
TDD For Embedded Systems...
All The Way Down To The

Hardware

Neil Johnson
XtremeEDA

njohnson@xtreme-eda.com
@nosnhojn

1

• ASIC

– Application Specific Integrated Circuit

– Static structure

– Digital or mixed signal

– High NRE/Low cost

• FPGA

– Field Programmable Gate Array

– Reprogrammable structure

– Primarily digital

– No NRE/High cost

• SoC

– Either of the above + embedded processor(s) + software

 2

What Do I Mean By Hardware

• Typical SoC design flow

– Specification

– Design

– Verification

– Physical design

– Fabrication

– Validation

– Integration

3

SoC Development Basics

Pre-silicon

Documentation

Code

“Stuff”

Chip

Board

System

Production

OS

Drivers

Application

Software

Design and Verification

Design

Stimulus Monitor
Model +

Checking

Verification Engineer

Design Engineer

Testbench

5

Design and Verification – Planned?

Block Level design

Block Level Testbench

Top Level Testbench

Block Level

Top Level

Top Level Testing

Block Level Testing

DONE START

Design and Verification – Actual!

Block Level design

Block Level Testbench

Block Level Testing

Top Level Testbench

Top Level Testing

Block Level

Top Level

START
Oops! NOT

DONE

Working Software (Hardware)

Design and Verification – Incremental

DONE START

D
O

N
E

D
O

N
E

D
O

N
E

D
O

N
E

D
O

N
E

D
O

N
E

D
O

N
E

Block Level

Top Level

• Feature-of-the-week

– “Tell your customer you’re going to give them something
that works in a week”

• Jonathan Rassmuson, Agile in a Nutshell, APLN April 2009

– The Agilesoc Blog: Remote Development And The Feature-
of-the-week

The Perfect Place To Start

9

The feature-of-the-week is not Agile, it’s

frequent delivery... which is hard to

argue against.

• Client experience

– Goal

• Convince myself that incremental development is possible

– Situation

• Functional testing of a sub-system

• Design was done, test harness was partially complete

– Planning

• 4 increments, 1 for each major feature

• Detailed plan included 1-2 week sub-milestones

• 2 increments planned in detail

Feature Of The Week

10

• Client experience - Highlights

– Planning

• The planning was different but no convincing was required

– Increment 1

• Uh oh… I’ve committed to delivering something in a week

• First up: remove everything I don’t need

Feature Of The Week

11

• Client experience – Highlights (con’t)

– Increment 2

• I was focused and delivering on time

• Functional milestones allowed me to react to new priorities

– Increment 3

• Functioning code was great for gaining confidence and/or
being corrected

• I wasn’t so concerned with building infrastructure

Feature Of The Week

• Client experience – Highlights (con’t)

– Increment 2

• I was focused and delivering on time

• Functional milestones allowed me to react to new priorities

– Increment 3

• Functioning code was great for gaining confidence and/or
being corrected

• I wasn’t so concerned with building infrastructure

– Summary

• Convince myself incremental development can work

Feature Of The Week

13

DONE START

D
O

N
E

D
O

N
E

D
O

N
E

D
O

N
E

D
O

N
E

D
O

N
E

D
O

N
E

Emphasis on Bug Hunting

TDD Mechanics

Write a test

Implement

your design

Run the test

(must fail)
Run the test

(must pass)

Unit Testing Mechanics

Write a test

Implement

your design

Run the test

(must pass)

• Each module in a design has a list of dedicated unit tests

– tests exhaustively cover functionality of the module
(“exhaustively” within reason)

– unit tests are automated

• anytime the code changes for a given module, the
corresponding tests are run to make sure it isn’t broken

• Unit tests informally increase quality, not red tape

– tests are planned/written while building a component

– documentation/tracking requirements are very light

• “Use-this” modules are integrated when their unit tests
pass

17

TDD To Improve Initial Code Quality

• Unit testing happens before anything else

– then block and/or top level testing

– Unit testing does not replace current verification practices

• change... perhaps. replace... no.

18

TDD To Improve Initial Code Quality

Unit 2

Unit 3

Block B

Top

TStart
TEnd TIME

Unit 0

Unit 1

Block A

19

SVUnit Testing Framework

Testrunner

<ID_a>_testsuite <ID_n>_testsuite

<ID_x>_unit_test <ID_y>_unit_test

test_<a>() test_()

Test Runner Object

Test Suite Objects

Unit Test Objects

Test Methods write code here

SVUnit In Practice - Mechanics

20

SVUnit In Practice - Mechanics

21

Write unit test for

new test bench

feature

Ensure the new

unit test passes

Ensure the new

unit test fails

Write model code

for new feature

START

Verify the

Testbench

(TDD w/SVUnit)

SVUnit In Practice - Mechanics

22

Write unit test for

new test bench

feature

Ensure the new

unit test passes

Write

test

Ensure the new

unit test fails

Write model code

for new feature

Run

test
File BUG

START END

Verify the

Testbench

(TDD w/SVUnit)

Verify the

Design

(Directed Test)

• TDD for Testbench Code

– UVM testbench for SoC subsystem

• ~3000 lines of code total

– SVUnit unit tests for almost every line

• 116 unit tests

• ~5000 lines of test code total

23

TDD To Improve Initial Code Quality

• TDD for Testbench Code

– UVM testbench for SoC subsystem

• ~3000 lines of code total

– SVUnit unit tests for almost every line

• 116 unit tests

• ~5000 lines of test code total

– 9 weeks of effort

– Bugs found:

• 30 RTL bugs

• 2 testbench bugs

24

TDD To Improve Initial Code Quality

15:1

• Can TDD be effective given low level
interactions?

