary the number of computational 
units and/or the amount of on-die 
memory. Intel has taken this one  
step further by collaborating with 
Facebook to develop a specialized  
version of Broadwell (referred to as 
Broadwell-D) to meet the specific 
needs of Facebook.14

The technologies mentioned so far 
reduce design cycle time, but there is 
still significant overhead associated with 
bringing a chip to production. Post- 
silicon functional and performance 
debug is a formidable challenge for 
modern processors that may encompass 
multiple sockets, heterogeneous and/or 
multithreaded cores, many cores com-
bined with multiple levels of memory 
hierarchy, complex memory coherence 
and consistency protocols, and extensive 
power and performance management 
via on-chip controllers. In addition, 

modern processors may operate under 
complex software stacks containing one 
or more nested virtual environments. 
For these reasons, even with mostly 
synthesized methodologies and reuse 
of existing components, the transition 
from first silicon to full production part 
can take up to a year or more.15

Functional verification and bug  
mitigation. Post-production bugs are  
commonplace, and fixing bugs in 
shipped products often involves errata, 
metal and full-layer spins, and/or 
replacing existing silicon. Infamous 
examples of such bugs are the Pentium 
FDIV bug,16 the Haswell/Broadwell 
transactional memory bug,17 and the 
AMD TLB bug.18 These bugs cost the 
respective companies millions of dol-
lars in lost revenue, and in AMD’s case, 
contributed to its loss of momentum 
in the server market. All processors 
have a large list of errata. The table of 
known errata in Haswell, for instance, 
covers six pages.19

To meet market needs and address 
the complexity and cost of post-silicon  
debug, architects must focus on 
hardware and software solutions for 
exposing, analyzing, and mitigating 
functional and performance bugs. 
Processor vendors must provide tools 
that rapidly expose and identify bugs 
and have systems in place for mitigat-
ing these bugs without the need for 
extensive silicon changes. Efforts such 
as Arm’s hardware debug architecture 
attempt to standardize the infrastruc-
ture so that common tools can be 
made available to the Arm hardware 
development ecosystem.20

Both software and hardware solu-
tions should be explored for mitigating 
hardware bugs in the field. On the hard-
ware front, microcode fixes on tradi-
tional CISC processors come to mind, 
as does the PAL (Privileged Architecture 
Library) code feature of DEC’s Alpha 
processors. A similar technology that 
might help processor vendors mitigate 
bugs is virtual machine environments. 

Much software these days is compiled 
to an abstract machine. Two examples 
of such abstraction layers, one cur-
rent and one historical, are Oracle’s 
Java Virtual Machine (JVM)21 and 
IBM’s AS/400 Series.22 If an entire 
processor is designed to execute only 
a JVM, then the JVM itself provides 
the instruction set architecture (ISA) of 
the machine, and the underlying phys-
ical machine may have bugs or features 
that are invisible to the JVM. The JVM 
addresses ISA-related bugs. Similarly, 
more fully specified virtual machine 
environments, such as VMware’s 
vSphere and Microsoft’s Hyper-V, vir-
tualize system aspects of the machine, 
such as memory management and I/O. 
Machines such as IBM’s AS/400 man-
aged to maintain a stable abstract archi-
tecture through multiple generations  
of hardware. By expecting and archi-
tecting for bug discovery, analysis, 
and mitigation, processor vendors can 
reduce the number of bugs that reach 
production silicon, and respond to 
issues in post-production parts quickly 
and effectively. This shortens the 
designer-customer feedback loop and 
leads to a faster development cycle and 
improved successor products.

Performance verification and  
optimization. Another critical facet 
of bringing a processor to production 
is performance tuning. Processors are 
designed with dozens of control bits 
(also referred to as chicken bits) to 
manage system performance. Some 
chicken bits are exposed to the user 
(for example, disabling prefetching or 
simultaneous multithreading mode, or 
restricting power management), and 
others are known only by the manufac-
turer. Regardless, how these bits are set 
and tuned can have a significant impact 
on performance. Unfortunately, there 
are hundreds of these interdependent 
knobs, and tuning them by hand is 
impractical. However, self-tuning sys-
tems, either integrated into the oper-
ating system or as separate tools,23 
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that can dynamically adjust these bits 
according to application needs may be 
an innovative mechanism for achiev-
ing optimal performance. Best of all, 
these tuners can be deployed on-site, 
which means they do not gate product 
release to customers. Finally, the same 
techniques for fixing bugs via low-level 
software or implementing a virtual 
machine can also be used to adapt sil-
icon to new applications. Hardware 
designers can enable and deploy new 
instructions and features through 
the same mechanisms used to patch 
around bugs. New versions of a JVM 
implementation, for example, may 
exploit optimizations that are relevant 
to new application areas.

Computational Agility
So far, we have addressed agility at 
the processor level. However, with 
the advent of warehouse-scale systems 
driven by cloud computing, the pro-
cessor becomes one piece of a larger 
computational problem. New com-
panies entering the computing arena 
include numerous startups and large, 
established companies from outside 
the traditional chip design industry, 
such as Google, Microsoft, and Ama-
zon. Few if any of these companies 
are choosing to go head-to-head in 
the general-purpose processor market 
with traditional designs such as Intel 
and AMD. Rather, they are achieving 
agility via specialized devices targeting 
narrower but highly relevant domains.

The need for specialization. The end 
of Dennard scaling and the slowdown 
and imminent demise of Moore’s law 
drive the need for specialization, just 
as they demand agility in processor 
design. During the steep part of the 
S-curve for general-purpose processors, 
specialized architectures were quickly 
outpaced by these cheaper commodity 
devices. The slowing rate of improve-
ment in general-purpose designs both 
creates opportunity for specialized 
architectures and drives demand, as 

customers can no longer rely on the 
commodity market to satisfy their 
computing needs.

A prerequisite for specialization is 
identifying an application or applica-
tion domain narrow enough to benefit 
from specialization but large enough 
to justify a specialized device. Focusing 
on smaller and smaller domains (down 
to specific applications) increases the 
amount of potential performance 
uplift through specialization, while 
decreasing the potential market. To 
be successful, the total value cre-
ated through specialization (roughly 
speaking, the value per device times 
the number of devices) must exceed 
the cost of developing the specialized 
device. By developing agile methodol-
ogies that reduce engineering costs, we 
can enable specialization for smaller 
domains and allow specialized devices 
to emerge sooner in growing markets.

Figure 3 shows the specializa-
tion trend over time, starting with 
CPUs and ending with custom ASICs. 
Cryptocurrency mining followed this 
trend,24 and deep learning, one of the 
most prominent new markets attract-
ing specialized architectures, is follow-
ing suit. GPUs offer better performance 
than CPUs for certain tasks, such as 
training for AI, whereas state-of-the 

art field-programmable gate arrays 
(FPGAs) can outperform standard 
GPUs for certain computations such 
as low-precision arithmetic.25 Finally, 
custom ASIC accelerators provide the 
highest performance efficiency.

Multiple startups such as Graph-
core, Wave Computing, Nervana (now 
part of Intel), and Groq are developing 
or have developed customized deep 
learning accelerators that occupy the 
upper right corner of Figure 3. How-
ever, one of the earliest and most pub-
licized deep learning accelerators is not 
from a startup but from an established 
company without a history of chip 
design. The Google Tensor Processing 
Unit (TPU) was developed in a short 
15 months.26 To achieve a rapid pro-
duction cycle, Google used an older 
and more stable process technology 
(28 nm) and existing communication 
interfaces. The first-generation TPU 
was for internal use and had compu-
tational and memory bandwidth lim-
itations. However, the TPU is now on 
its second iteration, and it not only 
supports higher computational capa-
bility and memory bandwidth, but will 
reportedly be made accessible to third 
parties.27

Even in an agile environment, the 
delay from the initial ASIC concept 
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debug, architects must focus on 
hardware and software solutions for 
exposing, analyzing, and mitigating 
functional and performance bugs. 
Processor vendors must provide tools 
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extensive silicon changes. Efforts such 
as Arm’s hardware debug architecture 
attempt to standardize the infrastruc-
ture so that common tools can be 
made available to the Arm hardware 
development ecosystem.20

Both software and hardware solu-
tions should be explored for mitigating 
hardware bugs in the field. On the hard-
ware front, microcode fixes on tradi-
tional CISC processors come to mind, 
as does the PAL (Privileged Architecture 
Library) code feature of DEC’s Alpha 
processors. A similar technology that 
might help processor vendors mitigate 
bugs is virtual machine environments. 

Much software these days is compiled 
to an abstract machine. Two examples 
of such abstraction layers, one cur-
rent and one historical, are Oracle’s 
Java Virtual Machine (JVM)21 and 
IBM’s AS/400 Series.22 If an entire 
processor is designed to execute only 
a JVM, then the JVM itself provides 
the instruction set architecture (ISA) of 
the machine, and the underlying phys-
ical machine may have bugs or features 
that are invisible to the JVM. The JVM 
addresses ISA-related bugs. Similarly, 
more fully specified virtual machine 
environments, such as VMware’s 
vSphere and Microsoft’s Hyper-V, vir-
tualize system aspects of the machine, 
such as memory management and I/O. 
Machines such as IBM’s AS/400 man-
aged to maintain a stable abstract archi-
tecture through multiple generations  
of hardware. By expecting and archi-
tecting for bug discovery, analysis, 
and mitigation, processor vendors can 
reduce the number of bugs that reach 
production silicon, and respond to 
issues in post-production parts quickly 
and effectively. This shortens the 
designer-customer feedback loop and 
leads to a faster development cycle and 
improved successor products.

Performance verification and  
optimization. Another critical facet 
of bringing a processor to production 
is performance tuning. Processors are 
designed with dozens of control bits 
(also referred to as chicken bits) to 
manage system performance. Some 
chicken bits are exposed to the user 
(for example, disabling prefetching or 
simultaneous multithreading mode, or 
restricting power management), and 
others are known only by the manufac-
turer. Regardless, how these bits are set 
and tuned can have a significant impact 
on performance. Unfortunately, there 
are hundreds of these interdependent 
knobs, and tuning them by hand is 
impractical. However, self-tuning sys-
tems, either integrated into the oper-
ating system or as separate tools,23 
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to fully deployed device is measured 
in years. Once deployed, ASICs must 
continue to provide value for multi-
ple additional years before replace-
ment. Thus, an ASIC must accelerate 
a function that, from the point of con-
ception, will still be valuable four to 
five years in the future. While some 
functions, such as compression and 
encryption algorithms, tend to be sta-
ble over these time frames, those in 
rapidly evolving fields such as deep 
learning may develop new and differ-
ent requirements in the interval from 
design start to deployment. Stable, 
high-volume accelerators can easily 
justify an ASIC’s higher nonrecurring 
engineering cost. Because an ASIC 
design needs larger markets and longer 
lifetimes, an ASIC accelerator typically 
includes as much flexibility as design-
ers can afford in the form of configura-
tion parameters, options, and software 
programmability.

To achieve a more agile acceler-
ation framework, Microsoft took an 
unusual approach to specialization by 
focusing on FPGAs rather than ASICs 
for datacenter acceleration.28 For a 
given accelerator design, an FPGA 
implementation could be several times 
slower and less energy efficient than 
an ASIC implementation. However, 
by using hardware devices that can be 
reprogrammed after deployment, Mic-
rosoft gains agility at the expense of 
computational efficiency. FPGA-based 
accelerators not only are tolerant to 
the changing requirements of a given 
application, but can be completely 
retargeted as new applications emerge 
or demand shifts. An FPGA accelera-
tor design can afford to be less config-
urable and more customized to specific 
situations, as the design itself can be 
incrementally modified after initial 
deployment to address new circum-
stances. In this fashion, the FPGA’s 
agility as a platform can be used to 
recover a portion of the efficiency that 
it sacrifices to an equivalent ASIC-
based design.

FPGAs can also close the gap 
with ASICs by incorporating larger 
and more complex hard logic blocks 
on chip. Current FPGAs include  
multiply-accumulate units and even 
full microprocessor cores as hard logic. 
Researchers have also proposed devices 
that are mostly hard logic, but with 
configurable interconnect, referred to 
as coarse-grained reconfigurable accel-
erators (CGRAs).29 The line between 
FPGAs and ASICs is further blurred 
by integrated multichip packages 
that incorporate both an FPGA and 
ASIC die.30 The ability for customers 
to specify which ASICs are included 
in the package provides yet another 
dimension of flexibility.

