TDD For Embedded Systems...
All The Way Down To The
Hardware

Neil Johnson
XtremeEDA
njohnson@xtreme-eda.com
@nosnhojn

What Do I Mean By Hardware

« ASIC
— Application Specific Integrated Circuit
— Static structure

— Digital or mixed signal
— High NRE/Low cost
« FPGA
— Field Programmable Gate Array
— Reprogrammable structure
— Primarily digital
— No NRE/High cost
« SoC
— Either of the above + embedded processor(s) + software

SoC Development Basics

- Typical SoC design flow
— Specification | Documentation
— Design
— Verification
— Physical design
— Fabrication
— Validation > Production —

— Integration
... h

= Pre-silicon —

— >
=

System

OS

Application

Design and Verification

Model +

Checking

Monitor

Verification Engineer

Design Engineer

Design and Verification — Planned?

Block Level design
Block Level Testbench
Block Level Testing
Block Level

Top Level
Top Level Testbench
Top Level Testing

START DONE

Design and Verification — Actual!

Block Level design
Block Level Testbench
Block Level Testing
Block Level

Top Level

Top Level Testbench
Top L Testing

evel
START NOT
DONE Oops!

Working Software (Hardware)

Working Software (Hardware)

» Waterfall Model Agile model
Physical Design Physir.'af Design
. :
Software é
=2 .
oo = Masifiankine O Verifiation
Design
Specification

1
B0 Dore

€9 XtremeEDA

8 2011 XivemaEDA LISA Gorporaltion - Version 0A0T21,10

Design and Verification — Incremental

. . . . Block Level

The Perfect Place To Start

- Feature-of-the-week

— "Tell your customer you're going to give them something
that works in a week”

e Jonathan Rassmuson, Agile in a Nutshell, APLN April 2009

— The Agilesoc Blog: Remote Development And The Feature-
of-the-week

The feature-of-the-week is not Agile, it's
frequent delivery... which is hard to

argue against.

Feature Of The Week

» Client experience
— Goal
e Convince myself that incremental development is possible
— Situation
e Functional testing of a sub-system
e Design was done, test harness was partially complete
— Planning
e 4 increments, 1 for each major feature
e Detailed plan included 1-2 week sub-milestones
e 2 increments planned in detalil

Feature Of The Week

- Client experience - Highlights
— Planning
e The planning was different but no convincing was required
— Increment 1

e Uh oh... I've committed to delivering something in a week
e First up: remove everything I don’t need

Feature Of The Week

« Client experience — Highlights (con't)
— Increment 2
e I was focused and delivering on time
e Functional milestones allowed me to react to new priorities
— Increment 3

e Functioning code was great for gaining confidence and/or
being corrected

e I wasn't so concerned with building infrastructure

Feature Of The Week

« Client experience — Highlights (con't)

— Increment 2
e I was focused and delivering on time
e Functional milestones allowed me to react to new priorities

— Increment 3
e Functioning code was great for gaining confidence and/or

being corrected
e I wasn't so concerned with building infrastructure

— Summary
e Convince myself incremental development can work

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

START LL DONE

DON
DON
DON
DON
DON
DON
DON

Effort and Results
Mean time Non-FPGA verification engineers spends in different tasks

More time spent in debug than |
any u::ther taskl .

m Test Planning

@ Testbench Development

® Creating and Running Test
m Debug

m Other

Wisoe Rt prcth Group and Menloe Gegphas, 112 Fencrional varficabon Stisdy, Usad wilh panmmesiin

T LS Mg Degpbey Lo
HE - Jauoarp 012 Mander Tl R L S MD Sy Hematis wErremEn e oom

TDD Mechanics

/ Write a test \

Run the test Run the test
(must pass) (must fail)

\ Implement j

your design

Unit Testing Mechanics

/ Write a test

Run the test
(must pass)

Implement
your design

TDD To Improve Initial Code Quality

- Each module in a design has a list of dedicated unit tests

— tests exhaustively cover functionality of the module
(“exhaustively” within reason)

— unit tests are automated

e anytime the code changes for a given module, the
corresponding tests are run to make sure it isn‘t broken

« Unit tests informally increase quality, not red tape
— tests are planned/written while building a component
— documentation/tracking requirements are very light

« “Use-this” modules are integrated when their unit tests
pass

TDD To Improve Initial Code Quality

- Unit testing happens before anything else
— then block and/or top level testing

— Unit testing does not replace current verification practices
e change... perhaps. replace... no.

. Ty
et Ty
Y y
1]
-
.,.
‘e
.