• Is code partitioning TDD-friendly?

• Can concurrency be hidden/simplified?

25

Design Lessons Learned

Problem: Low Level Hardware Interactions

26

Problem: Low Level Hardware Interactions

27

Solution: Create Higher Level API

28

29

Problem: Not Structured for Unit Testing

FIFO

Memory

ingress()
expect

egress()

test path

Memory

FIFO

Memory

30

Problem: Not Structured for Unit Testing

ingress()
expect

egress()

test path

A unit test

should fail for

exactly 1

reason

31

Solution: Restructure/Isolate Functionality

FIFO ingress()
expect

egress()

expectWr()

read()

write()
expect

read()

get() set()

A unit test

should fail for

exactly 1

reason

Memory Memory

32

Problem: Hardware is Multi-Threaded

action()

response()

clock

2

1

3

UUT

33

Solution: Maintain a Single Thread

action()

response()
1

FIFO

• Low level interactions can work with TDD

• Design partitioning can be TDD-friendly

• Concurrency can be hidden/simplified in
unit tests

• Hardware is special... but TDD still fits

34

Design Lessons Learned

35

Where Would I be Without This Stuff? Where would I be without

TDD and incremental

development?

38

nosnhojn@gmail.com

@nosnhojn

• Unit testing legacy code: UVM-1.1d

– Lock down functionality to ease maintenance

• finer granularity tests catch issues we don’t target directly

• unit tests provide a backstop when maintaining code

– UVM-1.1d == thousands and thousands of lines of code

– >550 unit tests total

– 6 weeks of effort

SVUnit Case Study: UVM-UTest

39

• Unit testing legacy code: UVM-1.1d

– Lock down functionality to ease maintenance

• finer granularity tests catch issues we don’t target directly

• unit tests provide a backstop when maintaining code

– UVM-1.1d == thousands and thousands of lines of code

– >550 unit tests total

– 6 weeks of effort

– 10 defect reports filed

SVUnit Case Study: UVM-UTest

40

SVUnit Case Study: UVM-UTest

41

START END

Write unit test for

existing model feature

Ensure the new

unit test fails

Ensure the new

unit test passes

Inject a defect

Writing Unit Tests

and

Refactoring Code

w/SVUnit

Remove the defect

Refactor the code
Ensure the new

unit test passes

“...showcase TDD as a

credible technique for doing

hw/sw co-development.”

“code quality and

synchronization between

hw/sw developers are of major

importance in embedded

systems development.”

“we’ll use an FPGA board to

implement some simple yet

visual application.”

43

Hardware Deliveries

• Step 0 – Wires

– placeholder for future
development

• Step 1 – FIFO

– ingress/egress
functions to a qpram

• Step 2 – Frame Processor

– add a shadow around
living cells

– non-trivial hardware
block built w/TDD

44

AgileHwBlock

Hardware Deliveries

• Step 0 – Wires

– placeholder for future
development

• Step 1 – FIFO

– ingress/egress
functions to a qpram

• Step 2 – Frame Processor

– add a shadow around
living cells

– non-trivial hardware
block built w/TDD

45

AgileHwBlock

Iteration 1

Iteration 2

Iteration 3

Problem: Design Doesn’t Meet Timing

ingress()
expect

egress()
FIFO

Memory

47

Problem: It’s Not Over With TDD

ingress()
expect

egress()
FIFO

Memory

Solution: Integration Tests For Integration

ingress()
expect

egress()

test path

FIFO

Memory

Where Verification Engineers Spend There Time

50

36%

65%

Debug

Being Productive

Where Verification Engineers Spend There Time

51

23.5%
~12.5%

65%

Debug

Being Productive

Riding Bikes

Language Basics (Verification)

Classes

Inheritance

Class

Method

Constructor

Expressions

Operator

Branching

Method

Arguments

Language Basics (Design)

Synchronous

Logic

Reset State

Flip-flop

Adder

AND/OR gates

Hardware Simulation

Simulator

results.log

Emphasis on Bug Hunting

REDO

REDO

TDD is a great idea

that can save us a

lot of money by

helping us avoid

writing buggy code.

We’re too busy to

save money.

This guy

is an idiot It’s lunch time.

Why are you

telling us this at

lunch time?