The computational marketplace. 
Amazon has also developed hardware 
for internal consumption from custom 
routers to chipsets used in its servers.31 
This enables Amazon to optimize the 
hardware for its specific needs with full 
control of both the hardware and soft-
ware stack. Amazon also provides hard-
ware agility to its customers by offering 
platforms for custom programmable 
hardware as part of the AWS services 
plan.32 The goal is to encourage com-
panies to develop accelerators using 
Amazon’s FPGA framework for inter-
nal use and/or sell the resulting com-
putational capability to end customers 
on the AWS Marketplace. Amazon’s 
EC F1 instances with FPGAs offer two 
significant benefits for custom solution 
developers. First, Amazon provides the 
FPGA hardware, tools, and infrastruc-
ture, significantly lowering the cost 
and convenience threshold for devel-
oping customized hardware. Second, 
Amazon provides a deployment model 
(via AWS) and a ready marketplace of 
potential customers for the final prod-
uct. No longer are hardware developers 
restricted to products with a large Tier 
One customer base. They can rapidly 
develop and deploy niche hardware and 
test its viability in the AWS computa-
tional marketplace with many small 

customers across the country and the 
world. The computational marketplace 
scenario comes closest to achieving the 
rapid deployment model highlighted 
in The Lean Startup.7 Finally, if any 
of these customized solutions become 
pervasive, they can eventually be reim-
plemented as an ASIC, as noted by 
Khazraee,3 or integrated into a general- 
purpose processor architecture.

Standardized ecosystem. A successful 
computational marketplace requires 
standardized interfaces for interacting 
with accelerators. On the hardware 
side, current solutions from Amazon, 
Microsoft, Google, and others rely 
on PCIe for accelerator integration. 
PCIe has been the de facto standard 
for peripherals for many years, and a 
part of its success can be attributed to 
having an open standard. However, for 
processor designers wanting to create 
specialized accelerators, PCIe may not 
offer the tightly coupled memory sys-
tem integration desired or required by 
the application. Proprietary coherent 
processor interconnects such as Intel’s 
QPI and AMD’s Infinity Fabric offer 
the memory system integration that a 
specialized accelerator might require, 
while Nvidia’s NVLink is a proprietary 
interconnect for GPUs. Nonpropri-
etary standards from different consor-
tia such as OpenCAPI (www.opencapi 
.org), Gen-Z (www.genzconsortium 
.org), and CCIX (www.ccixconsortium 
.com) might also supplement PCIe as 
these standards evolve. What is clear, 
from the PCIe example, is that the new 
standard should be easily licensable 
and controlled by an open standards 
organization to enable a level playing 
field.

While we have thus far empha-
sized agility in hardware development 
and deployment, software agility is also 
a critical requirement. An environment 
in which hardware capabilities change 
and evolve rapidly is impossible to use 
unless low-level software can adapt 
equally rapidly, while providing stable 
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APIs to higher-level services so that 
the bulk of the code base can remain 
independent of the underlying imple-
mentation’s details. Software stacks 
can provide additional agility when 
they help to automate the mapping of 
applications to accelerators, and enable 
hardware bug workarounds to cope 
with issues that may slip through an 
accelerated development and testing 
schedule.

P rocessor architecture has changed 
significantly over the past few 

decades with the advent of multicore 
designs, design for low power, het-
erogeneous systems, and many-core 
processors that can run a hundred or 
more threads. With cloud computing 
and the emerging customizable mar-
ketplace of products, we are once again 
witnessing a sea change in the way 
computing takes place.

In this article, we have made a 
case for agility because we cannot pre-
dict the future with any level of accu-
racy. We need agility not only for rapid 
evolution of conventional architec-
ture, but also for lowering the barrier 
for specialized architectures. As Bill 
Gates once noted, “We always overes-
timate the change that will occur in the 
next two years and underestimate the 
change that will occur in the next ten. 
Don’t let yourself be lulled into inac-
tion.”33 As architects, we must develop 
the infrastructure and mindset that 
enable us to be agile and take risks in 
order to evolve with a rapidly changing 
environment and create the next dis-
ruptive technology. 
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Autonomic networking is a promising solution to handle the ever-increasing 

management complexity of dynamic network environments. This article 

elaborates on two autonomic networking architectures and current 

standardization activities revolving around them.

W ith the ever-expanding scale of the Inter-
net and the advent of new devices and 
technologies in both wired and wireless 

environments, the complexity and redundancy 
of network management are becoming greater 
challenges to both industry and academia.

Autonomic networking1 is proposed as a 
solution to these challenges by introducing 
the autonomic system engineering into diverse 
environments (wired, wireless, and so on) and 
implementing self-managing functions for self-
adaptability and context-aware or situation-
driven behavior changes in systems, services, or 
applications. This technology lets us reconfigure 
the network and optimize it for a nonsupervised 
or minimal manual administration environ-
ment upon the obtained feedback from real-time 
system behaviors. As a result, the IT system’s 
complexity and maintenance costs are reduced, 
while dynamically changing user requirements 
are met.

Autonomic networking is inspired by IBM’s 
autonomic computing.2 While autonomic com-
puting attempts to improve the closed computing 

system, autonomic networking addresses the far 
more heterogeneous and complex network envi-
ronment. Challenges and difficulties in this area 
include the following:

• designing an acceptable performant net-
working architecture to enable the imple-
mentation of desirable autonomic behaviors;

• designing novel protocols and exposing 
exploitable or extendable features from 
existing protocols to support the hando-
ver control, heterogeneity, and cooperation 
among and within the autonomic networks; 
and

• designing innovative mechanisms, algo-
rithms, and paradigms to handle differ-
ent network scenarios such as load bal-
ance, information dissemination, and fault 
detection/removal.

Many projects, such as the European Union’s 
Information Society Technologies (EU-IST) 
Sixth Framework Program (FP6) Future and 
Emerging Technologies (FET) exist that design 
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and develop clean-slate autonomic 
elements and architectures, unify-
ing advancements and trends occur-
ring across various areas. These 
efforts promote continuous improve-
ment and lead the introduction of 
autonomicity into the generic opera-
tional network environment — such 
approaches include the European 
Commission’s Seventh Framework 
Program (FP7) project “Exposing the 
Features in IP version Six protocols 
that can be exploited/extended for 
the purposes of designing/building 
Autonomic Networks and Services” 
(EFIPSANS). Currently, the stan-
dardization of autonomic network-
ing is facilitated by IRTF/IETF —  
through the Network Management 
Research Group (NMRG) and the 
Autonomic Networking Integrated 
Model and Approach (ANIMA), for 
example — as well as European Tele-
communications Standards Institute 
(ETSI) working groups such as Net-
work Technologies/Autonomic Future 
Internet (NTECH/AFI) and Next- 
Generation Protocols Self-X Net-
works (NGP SXN).

Autonomic networking refers to 
the act of achieving self-management 
and adapting to changing environ-
ments in accordance with a set of 
high-level objectives from the net-
work management system rather 
than performing tasks following 
static, predefined rules. The most 
cited properties of self-management 
are self-configuring, self-optimizing, 
self-protecting, and self-healing. 
These properties are realized by the 
autonomic control loop (ACL), which 
refers to the procedure of monitoring 
the managed elements, analyzing  
the network intelligence, planning 
policies for self-adaptation, and 
executing the decided policies in the 
autonomic network. IBM proposes 
Monitor, Analyze, Plan, Execute, and 
Knowledge (MAPE-K) as a reference 
model for ACL, which also applies to 
autonomic networking. Currently, 
novel technologies (such as artificial 

intelligence) are used in autonomic 
networking to provide more elastic 
and reliable network management 
in mobile networks. Rather than 
presenting all the existing research 
efforts, this article focuses on cur-
rent standardization activities on the 
networking architecture and its cor-
related research.

Autonomic Networking 
Architectures
With the advent and rise of auto-
nomic networking, novel networking 
architectures (such as EU-IST FP6 
Autonomic Network Architecture, 
or ANA) have been proposed. These 
approaches are considered clean slate 
and academic in nature. FP7 EFIP-
SANS targeted IPv6 as the starting 
point for engineering autonomi-
city in networks and services. With  
the Generic ANA (GANA) reference 
model, standardization communities 
such as IRTF research group NMRG 
and IETF working group ANIMA 
continue to make strides and prog-
ress on autonomicity, and these  
previous works provide vision for 
ongoing standardization activities.

GANA Reference Model
In EU-IST FP7 Project EFIPSANS, 
GANA3 is proposed as a reference 
model for autonomic network engi-
neering, which implements auto-
nomicity into the Decision Plane 
and brings a significant reduction in  
the complexity of network policy 
computation. Nowadays, GANA is 
instantiated in various networks by 
ETSI NTECH/AFI to address self-
management in the specific net-
work architecture (for example, the 
Third-Generation Partnership Project 
[3GPP]4 and so on). Figure 1 offers a 
global view of GANA.

GANA adopts (with some modi-
fications) from the Decision, Dis-
semination, Discovery, and Data 
Plane network architecture. GANA’s 
Decision Plane is composed of Deci-
sion Elements (DEs) and Managed 
Elements (MEs). According to the 
scope of decisions, a DE is further 
classified into four different levels 
(from the bottom to the top: protocol, 
function, node, network), and the 
inferior DEs always serve as the MEs 
of the superior DEs. This relationship 
among DEs and MEs in different 
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Figure 1. Global view of the Generic Autonomic Network Architecture (GANA) 
reference model. (DE stands for Decision Element and ME stands for 
Managed Element.)
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management complexity of dynamic network environments. This article 

elaborates on two autonomic networking architectures and current 

standardization activities revolving around them.
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environments, the complexity and redundancy 
of network management are becoming greater 
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solution to these challenges by introducing 
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implementing self-managing functions for self-
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the network and optimize it for a nonsupervised 
or minimal manual administration environ-
ment upon the obtained feedback from real-time 
system behaviors. As a result, the IT system’s 
complexity and maintenance costs are reduced, 
while dynamically changing user requirements 
are met.

Autonomic networking is inspired by IBM’s 
autonomic computing.2 While autonomic com-
puting attempts to improve the closed computing 

system, autonomic networking addresses the far 
more heterogeneous and complex network envi-
ronment. Challenges and difficulties in this area 
include the following:

• designing an acceptable performant net-
working architecture to enable the imple-
mentation of desirable autonomic behaviors;

• designing novel protocols and exposing 
exploitable or extendable features from 
existing protocols to support the hando-
ver control, heterogeneity, and cooperation 
among and within the autonomic networks; 
and

• designing innovative mechanisms, algo-
rithms, and paradigms to handle differ-
ent network scenarios such as load bal-
ance, information dissemination, and fault 
detection/removal.

Many projects, such as the European Union’s 
Information Society Technologies (EU-IST) 
Sixth Framework Program (FP6) Future and 
Emerging Technologies (FET) exist that design 
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levels together forms a Hierarchi-
cal Control Loop (HCL) architecture 
in the GANA’s Decision Plane. Poli-
cies from superior HCL components 
are defined as Autonomic Behaviors 
(ABs).

GANA has been applied in 
one EFIPSANS’ testbed (shown in  
Figure 2), which improves users’ 
quality-of-service (QoS) experi-
ence and reduces manual interven-
tion by automatically adapting to 
the changing context in IPv6 net-
works. A set of QoS-related DEs are 
introduced into both edge and core 
nodes of the traditional Diffserv 
architecture. Each DE contains a 
GANA-based control loop and these 
control loops cooperate with each 

other. The network-level DE (known 
as the QoS manager) distributes 
ABs to enable the network to self- 
optimize its resources and self-adapt 
to the dynamic network context. The 
node-level DE receives and parses 
these ABs, then distributes them to 
the function-level DE. The protocol-
level DE follows instructions from 
the function-level DE and imple-
ments specific QoS functions (packet 
marking, queue management, queue 
scheduling, and so on).

ANIMA Model
According to RFC 75751 and ANIMA’s 
draft,5 many concepts of the ANIMA 
model are inspired from GANA. 
As Figure 3 shows, an autonomic 

network is composed of autonomic 
nodes (ANs), and this network might 
contain more than one autonomic 
domain. Each AN provides a com-
mon set of capabilities across the 
network called Autonomic Network-
ing Infrastructure (ANI). Autonomic 
Service Agents (ASAs), which serve 
as atomic entities of autonomic func-
tions (AFs), are instantiated on ANs. 
AF refers to the function or the fea-
ture that can rely on self-knowledge, 
discovery, and intent to acquire the 
information needed for operations 
without external configuration. ANs 
and ASAs communicate with each 
other using a Generic Autonomic 
Networking Protocol (GRASP) in 
the Autonomic Control Plane (ACP) 
created by the ANI. With the help 
of these communications, AFs run 
logically over ASAs and span across 
the network to achieve network-wide 
autonomicity.