R
.
“
......
........
m ----------

R B

Tstart TIME Teng

SVUnit Testing Framework

Testrunner Test Runner Object

SVUnit In Practice - Mechanics

Design and Verification

L] = L]
“““‘-
o S,
o ‘e
s Ll Monitor L
. .
' Checking g
“0. A A .
..... “"
Véificafion Engineer Laee®t
LTy
"IIIIIIIII llllll-'--- 5
Design Engineer

Design

SVUnit In Practice - Mechanics

Grocking ' Write unit test for
+s» newtestbench ==s.,,
----- “ ...
Design Engineer Q‘ featu re ’.
L 4 *
v
. Ensure the new
N unit test fails
. Verify the :
. Testbench V
. (TDD w/SVUnit) .
S Write model code
L)
., for new feature
* []
* L
"’0 ‘O”
**s... Ensure the new 4___."‘

unit test passes

SVUnit In Practice - Mechanics

A
Write unit test for
C Lassnss==gsP newtestbench ==wa.,
. Y Al o* Yo,
anuEE RNy, :¢“‘ 0“ feature “‘
" Ya,m *
p ‘
Eile BUG Run : EnSl_Jre the r_1ew
. test o unit test fails
KTV \ . Verify the :
" . Testbench *
Write . (TDD w/SVUnit) .
test . Write model code
. for new feature
. ‘ “ []
Verlfy the ’o.,.. ., o
DeS|gn '.'-.....’:::... Ensure the new 4-“.”‘¢

(Directed Test) unit test passes

TDD To Improve Initial Code Quality

« TDD for Testbench Code

—UVM testbench for SoC subsystem
e ~3000 lines of code total

— SVUnit unit tests for almost every line
e 116 unit tests
e ~5000 lines of test code total

TDD To Improve Initial Code Quality

« TDD for Testbench Code

—UVM testbench for SoC subsystem
e ~3000 lines of code total

— SVUnit unit tests for almost every line
e 116 unit tests
e ~5000 lines of test code total

—9 weeks of effort
—Bugs found:

. 30 RTL bugs]_/ 15: 1

o 2 testbench bugs

Design Lessons Learned

- Can TDD be effective given low level
interactions?

« Is code partitioning TDD-friendly?
 Can concurrency be hidden/simplified?

Problem: Low Level Hardware Interactions

usen } |
L

Kt-e,E b X | .
ot o, V£ e S
Mot XX b0~ X
weddy SSOKAK

Problem: Low Level Hardware Interactions

T
o e |

(
T |

use ’ “SVTEST(ingress write 1 pixel)

E(posedge clk):
Kﬁ-e,e x\bé X iTVALID = 1;
ATDATA = 'haa55bb;
2 iTUSER = 1;
iTKEEP = 'hb;
é&S'{’, iTLAST = 0;

k/@ﬁ%}ﬂ |b;01:»_x_— = € (posedge clk);

#1:
- — .
W df M[“FAIL_UNLESS(wdata === { 1 , 'hb , 0 , 'haa55bb });
95’ e | “FAIL UNLESS (waddr == 0);

"FAIL UNLESS(wr === 1);

—

Solution: Create Higher Level API

"BVTEST(1ngress write 1 pixel)
setIngressPixel | 'haas5bb):
step();

expectRamWrite [0, 'haa53bb);

i :K 2 B SEVTEST EHND
use ’ “SVTEST(ingress write 1 pixel)

_L E(posedge clk):
[(f.e_e X\HZ x iTVALID = 1;
ATDATA = 'haa55bb;
iTUSER = 1;
iTKEEP = 'hb;
é&S'{’, iTLAST = 0;
é \(X] e E(posedge clk):
‘Vké\ .K_X_Xl_ |b|01"'X

o e #1:

.
k)‘?‘o’dr Mé[“FAIL UNLESS(wdata === { 1 , 'hb , 0 , 'haa55bb });

—] "FAIL UNLESS (waddr == 0);

"FAIL UNLESS(Wr === 1):

w m‘ T -\. SErIIESII:EHD

Problem: Not Structured for Unit Testing

_expect
egress()

ingress()

Problem: Not Structured for Unit Testing

A unit test
should fail for
exactly 1
reason

_expect
egress()

ingress()

Solution: Restructure/Isolate Functionality

A unit test
should fail for

exactly 1
reason
S expect
- write() read())
............. read ()
ingréss() agress

" egress()

Problem: Hardware is Multi-Threaded

action() —

response()

N

UuT

"SVTEST(test with 3 threads)
/{ syncronize to clk thread
g (negedge clk):

fork
begin
// some action on input thread
end

begin
/f wait for response thread
"FAIL TF(someCondition);
end
Jjoin
" SVTEST END

Solution: Maintain a Single Thread

.............. . response(
..................... /\

"EVTEST(1ingress write 1 pixel)
setIngressPixel | 'haas5bb);
step();

expectRamWrite(0, 'haa55bb):
“SVTEST END

acti;)n()

Design Lessons Learned

- Low level interactions can work with TDD
* Design partitioning can be TDD-friendly

 Concurrency can be hidden/simplified in
unit tests

« Hardware is special... but TDD still fits

Where would | be without
TDD and incremental
development?