AN consists of three layers: ASAs, 
ANI (ASA uses services created 
by ANI), and basic operating sys-
tem functions. Each AN is assigned  
a globally unique domain certifi-
cate (a logical device identifier, or 
LDevID),6 which cryptographically 
asserts its membership in the auto-
nomic domain, and maintains an 
adjacency table (containing node-
ID, IP address, domain, certificate, 
and so on) used for recording the 
ACP neighbor. Each autonomic node 
maintains a state machine (with three 
states: factory default, enrolled, and 
in ACP), which indicates that auto-
nomic networking applies for the 
whole life cycle of an AN.

ANI is the basis for AFs and is 
generic to support different ASAs. 
ANI is composed of three main 
components: Bootstrapping Remote 
Secure Key Infrastructures (BRSKI),7 
ACP,6 and GRASP.8

BRSKI. This is an automatic 
approach to bootstrap a remote 
secure key infrastructure using 
vendor-installed X.509 certificates 

Figure 2. An application scenario of the autonomic architecture for quality of 
service. (CR stands for core router; ER stands for edge router; MR stands for 
the router that supports for mobile access; QoS stands for quality of service; 
and R stands for router.)
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ACP stands for Autonomic Control Plane; BRSKI stands for Bootstrapping Remote Secure Key Infrastructures; and 
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and a vendor authorized service 
online or offline. BRSKI secures the 
initial connection (the distribution 
of the key materials or the secure 
certificate in most cases) between 
the device without configuration 
(Pledge) and the device that’s already 
in a specific network domain (Reg-
istrar). The Pledge actions derive 
from a cryptographically protected 
message delivered through the  
Registrar.

ACP. This is a self-managing and 
configuration-independent control 
plane for AF communication. The 
interaction within the ACP uses IPv6 
link local addressing by default. ACP 
provides management protocols with 
the functionality of the Virtual-out-
of-Band channel, which allows con-
nectivity to all devices regardless of 
the Data Plane’s configuration and 
the global routing table. ACP also 
guarantees connectivity for con-
trol protocols against the temporal 
faulty and the transitional event 
of the Data Plane. Secure tunnels, 
which are placed into the autonomic 

node’s virtual routing and forward-
ing instance, are established and 
create an overlay network after the 
construction of the ACP. Within  
the ACP, the loopback interface of 
each ASA has a routable address 
using the IPv6 unique local address 
(ULA) addressing scheme, while the 
other interfaces exclusively use the 
IPv6 link local for autonomic func-
tions. Any autonomic device within 
one ACP has the same /48 prefix.  
The routing protocol resided in the 
ACP is independent of the data layer 
and is mainly used for the distribu-
tion of ULA addresses. The ACP’s 
routing protocol is RPL (the Routing 
Protocol for Low-Power and Lossy 
Networks, defined in RFC 6550).

GRASP. This protocol will be dis-
cussed further in the following 
chapter.

Standardization Activities 
on Autonomic Networking
ETSI NTECH/AFI has been working 
on the application of a GANA refer-
ence model onto concrete use cases 

and setting up an ETSI Specialist 
Task Force (STF). This STF has pro-
posed two technical reports on using 
GANA to introduce autonomicity 
into the 3GPP Core and Backhaul, 
Ad Hoc, and Mesh network archi-
tectures.4,9 Similarly, IETF ANIMA 
has been working on further refine-
ment and specification of the main 
building blocks, signaling protocols, 
use cases, and other aspects in auto-
nomic networking. In ANIMA’s char-
ter, its current target is described 
as developing one or more protocol 
specifications.

GRASP
The GRASP generic autonomic 
signaling protocol for autonomic 
networking runs in a secure and 
strongly authenticated communi-
cation environment (generally the 
ACP) by default. Because of a lack 
of built-in security features, GRASP 
uses existing mechanisms (such as 
TLS) to guarantee secure communi-
cation in the absence of ACP.

GRASP provides four mecha-
nisms: discovery, negotiation, 
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levels together forms a Hierarchi-
cal Control Loop (HCL) architecture 
in the GANA’s Decision Plane. Poli-
cies from superior HCL components 
are defined as Autonomic Behaviors 
(ABs).

GANA has been applied in 
one EFIPSANS’ testbed (shown in  
Figure 2), which improves users’ 
quality-of-service (QoS) experi-
ence and reduces manual interven-
tion by automatically adapting to 
the changing context in IPv6 net-
works. A set of QoS-related DEs are 
introduced into both edge and core 
nodes of the traditional Diffserv 
architecture. Each DE contains a 
GANA-based control loop and these 
control loops cooperate with each 

other. The network-level DE (known 
as the QoS manager) distributes 
ABs to enable the network to self- 
optimize its resources and self-adapt 
to the dynamic network context. The 
node-level DE receives and parses 
these ABs, then distributes them to 
the function-level DE. The protocol-
level DE follows instructions from 
the function-level DE and imple-
ments specific QoS functions (packet 
marking, queue management, queue 
scheduling, and so on).

ANIMA Model
According to RFC 75751 and ANIMA’s 
draft,5 many concepts of the ANIMA 
model are inspired from GANA. 
As Figure 3 shows, an autonomic 

network is composed of autonomic 
nodes (ANs), and this network might 
contain more than one autonomic 
domain. Each AN provides a com-
mon set of capabilities across the 
network called Autonomic Network-
ing Infrastructure (ANI). Autonomic 
Service Agents (ASAs), which serve 
as atomic entities of autonomic func-
tions (AFs), are instantiated on ANs. 
AF refers to the function or the fea-
ture that can rely on self-knowledge, 
discovery, and intent to acquire the 
information needed for operations 
without external configuration. ANs 
and ASAs communicate with each 
other using a Generic Autonomic 
Networking Protocol (GRASP) in 
the Autonomic Control Plane (ACP) 
created by the ANI. With the help 
of these communications, AFs run 
logically over ASAs and span across 
the network to achieve network-wide 
autonomicity.

AN consists of three layers: ASAs, 
ANI (ASA uses services created 
by ANI), and basic operating sys-
tem functions. Each AN is assigned  
a globally unique domain certifi-
cate (a logical device identifier, or 
LDevID),6 which cryptographically 
asserts its membership in the auto-
nomic domain, and maintains an 
adjacency table (containing node-
ID, IP address, domain, certificate, 
and so on) used for recording the 
ACP neighbor. Each autonomic node 
maintains a state machine (with three 
states: factory default, enrolled, and 
in ACP), which indicates that auto-
nomic networking applies for the 
whole life cycle of an AN.

ANI is the basis for AFs and is 
generic to support different ASAs. 
ANI is composed of three main 
components: Bootstrapping Remote 
Secure Key Infrastructures (BRSKI),7 
ACP,6 and GRASP.8

BRSKI. This is an automatic 
approach to bootstrap a remote 
secure key infrastructure using 
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Figure 2. An application scenario of the autonomic architecture for quality of 
service. (CR stands for core router; ER stands for edge router; MR stands for 
the router that supports for mobile access; QoS stands for quality of service; 
and R stands for router.)
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synchronization, and flooding. These 
mechanisms can be combined to 
provide a rapid mode of operation 
when necessary.8 For instance, a ses-
sion could be ended immediately 
with an ending message rather than 
a response message when the coun-
terpart is satisfied with the requested 
configuration.

Use Case
Features (for example, always-on, 
data plane independent connectiv-
ity, and so on) and main components 
(such as GRASP) of ANIMA’s model 
apply to various scenarios such as 
call home, network provisioning, 
and trouble shooting.

ANIMA proposes a use case 
(shown in Figure 4) to relieve the 
human administration of the IPv6 
prefix management at the edge of 
large-scale ISP networks.10 A C11 

implementation developed by the 
Beijing University of Posts and 
Telecommunications and a Python 
implementation developed by the 
University of Auckland8,11 are pro-
vided as the demo for this scenario.

In the traditional IP Radio 
Access Network (RAN) solution, a 
new base station (eNodeB and so 
on) requests the Cell-Site Gateway 
(CSG) for a match configuration 
when it’s online. After the request 
is received, CSG will ask the Aggre-
gation-Site Gateway (ASG) to estab-
lish a pseudo wire (PW) for main-
tenance. Then, eNodeB will request 
the Dynamic Host Configuration 
Protocol (DHCP) server for its own 
IP. CSGs and ASGs (even Radio 
Network Controller Site Gateways, 
or RSGs) will serve as the DHCP 
relay at this stage. The eNodeB will 
use its IP to communicate with the 
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Figure 4. Autonomic IPv6 Prefix Management in Large-scale ISP Networks. The message chart of this scenario is 
presented on the right. (DHCP stands for Dynamic Host Configuration Protocol.)

network management system to 
obtain all the IPs for services. Sim-
ilarly, eNodeB will establish a PW 
for service between the CSG and 
the ASG. Finally, this new eNodeB 
comes into service.

In this scenario, prefix manage-
ment still depends on human plan-
ning even with DHCPv6-PD because 
of the lack of information about the 
appropriate prefix length that each 
router should request. In addition, 
once the PW for service between 
the CSG and the ASG is estab-
lished, the endpoints’ requirement 
of timely resource assignments is 
incompatible to existing protocols. 
In this case, ANIMA’s model is pro-
posed as a solution to achieve the 
self-configuration — for instance, 
to enable dynamic IPv6 address 
space management in large-scale  
networks.
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C ompared to the ideal autonomic 
network, several improvements 

are needed in the current network, 
such as more coordination among 
devices or network partitions; reus-
able common components; a secure 
control plane; less configuration; 
forecasting and closed-loop dry runs 
for configuration changes; portable 
network knowledge among network 
devices; and more efforts on data 
analysis. As IETF further deepens 
the standardization, the develop-
ment of autonomic networking also 
will be propelled forward. We hope 
the work and efforts from ETSI, IETF, 
and others will provide substantial 
experiences as valuable input to 
ongoing research on this topic. 
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synchronization, and flooding. These 
mechanisms can be combined to 
provide a rapid mode of operation 
when necessary.8 For instance, a ses-
sion could be ended immediately 
with an ending message rather than 
a response message when the coun-
terpart is satisfied with the requested 
configuration.

Use Case
Features (for example, always-on, 
data plane independent connectiv-
ity, and so on) and main components 
(such as GRASP) of ANIMA’s model 
apply to various scenarios such as 
call home, network provisioning, 
and trouble shooting.

ANIMA proposes a use case 
(shown in Figure 4) to relieve the 
human administration of the IPv6 
prefix management at the edge of 
large-scale ISP networks.10 A C11 

implementation developed by the 
Beijing University of Posts and 
Telecommunications and a Python 
implementation developed by the 
University of Auckland8,11 are pro-
vided as the demo for this scenario.

In the traditional IP Radio 
Access Network (RAN) solution, a 
new base station (eNodeB and so 
on) requests the Cell-Site Gateway 
(CSG) for a match configuration 
when it’s online. After the request 
is received, CSG will ask the Aggre-
gation-Site Gateway (ASG) to estab-
lish a pseudo wire (PW) for main-
tenance. Then, eNodeB will request 
the Dynamic Host Configuration 
Protocol (DHCP) server for its own 
IP. CSGs and ASGs (even Radio 
Network Controller Site Gateways, 
or RSGs) will serve as the DHCP 
relay at this stage. The eNodeB will 
use its IP to communicate with the 

eNode B

eNode B

eNode B

CSG 1

CSG 2

CSG 3

CSG 4

ASG 2

• ASG: Aggregation-Site Gateway
• CSG: Cell-Site Gateway
• RSG: RNC Site Gateway

1.1 GRASP discovery msg

2.1 GRASP discovery msg

GRASP
discovery

2.3 Discovery response msg

2.4 Discovery response msg

3.1 GRASP request negotiation msg

3.2 GRASP negotiation msg

Opt: prefix manager
objective

Opt: prefix manager
objective

Opt: locator

Opt: locator, divert

Opt: prefix manager objective

Opt: prefix manager objective

Opt:

GRASP negotiation end msg

: CSG1 broadcasts a discovery message with a pre�x manager objective option for
extra address space (1.1, 1.2).

: CSG2 and CSG3 (without pre�x manager ASA) recieve the discovery message
and divert CSG1 to ASG1 and ASG2 (with pre�x manager ASA) by responding
with a discovery response message with a divert option (2.1, 2.2) and cache the
information of the responder.  ASG1 has extra address space and responds a
discovery response message (2.3, 2.4) with locator options to indicate itself as a
discovery responder.  We assume that  ASG2 has no extra address space, thus it
will discard the discovery message silently.

: CSG1 negotiates with  ASG1 about the details of the requesting pre�x (pre�x
length and so on).

ASG 1 RSG 1

RSG 2
Network

management
system

DHCP server

1.2

1.1

2.2

2.1

2.3

2.4

3.2

3.1

No cached information, then
repeat the discovery procedure

Cached the response, then
repeat it to CSG 1

The negotiation process is repeated until
both the requesting and the requested

device reach a consensus on the
negotiated content

CSG 1 CSG 2 ASG 1

GRASP
negotiation

Figure 4. Autonomic IPv6 Prefix Management in Large-scale ISP Networks. The message chart of this scenario is 
presented on the right. (DHCP stands for Dynamic Host Configuration Protocol.)

network management system to 
obtain all the IPs for services. Sim-
ilarly, eNodeB will establish a PW 
for service between the CSG and 
the ASG. Finally, this new eNodeB 
comes into service.

In this scenario, prefix manage-
ment still depends on human plan-
ning even with DHCPv6-PD because 
of the lack of information about the 
appropriate prefix length that each 
router should request. In addition, 
once the PW for service between 
the CSG and the ASG is estab-
lished, the endpoints’ requirement 
of timely resource assignments is 
incompatible to existing protocols. 
In this case, ANIMA’s model is pro-
posed as a solution to achieve the 
self-configuration — for instance, 
to enable dynamic IPv6 address 
space management in large-scale  
networks.

This article originally appeared in 
IEEE Internet Computing, vol. 27, no. 5, 2017.
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JPEG at 25: Still Going Strong

P hotographic images are taken for granted

today as part of the multimedia mix of

information we use daily to communicate in

both our personal and professional lives. An

enabling technology for this is the photo-

graphic coding technique, universally known

as JPEG, which is celebrating its 25th anniver-

sary of receiving approval as standard this year.

Where did JPEG come from, and what are the

fundamental components that have given it

longevity?

The Origins
The image compression technique used for

applications as diverse as photography, web-

pages, medical imaging, and public records is

JPEG, named after the original International

Standards Organization (ISO)/International

Telegraph and Telephone Consultative Com-

mittee (CCITT) Joint Photographic Experts

Group, established in November of 1986. The

group developed the technique in the late

1980s and produced the international standard,

formally known as Int’l Telecommunication

Union (ITU)-T T.81, in the early 1990s.1

How It All Began

In the early 1980s, some of the leading telecom-

munication service providers around the world

were launching videotex services: information

services delivered over analog telephone lines

to a terminal based on a television set or to an

inexpensive dedicated terminal (see Figure 1).

Such services were also delivered to PCs once

they became available. The technology was

primitive by today’s standards. The data rates

available using a modem over a copper tele-

phone pair were generally 1,200 (download)/75

(upload) bits/s, although up to 4,800 bits/s was

possible.

Later in the decade, the 64 kbits/s integrated

services digital network (ISDN) was introduced,

andmany assumed it would eventually become

widely available. At that time, Cathode Ray

Tube displays were capable of resolutions up to

640 � 400 pixels, and advanced televisions had

text and graphics display controllers for tele-

text. Some even had microprocessors, but RAM

was expensive and was typically limited to a

few kilobytes. Following the Commodore Pet

and Apple 2 computers, the IBM PC was

launched. These early machines had displays

supporting graphics and color, but they didn’t

have photographic display capability.

With the advent of ISDN, telecommunica-

tion companies’ research centers looked for

ways to improve their videotex service offerings

by enhancing display capabilities, using com-

puter (geometric) graphic and photographic

image coding techniques. However, photo-

graphic images contain a lot of information.

The ITU-R Digital Studio Television Picture

Standard recommendation2 was taken as refer-

ence for this early work on picture coding. A

full-frame 601 picture has 720 � 575 pixels, as

illustrated in Figure 2. It uses a color encoding

system known as YCbCr 4:2:2. The chromi-

nance components, Cr and Cb, have half the

resolution of the luminance component Y. All

components are represented by 8 bits, giving an

average of 16 bits per pixel, requiring 828

kbytes per frame for storage and transmission.

Even at the ISDN rate of 64 kbits/s, it would

takemore than 104 s to transmit a full frame.

A great impetus to the international devel-

opment and evaluation of picture coding tech-

niques was the formation of the European

Strategic Program for Research in Information

Technology (ESPRIT) project 563—Photovideo-

tex Image Compression Algorithms (PICA) in

1985 (Table 1 lists this and other historicalmile-

stones).3,4 The consortium of seven partners

had experience in telecommunications, broad-

casting, and computing (see Table 2). The core

team included picture coding experts from

leading European telecommunication laborato-

ries already involved in international standards

activity (see Figure 3). Throughout the PICA
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project’s lifetime (1985–1988), key contribu-

tions were made to the JPEG technical kernel

and to application requirements and the evalu-

ation of coding techniques. In particular, the

project developed and evaluated 10 techniques,

and two were submitted for standardization

(and one of those two was the central part of

the future JPEG standard).

Evolving International Standards

Videotex standards were being worked on by

international standards bodies responsible for

text, graphic, and image coding at CCITT, CEPT

(Conf�erence Europ�eenne des Administrations

des Postes et T�el�ecommunications), and ISO.

Digital image coding work had typically focused

on facsimile, slow-scan television, and telecon-

ferencing. The early work on photographic

coding initiated by three European telecommu-

nication labs—British Telecom Labs, CSELT

(Centro Studi e Laboratori Telecomunicazioni),

and CCETT (Centre Commun d’�etudes de

T�el�evision et T�el�ecommunications)—was pre-

sented to the international standards bodies,

first in 1982 at CEPT, and later to ISO and

CCITT.

In 1982, ISO TC97/SC2 established Working

Group 8, chaired by Zak Muscati (Department

of Communications of Canada) and later by

Hiroshi Yasuda (Nippon Telegraph and Tele-

phone, Japan). The working group was estab-

lished to define the principles of graphic and

photographic coding. Early in 1986, during a

meeting in Boston, the scope and progress of

the ESPRIT project was presented to this group.

In CCITT Study Group VIII (SGVIII), a special

rapporteur’s group was formed in 1985 to inves-

tigate new forms of image communication. The

group was initially chaired byManfredWorlitzer

(Deutsche Bundespost, Germany). Then, in

1987, Istv�an Sebesty�en (Siemens, Germany)

took over. The group analyzed the different cod-

ing types (text, graphic, geometric, incremental,

and photographic) required for different tele-

communication services (facsimile, teletext,

videotex, and teleconferencing), and they for-

mulated requirements for common components

for image communications.

Realizing the importance of picture coding

for future multimedia communication services,

in July 1986, the leaders of the CCITT and ISO

groups proposed that the ISO Photographic

Expert Group (PEG) should become a joint

working group (JPEG) to select a high-perform-

ance photographic image compression techni-

que, with CCITT setting the service

requirements and ISO providing the coding

expertise. The first meeting of JPEG under the

chairmanship of Graham Hudson (British Tele-

com, UK) was in November 1986 in Parsippany,

New Jersey. Following the agreement of a tech-

nique for standardization in 1988, GregWallace

(Digital Equipment Corporation, US) took over

the chair until the JPEG standard was approved

first by the ITU and later by the Joint Technical

Committee 1 of ISO and IEC.

TheWish List

The JPEG working group aimed to find and

standardize a compression technique that

could be used for a broad range of continuous

tone images for applications, ranging from

(a) (b)

Figure 1. Information services delivered over an

analog telephone line to an inexpensive

dedicated terminal: (a) the Minitel terminal in

France (source: CCETT; used with permission) and

(b) a photovideotex page on the Prestel terminal in

the UK (source British Telecom; used with

permission).

720 Pixels

Cr

Y

Cb

Y

Cr 8 bits

Cb 8 bits

Y 8 bitsY 8 bits

575 Lines

Figure 2. The Digital Studio Television Standard.

It uses 8 bits for the luminance component but

half the resolution for the two 8-bit chrominance

components, giving an average of 16 bits per pixel,

requiring 828 kbytes per frame to store and

transmit data.
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photovideotex (the web had not yet been

invented) to press photos and medical images.5

They set about defining a set of mandatory

requirements. An essential feature was the abil-

ity to adjust the compression factor (the reduc-

tion in data) versus the final quality to match

the needs of the application.

With restricted data-rate transmission chan-

nels, the group considered it mandatory to pro-

vide a progressive picture build-up.6 The idea

was to quickly deliver a crude (lower resolu-

tion/quality) image for instant display, which

could subsequently be improved in several

stages until the highest quality was achieved.

This facility also provides pictures of different

resolution and accuracy to be held on a data-

base and delivered to match the capability of

the output device. Sequential build-up, where a

full-quality image is built up, from top to bot-

tom and line by line, was also needed for rapid

picture file transfer.

The JPEG working group also realized that

some applications, such as medical imaging

and document archiving, required a final image

to be identical to the original. This is referred to

as lossless, reversible, or exact coding.

Many of the applications (such as audio-

graphic conferencing and remote screen shar-

ing) presenting an image to a display required

the decompression in real time. This was a

challenge with the technology of the time

(that is, with IBM’s PC Advanced Technology

(AT) machine, with a 20MHz 386 processor or

dedicated digital signal processors7), so the

three algorithms in competition after the

January 1987 Copenhagen meeting were

required to show demonstrations of the real-

time decoding.

Choosing the Algorithm

The JPEG working group set out to define a pro-

cedure to select a coding technique. For a tech-

nique to be considered as a candidate for

standardization, the proposer had to provide a

full technical description and a set of agreed

test pictures encoded/decoded at different com-

pression factors. At the first JPEG meeting (Par-

sippany, Nov. 1986), 14 different techniques

were presented, but only 12 proposals were offi-

cially registered in Darmstadt in March 1987, at

the second JPEG meeting. The candidates

included examples ofmost compression techni-

ques known to the scientific community at the

time, such as predictive coding, block coding,

Table 2. The seven partners of the European

Strategic Program for Research in Information

Technology (ESPRIT) project 563—Photovideotex

Image Compression Algorithms (PICA).

Company Country

BT Labs UK

IBA UK

KTAS Denmark

DNL Netherlands

CSELT Italy

CCETT—FT Labs France

Nixdorf Germany

Table 1. Historical milestones.

Date/location Milestones

1982 Introduce image coding for videotex at CEPT (Conf�erence Europ�eenne des Administrations des Postes et

T�el�ecommunications)

June 1985, Ipswich Launch the European Photovideotex Image Compression Algorithms (PICA) project

November 1986, Parsippany ISO and CCITT form Joint Photographic Experts Group (JPEG)

March 1987, Darmstadt Register coding schemes and define requirements and selection process

June 1987, Copenhagen Hold initial selection meeting—10 techniques reduced to 3

October 1987, Washington Revise specification and hold first selection process

December 1987, Winchester Revise specification and hold second (final) selection process

January 1988, Copenhagen Hold final selection meeting—adaptive cosine transform (ADCT) technique chosen

June 1989, Rennes Refine and consolidate the ADCT technique by the JPEG international team

1989 Write the JPEG draft international standard with ITU/ISO/IEC common template

1992 Approve JPEG as Recommendation ITU-T T.81

1993 Approve JPEG as ISO/IEC 10918-1 Standard
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cosine transform, vector quantization, and

combinations of these. The key requirements

for candidates for the final selection process

were as follows:

� provide and present full documentation of

the technique including functionality,

principles, and implementation;

� prepare and conduct subjective testing of

new nonstandard test images for bit rates

(0.08 bit/pixel, 0.25 bit/pixel, 0.75 bit/

pixel, and 2.25 bit/pixel);

� demonstrate a prototype 64 kbits/s real-time

decoder with progressive build-up; and

� submit executable code.