{
~
NS

S\Unit 2016

User Group Meeting

-«

C.J.\'l/u'nu'l DA

y ,

; o e
SVUnit 2016

User Group Meeting
&L% /‘\\&/ ?/O//Sponsored b\’,igu’”u‘) e o

By, o

C»\w{\w | w Ad;d

e . L\/f c‘, XtremceEDA o y
S Nor k& Ylalpans mw l/ ’

Vlad... Glenn... take a look at Applying agile software Th'S is traglc

this guy's blog. His name is Neil pra(;tlcesl n harci\;vare
Johnson and his blog is evelopmen / [It reads like a

called AgileSoC.com. cry for help.

«V

RealityReused.com

Agile
SoC..-

Agile Hardware i is real

i

XtremeEDA

s partly ault.

nosnhojn@gmall.com
@nosnhojn

SVUnit Case Study: UVM-UTest

- Unit testing legacy code: UVM-1.1d

— Lock down functionality to ease maintenance
e finer granularity tests catch issues we don't target directly
e unit tests provide a backstop when maintaining code

— UVM-1.1d == thousands and thousands of lines of code
— >550 unit tests total
— 6 weeks of effort

SVUnit Case Study: UVM-UTest

- Unit testing legacy code: UVM-1.1d

— Lock down functionality to ease maintenance
e finer granularity tests catch issues we don't target directly
e unit tests provide a backstop when maintaining code
— UVM-1.1d == thousands and thousands of lines of code
— >550 unit tests total Viewing Tssues (110 10 (2o s |
— 6 weeks of effort e e e e =
— 10 defect reports filed -

0004640 TBD acL minor new 2013-06-17 :J"\;'In;él'lr:s_wildcard is the only function that treats '+' as a

0004602 TBD BCL minor new 2013-06-19

0004638 TBD BCL minor new 2013-06-17 uvm_is_array returns true for malformed string inputs

incomplete is_wildcard handling in
0004637 TBD BCL minor new 2013-06-17 uvm_get_array_index_string leaves is_wildcard in
erroneous state

uvm_get_array_index_string accepts illegal index

0004636 TBD BCL minor new 2013-06-17
characters
incomplete is_wildcard handling in
0004635 TBD BCL minor new 2013-06-17 uvm_get_array_index_int leaves is_wildcard in erronecus
state
0004634 TBD acL minor new 2013-06-17 uvm_get_array_index_int treats indices with radix

specified as illegal

uvm_printer::print_real argument to adjust_name is

0004609 TBD BCL minor new 2013-05-28
incorrect

uvm_vector_to_string incorrectly displays negative

0004601 TBD BCL minor new 2013-05-24
numbers

SVUnit Case Study: UVM-UTest

e

*eu,,,, ENsurethe new _ .+
unit test fails

A
Refactor the code cuenesgap ENSUTE the new Write unit test for
A o0t unit test passes existing model feature
. & o
“ 0. []
’.‘ ... '
5 Writing Unit Tests ~ Ensure the new
. e unit test passes
Remove the defect _
A Refactoring Code v
“, wiSVUnit Inject a defect
" :
‘0. .Q
‘0. 0’

+*

“...showcase TDD as a
credible technique for doing
hw/sw co-development.”

“code quality and
synchronization between

hw/sw developers are of major
importance in embedded
systems development.”

“‘we’ll use an FPGA board to
implement some simple yet
visual application.”