Three techniques stood out at the initial selec-

tion process at KTAS in Copenhagen in June

1987—the European (PICA) adaptive cosine

transform (ADCT) technique, the US (IBM) dif-

ferential pulse code modulation (DPCM)-based

technique, and the Japanese block truncation

coding scheme. These three techniques were

used as the basis for further development by

international teams led by Europe (Alain L�eger),

US (Joan Mitchell), and Japan (Yasuhiro Yama-

zaki) respectively, for the final selection meeting

held at the Copenhagen Telecom Company

(KTAS) Laboratories in January 1988.

For the final selection, the test requirements

were increased. Subjective testing took place

at 2.25 bits per pixel, 0.75 bpp, 0.25 bpp, and

0.08 bpp using five new test images for which

the candidate algorithms were not trained (see

Figure 4). A double stimulus technique was

employed, whereby images were compared

with the original.8

It was evident from the subjective testing

(see Figure 5) that the ADCT technique pro-

duced higher-quality results for all of the com-

pression stages. Excellent results were achieved

at 0.75 bpp (20:1 compression) and results

indistinguishable from the original were pro-

duced at 2.25 bpp. ADCT real-time decompres-

sion was demonstrated in software on an IBM

PC AT with a 20MHz 386 processor. The group

unanimously agreed to develop a standard

based on this ADCT technique.9,10

Key Technical Choices
Here we explain the key technical decisions the

JPEG group made during the building process

of the JPEG compression scheme and format.

The Transform

The scientific literature shows the optimum

transform is the Karhunen-Loeve Transform

(KLT). The KLT analyzes the image and extracts

the principle components, thus compacting

the energy very efficiently. However, it’s com-

putationally intensive—far more than realisti-

cally achievable in the late 1980s. Furthermore,

the calculated transformation kernel depends

on the image content, so it must be calculated

for each image.

Various other simpler transforms were exam-

ined during the development of JPEG: high and

low correlation transforms, where all opera-

tions can be done using only shifts and adds,

and the discrete cosine transform (DCT), which

can be calculated using very fast algorithms

(like the Fast Fourier Transform). DCT was by

far the best of the second-best options, with an

energy compaction approaching the KLT. It was

therefore decided to continue with DCT as the

transform of choice.

Discrete wavelet transform (DWT) appeared

later (with the orthogonal version appearing in

1987), which avoids blocking artifacts, but it

wasn’t feasible with the hardware of the day

and with the speed requirements (real-time

decoding at ISDN 64 kilobits per second).

JPEG2000 was standardized later (after 2000)

with DWT, but it was never intended to replace

ADCT in JPEG (1992).

Block Size

From an energy compaction point of view, the

optimum block size should be one where the

pixels in an average block are correlated. Using

too small a block size misses important pixel-

to-pixel correlation. Using too large a block size

Figure 3. The JPEG core team included picture coding experts from all over the

world, including leading worldwide telecommunication and IT laboratories

already involved in international standards activity.
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1982 Introduce image coding for videotex at CEPT (Conf�erence Europ�eenne des Administrations des Postes et

T�el�ecommunications)

June 1985, Ipswich Launch the European Photovideotex Image Compression Algorithms (PICA) project

November 1986, Parsippany ISO and CCITT form Joint Photographic Experts Group (JPEG)

March 1987, Darmstadt Register coding schemes and define requirements and selection process

June 1987, Copenhagen Hold initial selection meeting—10 techniques reduced to 3

October 1987, Washington Revise specification and hold first selection process

December 1987, Winchester Revise specification and hold second (final) selection process

January 1988, Copenhagen Hold final selection meeting—adaptive cosine transform (ADCT) technique chosen

June 1989, Rennes Refine and consolidate the ADCT technique by the JPEG international team

1989 Write the JPEG draft international standard with ITU/ISO/IEC common template

1992 Approve JPEG as Recommendation ITU-T T.81

1993 Approve JPEG as ISO/IEC 10918-1 Standard
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tries to take advantage of a correlation that

might not exist.

Working with the typical image sizes of the

late 1980s (720 � 575 pixels), 4 � 4 blocks were

too small to catch important correlations, and

16 � 16 blocks often contained uncorrelated

pixels and increased calculation complexity for

no gain. So out came the 8� 8 block!

Today, with 4K and 8K and higher display

resolutions, larger block sizes (16 � 16 or even

higher) are an obvious consideration.

Psychovisual Quantization

Having performed the discrete cosine transform

on an 8 � 8 block, 64 pixel values have been

transformed into 64 amplitudes of 2D cosine

functions of various frequencies. The eye, how-

ever, is not equally sensitive to all frequencies.

Low-frequency variation within the 8 � 8 block

is much more visible than high-frequency varia-

tion. This is where quantization comes into play:

low frequencies are represented with higher

accuracy than high frequencies without jeopard-

izing the visual content of the blocks.11 This is

generally what provides lossy compression.

During the development of JPEG, research-

ers considered (and experimented with) the

quantization of the less visible dark areas.

Blocks with low DC values (dark blocks) could

be quantized more harshly than blocks with

medium or high DC values. Experiments

showed, however, a prominent problem with

such content-dependent strategies: adjacent

blocks treated with different quantization

matrices are visually different and thus add

heavily to the annoying blocking artifacts that

are seen at high compression without really

improving the compression rate. In JPEG, all

blocks in a given channel are quantized with

the same quantization values.

Modeling and Encoding

Transformation and quantization together pro-

duce datasets with a statistical structure that

lends itself to complementary compression.

The process to ensure this is themodeling (opti-

mal-source symbols selection) and encoding of

the selected symbols. Given that the majority

of the quantized amplitudes are either zero or

very small, and that most of the nonzero or

larger quantized amplitudes pertain to the low

frequencies, KTAS (primarily Jørgen Vaaben)

devised an ingenious way to encode these using

value pairs. The first value in the pair tells how

many zero amplitudes to skip before the next

nonzero amplitude (run length), and the sec-

ond value in the pair tells how many bits are

necessary to represent that amplitude. The

value pair is then followed by the amplitude.

When there are nomore nonzero amplitudes in

the block, an end-of-block code is emitted.

The statistical distribution of these value

pairs is heavily skewed toward small values of

both runs and number of bits, so the 2D

Figure 4. Some JPEG test pictures (source: JPEG; used with permission). These are examples of images

used for the first and final selection process for the coding technique. (Note that these are the reproduced

images. Credits for the original versions are (from left to right, top row) IBA, SMPTE, and CCETT; (bottom

row) Roy Vivian, EBU, and Roy Vivian/IBA).
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Huffman coding was the obvious choice. With

this encoding scheme (lossless entropy coding),

significantly higher compression rates were

obtained in JPEG.

Baseline and Profiles

In the early stages of drafting the standard

(1988), the group proposed producing a kernel

that fulfills most of the expected requirements

of videotex and envisioned image telecommu-

nication services. The results of the final selec-

tion formed the basic kernel (baseline) JPEG

system. Most significantly, a royalty-free base-

line system was created. On this foundation,

other profiles were added like layers of an onion

for specific applications and for options such as

arithmetic coding. Such options might have

been royalty bearing. The baseline coding

scheme structure is robust and has a very low

algorithmic complexity, making it easy to

understand and implement. The baseline is suf-

ficient for the many applications and is heavily

used.

This patent strategy for the JPEG baseline

and options proved to be most successful in

supporting market penetration of the JPEG

algorithm. On this basis, the Independent JPEG

Group (an informal open source group under

the leadership of Tom Lane) released an open

source JPEG code in October 1991 (based on

the draft JPEG standard). At that time, the Inter-

net and the web badly needed a still-picture

compression standard.

Later (2000–2002), it turned out that legally,

the ITU, ISO, or IEC patent policy did not per-

mit a royalty-free (RF) baseline with royalty-

bearing (RB) options. Only Fair, Reasonable,

and Non-Discriminatory (FRAND) terms were

permitted for the whole standard. This has led

to some patent litigation cases, which dimin-

ished between 2005 and 2006 when all the

argued patents were running out. However, for

future similar standardization projects, ideally,

a Standards Developing Organization with a

mixed RF and FRAND patent policy would be

required.

DC-AC Prediction

A vital part of image compression is de-correla-

tion. DCT is close to optimal for de-correlating

the values within the 8 � 8 pixel blocks. In the

standard, the DC value of the preceding block is

used as the predictor for the current block. Dur-

ing the development of JPEG, a scheme for a

more advanced inter-block de-correlation,

using AC prediction, was considered. Based on

the DC values of neighboring blocks, AC values

in the center block can be predicted. However,

JPEG has not integrated this scheme due to

increased complexity. Instead, it was suggested

as a decoder-only option.

Lossless

Most early JPEG research efforts went into the

development of the higher compression (lossy)

mode. However, lossless coding was essential to

certain applications, as was a JPEG requirement.

Even though integer DCT would have pro-

vided the first choice, straightforward differen-

tial pulse code modulation (DPCM) was chosen

by JPEG for the lossless mode. DPCM is applied

in the pixel domain, where the value of a given

pixel in a given color component is represented

by the difference between the true value and a

predicted value, and then compressed with a

straightforward entropy coding technique

(Huffman). Seven DPCM predictors are defined

in the standard.
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generally what provides lossy compression.

During the development of JPEG, research-
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The process to ensure this is themodeling (opti-

mal-source symbols selection) and encoding of

the selected symbols. Given that the majority

of the quantized amplitudes are either zero or

very small, and that most of the nonzero or

larger quantized amplitudes pertain to the low

frequencies, KTAS (primarily Jørgen Vaaben)

devised an ingenious way to encode these using

value pairs. The first value in the pair tells how

many zero amplitudes to skip before the next

nonzero amplitude (run length), and the sec-

ond value in the pair tells how many bits are

necessary to represent that amplitude. The

value pair is then followed by the amplitude.

When there are nomore nonzero amplitudes in

the block, an end-of-block code is emitted.

The statistical distribution of these value

pairs is heavily skewed toward small values of

both runs and number of bits, so the 2D
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With real-life images, the compression can

vary substantially (25–30 percent) with the

choice of predictor. Typical compression factors

between 2 and 3 can be obtained, depending

on the complexity of the image and, notably,

the pixel noise in the image. JPEG LS, based on

the LOCO-I algorithm, was standardized with

Huffman coding in 1999 and with extensions

such as arithmetic coding in 2003. JPEG LS can

typically give compression factors better than

four.

At its creation, the goal of JPEG was a com-

mon compression scheme able to handle bi-

level, halftone, and natural images. However,

following the subjective testing of images, it was

agreed that bi-level and halftone images would

need a specific compression scheme. That gave

birth to the Joint Bi-level Image Group (JBIG) in

1988, which resulted in ITU-T Recommenda-

tions ITU-T.82 (1993) and T.88 (2000). Later, the

JPEG2000 project also fulfilled this “original”

(but given up) JPEG requirement.

T he ISO/IEC-ITU JPEG image compression

standard is celebrating the 25th anniver-

sary of the approval of the JPEG standard (see

Figure 6). JPEGwas the first international stand-

ard adopted for compression of natural tone

digital images.12 It is remarkable, even to those

involved in its creation, that the compression

technique has shown such resilience, providing

the foundation for future extensions of JPEG,

including JPEG2000, JPEG XT, and High Effi-

ciency Video Coding (HEVC)-intra. MM
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DEPARTMENT: ART ON GRAPHICS 

Sally Weber:  
Making Art from Light 

We caught up with Sally Weber (www.sallyweber.com) 

after having been transfixed by experiencing her latest 

work, inFLUX, in her exhibition, ELEMENTAL (a current 

installation) at the Butler Institute of American Art, in 

Youngstown, OH. As an artist who has worked with light 

as her medium for a distinguished career, we believe 

Sally has much of value to share with our readership. 

Weber is a holographic artist who completed her graduate 
work at the Center for Advanced Visual Studies at MIT under 
Otto Piene. While at MIT, she was able to explore holography 
and produce several solar installations through the facilities of 

the Regional Laser Center in the George R. Harrison Spectroscopy Laboratory. 

Like graphic artists and data visualization specialists who use models of light and color to pre-
sent content for screen and paper, Sally works to communicate with light but through media such 
as holography and laser traces. She works to find a resonance in the materials and representa-
tions in order to provide unique experiences of light to elicit insight regarding phenomena not 
easily experienced at human spatial and temporal scale. Her iterative process includes exploring 
tangible materials to find an art piece composition that can transfix an audience—an experiential 
state of being that results in lingering long enough to appreciate the art while wondering about 
the underlying communication. 

Upon experiencing her art, one can think through the aspects of her pieces that make the experi-
ence of them so compelling and what technologies might possibly need to provide as affordances 
to make such experiences transfixing using virtual reality technologies. 

Through her environmental art Sally took on the challenge of how to bring art into a larger envi-
ronment, by working from the outside in. She studied the nature of a place and then made art that 
was site specific—back when public art was just starting to come to light. Seattle was one of the 
first locations that had a public art program and by the time she moved out to California, she was 
right in the middle of it. In doing larger architectural scale work—using sunlight to illuminate 
holographic art installations—she didn’t think of a hologram as a little thing. She thought of 
landscape and the idea of bringing light and color into a building so that it became a time 
piece—a way to capture an experience of something that was always in motion. Examples of 
earlier work include Lightscape (Figure 1) and FocalPoint (Figure 2) 

Sally Weber 
Resonance Studio 

Bruce Campbell 
Rhode Island School of 
Design 

Francesca Samsel 
University of Texas—
Austin 

Editors: 
Bruce Campbell 
bcampbel01@risd.edu 

Francesca Samsel 
figs@cat.utexas.edu 
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 COMPUTER GRAPHICS & APPLICATIONS 

 
Figure 1. LightScape,is a solar installation using holographic optical elements and acrylic. Sited on 
Kresge Lawn, Massachusetts Institute of Technology, Cambridge, Massachusetts. Designed to 
reflect the sun’s arc across the site and Kresge Auditorium’s curved roof. The holographic elements 
float above the ground and alter in color with the sun’s angle and the viewer’s distance from the 
installation. Photo credit: Sally Weber. (Used with permission.) 

 
Figure 2. FocalPoint.is a solar water fountain, 12’x 4’x 8’, with holographic optical elements, glass 
pipes, steel, and a water system. Designed to focus sunlight into 3 lines of light that scan across 
the floor and walls in response to the sun’s motion. Installed here at the Boston Museum of Science 
overlooking the Charles River, Boston, Massachusetts. Photo credit: Sally Weber. (Used with 
permission.)  

9May/June 2018 www.computer.org/cga

 

DEPARTMENT: ART ON GRAPHICS 

Sally Weber:  
Making Art from Light 

We caught up with Sally Weber (www.sallyweber.com) 

after having been transfixed by experiencing her latest 

work, inFLUX, in her exhibition, ELEMENTAL (a current 

installation) at the Butler Institute of American Art, in 

Youngstown, OH. As an artist who has worked with light 

as her medium for a distinguished career, we believe 

Sally has much of value to share with our readership. 

Weber is a holographic artist who completed her graduate 
work at the Center for Advanced Visual Studies at MIT under 
Otto Piene. While at MIT, she was able to explore holography 
and produce several solar installations through the facilities of 

the Regional Laser Center in the George R. Harrison Spectroscopy Laboratory. 

Like graphic artists and data visualization specialists who use models of light and color to pre-
sent content for screen and paper, Sally works to communicate with light but through media such 
as holography and laser traces. She works to find a resonance in the materials and representa-
tions in order to provide unique experiences of light to elicit insight regarding phenomena not 
easily experienced at human spatial and temporal scale. Her iterative process includes exploring 
tangible materials to find an art piece composition that can transfix an audience—an experiential 
state of being that results in lingering long enough to appreciate the art while wondering about 
the underlying communication. 

Upon experiencing her art, one can think through the aspects of her pieces that make the experi-
ence of them so compelling and what technologies might possibly need to provide as affordances 
to make such experiences transfixing using virtual reality technologies. 

Through her environmental art Sally took on the challenge of how to bring art into a larger envi-
ronment, by working from the outside in. She studied the nature of a place and then made art that 
was site specific—back when public art was just starting to come to light. Seattle was one of the 
first locations that had a public art program and by the time she moved out to California, she was 
right in the middle of it. In doing larger architectural scale work—using sunlight to illuminate 
holographic art installations—she didn’t think of a hologram as a little thing. She thought of 
landscape and the idea of bringing light and color into a building so that it became a time 
piece—a way to capture an experience of something that was always in motion. Examples of 
earlier work include Lightscape (Figure 1) and FocalPoint (Figure 2) 

Sally Weber 
Resonance Studio 

Bruce Campbell 
Rhode Island School of 
Design 

Francesca Samsel 
University of Texas—
Austin 

Editors: 
Bruce Campbell 
bcampbel01@risd.edu 

Francesca Samsel 
figs@cat.utexas.edu 

8
IEEE Computer Graphics and Applications Published by the IEEE Computer Society

0272-1716/18/$33.00 USD ©2018 IEEEMay/June 2018



48	 ComputingEdge�  July 2018

 

 THEME ARTICLE: ART ON GRAPHICS 

Weber’s work is complex and wide ranging in media and content. Focusing on her current exhi-
bition inFLUX below, Weber speaks of the work, the process and underlying principles in her 
own words: 

“The themes within inFLUX have been percolating for over many years. I had worked with la-
sers and optics for quite a number of years and knew it wasn’t a holography piece but one that 
could get to the jitter—the inherent jitter that is in everything. Jitter, like that in Brownian mo-
tion, is the constant movement of molecules. If you have a glass of water and you pour some 
milk into it, over time the whole glass of water will become milky. All the molecules bouncing 
off of each other are actually doing the mixing. For me it doesn’t matter what scale—it’s a meta-
phor in that everything is jittering. You can see images from the Large Hadron particle collider at 
CERN and that’s what they are trying to capture—the motion that is a result of collisions which 
defines what particles exist and what’s going on with them as a result of the collisions. 

“Light as photons, the particles of light, are always in motion. People generally tend to think of 
light as just all pervasive, but it is dimensional. Light is always moving and we go through this 
matrix of movement—affecting not just us but everything. InFlux became a metaphor for that 
kind of movement—not as a rhythmic kind of pendulum motion, like to and fro, that we think of 
as its resonance dependent on the length of the pendulum, but the movement of objects that in-
teract with each other—a physical representation of what is happening all the time, independent 
of scale. We ‘jitter’ or interact with each other in some of the same ways when we meet up with 
someone, have a conversation, walk by them, etc. The way we move, it’s a dance, a synchronici-
ty that takes place all the time, unconsciously, and is something that has been roaming around in 
my head for a long time. 

“I knew I wanted the light to be the functional aspect of inFLUX, the active ingredient doing the 
drawing and leaving a trace of its path, so that people could find a place where they were just 
caught—and in art when you get caught there can be a moment of silence. You are caught where 
you aren’t thinking and you aren’t just emoting, but are transfixed as if through to the solar plex-
us. As an artist, occasionally, I hope to catch someone before words. In that place there is experi-
ence. I aim for that ongoing sense of wonder when one has to stop long enough to see and feel. 
Otherwise it goes right past you or you go right past it. 

“There is a concept in Buddhism that is not a process of cause and effect but when everything 
arises at once. If one thinks of nature as cyclic, instead of linear, with everything arising at once, 
you can’t pull it apart. So if instead of looking at the separate parts, which science has done to be 
able to consider parts separately in order to delve into it, you are looking at the whole matrix of 
the web and the structure in between it as if you are looking at the negative space. I think I have 
been fascinated by what keeps things together and how one part impacts the other. So to make 
things that naturally have limits, you try to expand those limits so that people’s experiences take 
them to someplace else. 

“You can take the experience of a total eclipse and try to capture it through pictures but that isn’t 
going to do it. It’s because the whole world that you know changes in a matter of moments when 
you finally get to totality. 

“A few years ago an astronomer said to me, ‘for a photon it is always present.’ I loved that. You 
take that sentence in and you think you get it, and you don’t quite get it at the same time. That 
paradox is exactly that place requiring lingering—the tension between the known and the un-
known is right there. For me, light is everything from looking at a star and being right there 
while at the same time you are right here, as well as thinking of light not just as a surface, or a 
totality of reflected surfaces, but as the stuff out here, in the air between us. From the start holog-
raphy offers a unique medium: to be able to bring light to a conceptual mode where you think of 
it as an object but it is not, it is really a field of light. It’s taking the physicality away but giving 
light a sense of boundary and that sense of boundary makes us ask what else is just a boundary 
that we consider solid? And thinking about the permeability between these media and how deli-
cate that is or how robust. 
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Figure 3. Laser pendulums draw in the sand leaving a trace of their path as color patterns building 
up over time as InFLUX, a two-part laser pendulum installation, in ELEMENTAL, solo exhibition at 
the Butler Institute of American Art, Youngstown, Ohio. Photo credit: Sally Weber. (Used with 
permission.) 

“If you can do something that just shakes people a little bit it’s as if they are looking at a new 
vista. They suddenly ask “oh my gosh, what is that?” In the case of leaving traces of light in the 
sand and people not knowing why, it allows that expansion. 
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illuminated by the lasers and then glow.  
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ously on top here but there is this complexity underneath. That complexity is all that the light 
drew over time. It is gradually fading or being reinforced continually.”  

11May/June 2018 www.computer.org/cga

 

 THEME ARTICLE: ART ON GRAPHICS 

Weber’s work is complex and wide ranging in media and content. Focusing on her current exhi-
bition inFLUX below, Weber speaks of the work, the process and underlying principles in her 
own words: 

“The themes within inFLUX have been percolating for over many years. I had worked with la-
sers and optics for quite a number of years and knew it wasn’t a holography piece but one that 
could get to the jitter—the inherent jitter that is in everything. Jitter, like that in Brownian mo-
tion, is the constant movement of molecules. If you have a glass of water and you pour some 
milk into it, over time the whole glass of water will become milky. All the molecules bouncing 
off of each other are actually doing the mixing. For me it doesn’t matter what scale—it’s a meta-
phor in that everything is jittering. You can see images from the Large Hadron particle collider at 
CERN and that’s what they are trying to capture—the motion that is a result of collisions which 
defines what particles exist and what’s going on with them as a result of the collisions. 

“Light as photons, the particles of light, are always in motion. People generally tend to think of 
light as just all pervasive, but it is dimensional. Light is always moving and we go through this 
matrix of movement—affecting not just us but everything. InFlux became a metaphor for that 
kind of movement—not as a rhythmic kind of pendulum motion, like to and fro, that we think of 
as its resonance dependent on the length of the pendulum, but the movement of objects that in-
teract with each other—a physical representation of what is happening all the time, independent 
of scale. We ‘jitter’ or interact with each other in some of the same ways when we meet up with 
someone, have a conversation, walk by them, etc. The way we move, it’s a dance, a synchronici-
ty that takes place all the time, unconsciously, and is something that has been roaming around in 
my head for a long time. 

“I knew I wanted the light to be the functional aspect of inFLUX, the active ingredient doing the 
drawing and leaving a trace of its path, so that people could find a place where they were just 
caught—and in art when you get caught there can be a moment of silence. You are caught where 
you aren’t thinking and you aren’t just emoting, but are transfixed as if through to the solar plex-
us. As an artist, occasionally, I hope to catch someone before words. In that place there is experi-
ence. I aim for that ongoing sense of wonder when one has to stop long enough to see and feel. 
Otherwise it goes right past you or you go right past it. 

“There is a concept in Buddhism that is not a process of cause and effect but when everything 
arises at once. If one thinks of nature as cyclic, instead of linear, with everything arising at once, 
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been fascinated by what keeps things together and how one part impacts the other. So to make 
things that naturally have limits, you try to expand those limits so that people’s experiences take 
them to someplace else. 

“You can take the experience of a total eclipse and try to capture it through pictures but that isn’t 
going to do it. It’s because the whole world that you know changes in a matter of moments when 
you finally get to totality. 

“A few years ago an astronomer said to me, ‘for a photon it is always present.’ I loved that. You 
take that sentence in and you think you get it, and you don’t quite get it at the same time. That 
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known is right there. For me, light is everything from looking at a star and being right there 
while at the same time you are right here, as well as thinking of light not just as a surface, or a 
totality of reflected surfaces, but as the stuff out here, in the air between us. From the start holog-
raphy offers a unique medium: to be able to bring light to a conceptual mode where you think of 
it as an object but it is not, it is really a field of light. It’s taking the physicality away but giving 
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Figure 4. A series of stills from inFLUX at the Butler Institute of American Art. Each laser draws in 
the sand by illuminating pigments, which glow in response to the light. Over time, patterns emerge 
and fade to be redrawn as the pendulums interact, collide, twist and pass by each other. Photo 
credit: Sally Weber. (Used with permission.) 