% % 4(1 y\c\-SL\\pow:

Under pe ru\f\j(€0\

% % A1 neighloows

’>u5‘f MV\CD(

% > b v\c_(%l,\\mus

ey popu\«keo(

7
/i-‘ ?) nC\SNoo W =

¥

T \ | \

F éw \(;Et’s‘t

x G a woc K

X ﬂoclc / éo(aJC& Aess '\v\’(efc.cﬁ*

t et
* Goos(c,\mocL
¥ rlock/l'éb(eiﬁ d\fl\/ﬁ\r \V\{Weﬂ(ﬁb

¥ 5\ Uit
X \)C(;lo%

lteration 1

lteration 2

lteration 3

Problem: Designh Doesn’t Meet Timing

_expect
egress()

Ingress()

_— . Y ' '\' e - o

Problem: It's Not Over With TDD

_expect
egress()

Ingress()

Solution: Integration Tests For Integration

_expect
egress()

ingress()

Where Verification Engineers Spend There Time

I Being Productive
B Debug

Where Verification Engineers Spend There Time

I Being Productive

B Debug
B Riding Bikes

Language Basics (Verification)

= e e e e Inheritance

Classes // at pre reset so that other components registered
\\\\\N // same domain never proceed beyond that point

class svunit idle uvm component extends uvm component; Method

“uvm_component_ utils(swnit_idl&_u‘m_“ﬂmm“‘m”/ Arguments

Constructor ——> functicn new(string name = "", uvm_component parent = null);
super.new(name, parent);
endfunction

function vold phase started(uvm _phase phase);
Class / if (phase.get name() == "pre reset") begin

Method phase.raise objectioff(null);
end
endfunction
endolasa
Branching Expressions

Operator

Language Basics (Design)

/f calculate the waddr to the memory based on the
/f frame position flags

T T e

. Synchronous
Logic

always @(negedge rst n or posedge clk) begin

if (lrst _n) begin

next waddr <= 0; <€ Reset State
end
else begin .
if (calec strobe && first row flag && first column flag) begin F“p'ﬂop
next waddr <= EFFECTIVE WIDTH;
end

else if (calc strobe && last row flag && first column flag) begin

next_waddr <= next waddr + EFFECTI?E_HIW AND/OR gates
end
else if (calc_strobe && first row flag && Sfirst column flag ||

calc strobe && last row flag && !first column flag ||
strobe 3 of 4) begin
next waddr <= next waddr - EFFECTIVE WIDTH;
end
else if (strobe 2 of 2 || strobe 2 of 4 || strobe 4 of 4) begin
next waddr <= next waddr + EFFECTIVE WIDTH + 1;

end
else if (next wr) begin
if (next_waddr < 6 * EFFECTIVE_WIDTH-1) next waddr <= next waddr + 1; <« Adder
else next waddr <= 0
end
end

end

Hardware Simulation

7

11

// caleulate the waddr to the memory based on the
// frame position flags

11

/1

always €(negedge rst_n or posedge clk) begin
if (irst_n) begin
next_waddr <= 0;
end

else begin
if (cale_strobe && first row flag && first colum flag) begin
next_waddr <= EFFECTIVE_WIDTH;
end
else if (calc_strobe && last row flag && first column flag) begin
next_waddr <= next_waddr + EFFECTIVE WIDTH;

end
else if (calc_strobe && first row flag && |first column flag ||
calc_strobe && last_Tow flag & !first_colum flag | |
robe_3 of 1) begin
next_waddr <= next_waddr - EFFECTIVE_WIDTH;

ena
olse if (strobe 2 of 2 || strobe 2 of 4 || strobo_4_of 4) bagin
next_waddr <= next_waddr + EFFECTIVE_WIDTH + 1;
end
else if (next wr) begin
if (next_waddr < 6 * EFFECTIVE WIDTH-1) next_waddr <= next_waddr + 1;
else next_vaddr <= 0;
end
ena
ena

I

// the purpose of this component is to raise an objections

// at pre reset so that other components registered to the

// same domain never proceed beyond that point

I

class svunit_idle_uvm_component extends uvm_component;
“uvn_component utils(svunit idle uvm component)

results.log

function new(string name = "", uvm component parent = null);
Super.new(name, parent);
endfunction

function void phase started(uvm phase phase);
if (phase.get_name() == "pre reset") begin
phase.raise objection(null};
end
endfunction
endclass

Effort and Results
Mean time Non-FPGA verification engineers spends in different tasks

More time spent in REDO than |
any other task! |

m Test Planning
@ Testbench Development
® Creating and Running Test

«REDO
a Other

Wisoe Rt prcth Group and Menloe Gegphas, 112 Fencrional varficabon Stisdy, Usad wilh panmmesiin

T LS Mg Degpbey Lo
HE - Jauoarp 012 Mander Tl R L S MD Sy Hematis wErremEn e oom

4 R

TDD is a great idea
that can save us a
lot of money by
helping us avoid
writing buggy code

EEV @\ﬂr’/ U

P

NN

This guy
IS an idiot It's lunch time.
Why are you

telling us this at
[We're too busy to O

N lunch time?
save money. 5 %_/