Selected frames of inFLUX in action are shown in Figure 4. A video of inFLUX can be found at 
(URL). For further information about Sally Weber and her work, see www.sallyweber.com. 
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INSIGHTS

A Taxonomy of IoT Client 
Architectures
Antero Taivalsaari and Tommi Mikkonen

AT THE TECHNICAL level, the 
Internet of Things (IoT) is all about 
turning physical objects and every-
day things into digital data products 
and services—bringing new value and 
meaning by making previously life-
less things more intelligent. Effectively, 
this means adding computing capabili-
ties and cloud connectivity to hitherto 
unconnected devices, as well as adding 
back-end services and web or mobile 
apps for viewing and analyzing data 
and controlling those devices.

IoT systems are end-to-end sys-
tems consisting of four basic ar-
chitectural elements that tend to 
be pretty much identical in all IoT 
solutions.1 Devices are the physi-
cal hardware elements that collect 
sensor data and might perform ac-
tuation. Gateways collect, prepro-
cess, and transfer sensor data from 
devices and might deliver actuation 

requests from the cloud to devices. 
The cloud platform—usually offered 
as a software-as-a-service solution—
has a number of important roles, 
including data acquisition, data ana-
lytics, and device management and 
actuation. Applications range from 
simple web-based data visualiza-
tion dashboards to highly domain-
specifi c mobile apps.

A wide spectrum of software 
architecture options exists for IoT 
devices, ranging from very simple, 
limited sensing devices to devices fea-
turing fully fl edged OSs and devel-
oper APIs. In this article, we defi ne 
a simple taxonomy of these options 
based on a number of industrial and 
academic IoT development projects 
carried out in the past four years. 
(For two examples, see health.nokia
.com/es/en/steel-hr and wiki.mozilla
.org/Connected_Devices/Projects.)

Software Architecture Options
IoT systems involve various design 
drivers and tradeoffs. Important fac-
tors include cost, update capabilities, 
dynamic programmability, security, 
energy effi ciency, and communica-
tion latency. These factors largely 
determine the architecture options 
we describe next.2

On a high level, the software 
architecture choices for IoT client 
devices fall into the following seven 
categories, ranging from simple to 
more complex:

• no-OS architectures,
• RTOS (real-time OS) 

architectures,
• language-runtime architectures,
• full-OS architectures,
• app-OS architectures,
• server-OS architectures, and
• container-OS architectures.

From the Editors

The Internet of Things (IoT) makes the world programmable. IoT software embeds 

numerous resources, from sensors and actuators on the edge, all the way to auto-

mation platforms in the cloud. Antero Taivalsaari and Tommi Mikkonen share their 

project experiences at Nokia Health and Mozilla Connected Devices, distilled into 

different stacks of increasing complexity for deploying such software across many 

different kinds of Things. —Cesare Pautasso and Olaf Zimmermann
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No-OS Architectures
The vast majority of today’s IoT de-
vices are really simple. Smart light 
bulbs, thermostats, remotely con-
trolled electricity plugs, air quality 
sensors, and ID tags or badges don’t 
require complex software stacks.

Such simple IoT devices don’t 
need an OS or application platform. 
All the software is written specifi-
cally for the device, and software 
development typically is in-house. 
So, third-party-developer support 
is unnecessary. Support for firm-
ware updates might be limited or 
nonexistent.

Given the fixed nature of soft-
ware in such low-end devices, the 
amount of RAM and flash memory 
can be minimized. In many cases, 
only a few kilobytes or tens of kilo-
bytes of RAM will suffice.

For battery-operated low-end 
devices, network communication 
optimization plays a major role. Com-
munication protocols such as MQTT 
(MQ Telemetry Transport), LWM2M 
(Lightweight Machine-to-Machine), 
and CoAP (Constrained Application 
Protocol) are important, whereas 
more-capable devices tend to use 
HTTP-based communication and 
more verbose data formats such as 
JSON (JavaScript Object Notation) 
or XML.

RTOS Architectures
For slightly more capable devices 
supporting a richer set of sensors, 
an RTOS might be beneficial. Pop-
ular open source and commercial 
RTOSs provide convenient devel-
oper toolkits and a basic set of APIs 
supporting second-party software 
development. They also support im-
portant product features such as se-
cure firmware updates.

Software development for RTOS-
based IoT devices is usually in-house 

because such devices typically don’t 
provide public third-party-developer 
APIs or the ability to reprogram the 
device dynamically (apart from per-
forming a full firmware update). 
Typical development languages for 
RTOS-based devices are C or C11, 
although even assembly code might 
be used in some areas.

The memory requirements of 
RTOS-based architectures are com-
parable to no-OS architectures,  
often necessitating as little as a few 
tens of kilobytes of RAM and a few 
hundred kilobytes of flash memory. 
Devices in this category are often 
battery-operated, thus placing many 
requirements on optimizing network 
connectivity and energy consump-
tion more broadly.

Language-Runtime Architectures
Some IoT development boards sup-
port a specific built-in language run-
time or virtual machine (VM). For 
instance, the popular Espruino (www 
.espruino.com) and Tessel 2 (tessel 
.io) boards support JavaScript appli-
cations, while Pycom’s WiPy boards  
(pycom.io/development-boards) enable  
Python development.

Compared to no-OS or RTOS 
solutions, language-runtime-based 
IoT devices are significantly more ca-
pable. They can support third-party 
application development and dy-
namic changes—updating the device 
software (or parts thereof) dynami-
cally without having to reflash the 
entire firmware.

At the conceptual and techni-
cal levels, language-runtime-based 
IoT devices are very similar to early  
mobile-app development platforms 
such as the Java 2 Platform, Micro 
Edition (J2ME). In J2ME, a dynamic 
language runtime served as the porta-
ble execution layer that enabled third-
party application development and 

the creation of developer-friendly 
application interfaces. Such capabili-
ties leverage the interactive nature of  
the dynamic languages, allowing 
flexible interpretation and execution 
of code on the fly, without compro-
mising the security of the underlying 
execution environment and device. 
Basically, applications run in a sand-
box that provides only limited access 
to the underlying platform features.

At the implementation level, 
language-runtime-based IoT devices 
typically have an RTOS underneath. 
In that sense, these devices can be 
seen as the next evolutionary step 
up from devices built on the RTOS 
architecture.

The technical capabilities and 
memory requirements of devices 
based on a language-runtime ar-
chitecture vary considerably on the 
basis of the supported languages. 
The VMs’ size and complexity also 
vary considerably. Minimalistic pro-
gramming languages such as Forth 
might require only a few tens of kilo-
bytes of dynamic memory, whereas  
Python or JavaScript VMs require at 
least several hundreds of kilobytes 
or preferably multiple megabytes of 
RAM. Correspondingly, the mini-
mum amount of flash or ROM mem-
ory can also range from a few tens 
of kilobytes to several megabytes. 
However, storage memory is now so 
inexpensive that its cost only mar-
ginally affects a device’s total price.

Full-OS Architectures
The next level up from a language-
runtime architecture is IoT devices 
that are powerful enough to run a 
full (typically Linux-based) OS. The 
Raspberry Pi 3 is a great example of 
such a device.

The presence of a full OS brings 
many benefits, such as built-in sup-
port for secure file transfers, user 
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accounts, device management, se-
curity updates, mature development 
toolchains, and numerous other fea-
tures. The generic nature of devices 
supporting a full-OS architecture 
also makes it possible to effortlessly 
run various types of third-party ap-
plications and services, including the 
aforementioned language runtimes.

Compared to no-OS or RTOS 
architectures, full-OS stacks have 
significantly higher memory and 
CPU requirements. For instance, 
the desire to run a Linux-based OS 
in a device bumps the RAM require-
ments from a few tens or hundreds 
of kilobytes (for an RTOS-based 
solution) to half a megabyte at a 
minimum. The significantly higher 
energy consumption requirements 
make it difficult to employ such de-
vices in use cases that require bat-
tery operation—except in tablet- or 
laptop-sized solutions with a battery 
capacity of at least a few thousand 
milliampere hours.

App-OS Architectures
At the current high end of the IoT 
device spectrum are wearable-device 
platforms such as Android Wear 
(www.android.com/wear) and Apple 
watchOS (www.apple.com/watchos). 
These platforms are in many ways 
comparable to mobile-phone-app 
platforms from three to five years 
ago. They provide rich platform ca-
pabilities and third-party-developer 
APIs; however, they also bump up 
the minimum hardware require-
ments considerably. For instance, 
Android Wear and watchOS require 
a minimum of half a gigabyte (512 
Mbytes) of RAM—over 10,000 
times more than the few tens of ki-
lobytes of RAM required for simple 
IoT sensor devices.

The processing-power require-
ments of app-OS devices are also 

dramatically higher than in the sim-
plest microcontroller-based IoT de-
vices. Typically, an ARM Cortex-A 
class processor is mandated. (For 
instance, Android Wear currently 
requires, at a minimum, an ARM 
A7 processor running at 1.2 GHz.) 
This limits the maximum battery 
duration to a few days, or only a few 
hours in highly intensive use.

Server-OS Architectures
Much to nearly everybody’s surprise, 
JavaScript surpassed the other pro-
gramming languages in popularity in 
2016.3 Whereas JavaScript was origi-
nally designed in the mid-1990s as 
a simple scripting language for web 
browsers, in recent years its use has 
rapidly spread into various other areas. 
Its current success can be attributed 
especially to the Node.js ecosystem 
(nodejs.org), which has popularized 
the use of JavaScript in server-side de-
velopment too. Thus, JavaScript has 
become the lingua franca for web de-
velopment from client to cloud.

The popularity of Node.js has cre-
ated interest in IoT devices that can 
host a webserver. For instance, the 
Tessel 2 board can run the Node.js  
stack and even serve as a standalone 
webserver. Similarly, Raspberry Pi 
devices are commonly used for run-
ning the Node.js stack and other 
webservers.

By default, Node.js assumes the 
availability of at least 1.5 Gbytes of 
RAM. However, it can be config-
ured to operate with considerably 
less memory, starting from a few 
tens of megabytes. Besides Node.js, 
there are several other webserver of-
ferings that are more tailored to em-
bedded environments.

Container-OS Architectures
Container-based software architec-
tures have recently become popular, 

especially in cloud back-end develop-
ment.4 A container is a standalone, 
portable, executable package of a 
piece of software that includes every-
thing needed to run it: code, runtime, 
system tools, system libraries, and 
settings. Popular implementations in-
clude Docker and CoreOS rkt.

Containers isolate applications 
from one another and the underlying 
OS infrastructure, while providing 
an added layer of protection for the 
application. This guarantees that the 
software will always run the same 
way regardless of its physical execu-
tion environment.

At the technical level, containers 
are effectively a lighter-weight OS 
virtualization mechanism. Unlike 
OS VMs such as VirtualBox or VM-
ware Workstation, containers don’t 
virtualize a complete guest OS but 
share the underlying OS with other 
containers.

Given the independence of the 
physical execution environment that 
containers can provide, they’re also 
an attractive choice for IoT devel-
opment, especially in light of IoT 
devices’ current technical diversity. 
Thus, although container technolo-
gies add considerable overhead com-
pared to traditional binary software, 
they’re already being used with IoT 
devices. For instance, Docker can 
already be used on Raspberry Pi 
devices.5

From a purely technical view-
point, container-based architectures 
are definitely a viable option for IoT 
devices if adequate memory and 
other resources are available.4 At a 
minimum, the host environment typ-
ically must have several gigabytes of 
RAM available, thus making this ap-
proach unsuitable for the vast major-
ity of today’s IoT devices. Although 
container-based IoT devices might 
seem excessive today, we see them as 
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trolled electricity plugs, air quality 
sensors, and ID tags or badges don’t 
require complex software stacks.

Such simple IoT devices don’t 
need an OS or application platform. 
All the software is written specifi-
cally for the device, and software 
development typically is in-house. 
So, third-party-developer support 
is unnecessary. Support for firm-
ware updates might be limited or 
nonexistent.

Given the fixed nature of soft-
ware in such low-end devices, the 
amount of RAM and flash memory 
can be minimized. In many cases, 
only a few kilobytes or tens of kilo-
bytes of RAM will suffice.

For battery-operated low-end 
devices, network communication 
optimization plays a major role. Com-
munication protocols such as MQTT 
(MQ Telemetry Transport), LWM2M 
(Lightweight Machine-to-Machine), 
and CoAP (Constrained Application 
Protocol) are important, whereas 
more-capable devices tend to use 
HTTP-based communication and 
more verbose data formats such as 
JSON (JavaScript Object Notation) 
or XML.

RTOS Architectures
For slightly more capable devices 
supporting a richer set of sensors, 
an RTOS might be beneficial. Pop-
ular open source and commercial 
RTOSs provide convenient devel-
oper toolkits and a basic set of APIs 
supporting second-party software 
development. They also support im-
portant product features such as se-
cure firmware updates.

Software development for RTOS-
based IoT devices is usually in-house 

because such devices typically don’t 
provide public third-party-developer 
APIs or the ability to reprogram the 
device dynamically (apart from per-
forming a full firmware update). 
Typical development languages for 
RTOS-based devices are C or C11, 
although even assembly code might 
be used in some areas.

The memory requirements of 
RTOS-based architectures are com-
parable to no-OS architectures,  
often necessitating as little as a few 
tens of kilobytes of RAM and a few 
hundred kilobytes of flash memory. 
Devices in this category are often 
battery-operated, thus placing many 
requirements on optimizing network 
connectivity and energy consump-
tion more broadly.

Language-Runtime Architectures
Some IoT development boards sup-
port a specific built-in language run-
time or virtual machine (VM). For 
instance, the popular Espruino (www 
.espruino.com) and Tessel 2 (tessel 
.io) boards support JavaScript appli-
cations, while Pycom’s WiPy boards  
(pycom.io/development-boards) enable  
Python development.

Compared to no-OS or RTOS 
solutions, language-runtime-based 
IoT devices are significantly more ca-
pable. They can support third-party 
application development and dy-
namic changes—updating the device 
software (or parts thereof) dynami-
cally without having to reflash the 
entire firmware.

At the conceptual and techni-
cal levels, language-runtime-based 
IoT devices are very similar to early  
mobile-app development platforms 
such as the Java 2 Platform, Micro 
Edition (J2ME). In J2ME, a dynamic 
language runtime served as the porta-
ble execution layer that enabled third-
party application development and 

the creation of developer-friendly 
application interfaces. Such capabili-
ties leverage the interactive nature of  
the dynamic languages, allowing 
flexible interpretation and execution 
of code on the fly, without compro-
mising the security of the underlying 
execution environment and device. 
Basically, applications run in a sand-
box that provides only limited access 
to the underlying platform features.

At the implementation level, 
language-runtime-based IoT devices 
typically have an RTOS underneath. 
In that sense, these devices can be 
seen as the next evolutionary step 
up from devices built on the RTOS 
architecture.

The technical capabilities and 
memory requirements of devices 
based on a language-runtime ar-
chitecture vary considerably on the 
basis of the supported languages. 
The VMs’ size and complexity also 
vary considerably. Minimalistic pro-
gramming languages such as Forth 
might require only a few tens of kilo-
bytes of dynamic memory, whereas  
Python or JavaScript VMs require at 
least several hundreds of kilobytes 
or preferably multiple megabytes of 
RAM. Correspondingly, the mini-
mum amount of flash or ROM mem-
ory can also range from a few tens 
of kilobytes to several megabytes. 
However, storage memory is now so 
inexpensive that its cost only mar-
ginally affects a device’s total price.

Full-OS Architectures
The next level up from a language-
runtime architecture is IoT devices 
that are powerful enough to run a 
full (typically Linux-based) OS. The 
Raspberry Pi 3 is a great example of 
such a device.

The presence of a full OS brings 
many benefits, such as built-in sup-
port for secure file transfers, user 
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an important step toward fully iso-
morphic IoT system architectures, 
which we discuss in the next section.

Observations and Trends
The selection of a software archi-
tecture for IoT devices depends on 
the expected use, the power bud-
get, and the need to support dy-
namic programming or third-party 
development. Table 1 summarizes 
the architecture options. In general, 

the more capable the underlying ex-
ecution environment is, the more 
feasible it is to run various types of 
software architectures, platforms, 
and applications on it.

In particular, we make the fol-
lowing six observations.

First, energy consumption require-
ments heavily influence the software 
architecture choice. In practice, one 
of the most significant differentiating 
features driving or even dictating the 

selection of the software architecture 
in most IoT devices is the battery. A 
battery-operated IoT device typically 
has strict minimum operating-time 
requirements. Furthermore, a de-
vice’s form factor plays a significant 
role in determining the right trade-
offs, thus also impacting the type of 
software architecture the device can 
support.

Second, the availability of inex-
pensive off-the-shelf hardware is 

Table 1. Software architecture options for IoT devices.*

Feature

Architecture option

No OS or RTOS
Language 
runtime Full OS App OS Server OS Container OS

Typical devices Simple sensor 
devices, 
heartbeat 
sensors, 
lightbulbs, and 
so on

Feature watches, 
more advanced 
sensing devices

“Maker” devices, 
generic sensing 
solutions

High-end 
smartwatches

Solutions 
benefiting from 
a portable 
webserver and 
edge-computing 
capabilities

Solutions 
benefiting from 
fully isomorphic 
apps—that is, 
code that can be 
migrated between 
the cloud and the 
edge

Minimum required 
RAM

Tens of kilobytes Hundreds of 
kilobytes

A few megabytes Hundreds of 
megabytes

Tens of 
megabytes

Gigabytes

Typical 
communication 
protocols

Constrained 
(MQTT, LWM2M, 
CoAP)

Constrained 
(MQTT, LWM2M, 
CoAP)

Standard Internet 
protocols (HTTP, 
HTTPS)

Standard Internet 
protocols (HTTP, 
HTTPS)

Standard Internet 
protocols (HTTP, 
HTTPS)

Standard Internet 
protocols (HTTP, 
HTTPS)

Typical 
development 
language

C or assembly Java, JavaScript, 
Python

C or C11 Java, Objective C, 
Swift

JavaScript Various

Libraries None or system-
specific

Language-
specific generic 
libraries

OS libraries, 
generic UI 
libraries

Platform libraries Node.js npm 
modules

Various

Dynamic software 
updates

Firmware updates 
only

Yes Yes Yes Yes Yes

Third-party apps 
supported

No Yes Yes Yes Yes Yes

Isomorphic apps 
possible

No Yes Only if the 
hardware 
architectures are 
binary compatible

Yes Yes Yes

* RTOS 5 real-time operating system, VM 5 virtual machine, MQTT 5 MQ Telemetry Transport, LWM2M 5 Lightweight Machine-to-Machine, and CoAP 5 Constrained Application Protocol.
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driving the industry toward “overly 
capable” IoT devices. That is, the 
recent emergence of inexpensive 
IoT chips, development boards, and 
maker kits is leading to IoT devices 
and solutions that have more pro-
cessing power and memory than are 
actually needed. Given this, it might 
often be simpler and much more 
affordable to buy stock hardware in-
stead of building custom hardware 
solutions. Furthermore, the extra ca-
pacity can be benefi cial—for exam-
ple, for improved security features.

Third, software development for 
IoT devices is very similar to clas-
sic embedded-systems development 
and is thus bringing back the need 
for embedded-software-development 
skills and education.6 This is in con-
trast with recent software industry 
survey reports that emphasize the 
importance of higher-level program-
ming skills.7

Fourth, in the next 5 to 10 years, 
the availability of software contain-
ers and virtualization technologies 
in IoT devices will lead the indus-
try to isomorphic IoT system archi-
tectures. In these architectures, the 
devices, gateways, and cloud will 
be able to run exactly the same soft-
ware components and services. This 
will allow fl exible migration of code 
between any element in the over-
all system. In such an architecture, 
there don’t have to be any technical 
differences between software that 
runs on the back end or on the net-
work edge. Rather, when necessary, 
software can freely roam between 
the cloud and the edge in a seamless, 
liquid fashion.

Fifth, along the way toward iso-
morphic systems, edge computing 
will play an increasingly important 
role. Given IoT devices’ rapidly in-
creasing computing and storage ca-
pacities, it’s clear that in the future, 

computation and intelligence will be 
increasingly balanced between the 
cloud and the edge (IoT devices and 
gateways). This could be very benefi -
cial because the ability to preprocess 
data in IoT devices (and gateways) al-
lows for lower latencies and can sig-
nifi cantly reduce unnecessary data 
traffi c between the devices and the 
cloud. Together with the emergence 
of mesh networking and low-power 
wide-area networking (LPWAN) 
technologies, edge computing can be 
expected to signifi cantly alter the to-
pologies and overall software archi-
tecture of IoT systems.

Finally, interoperability is still a 
major issue. Today, most IoT systems 
expect that devices will work only 
with their “own” cloud back end. 
Similarly, the most common way to 
use a device is through a specifi c ap-
plication that’s associated with only 
one particular vendor’s devices. Even 
though signifi cant convergence has 
occurred in the past few years, we’re 

still several years away from univer-
sal Programmable World standards 
as envisioned by Bill Wasik8 and dis-
cussed in our previous IEEE Soft-
ware article.1

A ccording to a popular 
saying—often attributed to 
Mark Twain—history does 

not repeat itself, but it rhymes. At 
the moment, there’s still much di-
versity in the IoT device space. In 
many ways, the IoT device market 
today resembles the early evolution 
of the PC market before the domi-
nant PC platforms were established 
in the early 1980s. Interesting par-
allels also exist between today’s IoT 
devices and the evolution of mobile 
phones in the late 1990s and early 
2000s. Although the vast majority 
of IoT devices today have very sim-
ple software stacks, we foresee stack 
complexity increasing rapidly be-
cause of hardware evolution and the 
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general desire to support edge com-
puting, software containers, and iso-
morphic IoT system architectures.
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A Revised View of the  
IoT Ecosystem
Vinton G. Cerf • Google

F or a long time, I had the idea that configu-
ration of a suite (ensemble) of Internet of 
Things (IoT) devices would be an infrequent 

process — for example, when you bought a new 
device, sold, transferred, or superannuated an 
older one. However, my thinking has evolved. 
Sticking with the residential paradigm for a 
moment, although the ideas seem equally appli-
cable to industrial settings, it’s becoming clearer 
that many devices will come and go with the 
residents, guests, workmen, emergency services 
personnel, and others who might have reason to 
enter the premises and have need to “control” at 
least a part of it while present.

This leads me to believe that an IoT ensemble 
must actually be in a kind of continuous configu-
ration mode, anticipating the arrival and depar-
ture of all manner of Internet-enabled devices. 
Among the implications is the notion that the local 
IoT management system needs to expect that new 
devices will need to be configured into the sys-
tem and others to depart — it needs to sense their 
arrivals and departures and to react accordingly.

Not every device that arrives must be config-
ured into the system, nor must every device that 
leaves be deconfigured. Indeed, some devices 
must be recognized when in remote locations, 
to be authoritative with regard to access to data 
and ability to exert controls. Others should be 
ignored even when on the premises. This implies 
that there must be a highly active process for 
discovering and qualifying devices to become 
part of the local IoT ecosystem and to be recog-
nized as authoritative even when not local.

By extension, these devices must be able to 
present bona fides to the residential IoT control 
system when called upon to do so. The process 
must be painless for users, but assure household 
authorities that only devices (and people) that 
should be granted access are properly identified. 

This strikes me as a nontrivial design challenge; 
the ecosystem will need some serious think-
ing about standards to achieve interoperability 
across a multitude of potential “players” that 
might be encountered.

The Bluetooth technology-pairing mecha-
nism offers an example of device discovery and 
a means of confirming that a selected device 
should become associated with another. For 
example, cars equipped with Bluetooth technol-
ogy can detect the presence of another Blue-
tooth device if the latter is put into a beaconing 
mode. The car typically serves as the master and 
discovers a beaconing slave. The master sends 
the slave a locally generated random number, 
typically displayed on the slave device. Users  
are asked to verify that both the master and slave 
are displaying the same random number before 
the master adopts the slave. Protocols like this  
are already in use to allow controllers to incor-
porate new IoT devices into an ensemble. In a 
residential setting, we can easily imagine a home 
controller that detects and configures new devices 
into its universe, and that can be told to forget 
an adopted slave when it should be deconfigured 
(upon the departure of a visitor, for example) or to 
remember the device and to have a means to rec-
ognize it again even when it’s remote and com-
municating — for example, via the Internet.

H ere’s a scary thought: what if a device is 
adopted that’s corrupted, and it has a back-

door allowing remote access to a residential net-
work of devices? 
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